CN111748847B - 碲锌镉晶体配料方法 - Google Patents

碲锌镉晶体配料方法 Download PDF

Info

Publication number
CN111748847B
CN111748847B CN202010535426.2A CN202010535426A CN111748847B CN 111748847 B CN111748847 B CN 111748847B CN 202010535426 A CN202010535426 A CN 202010535426A CN 111748847 B CN111748847 B CN 111748847B
Authority
CN
China
Prior art keywords
cadmium
mass
zinc
tellurium
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010535426.2A
Other languages
English (en)
Other versions
CN111748847A (zh
Inventor
刘江高
徐强强
吴卿
范叶霞
侯晓敏
刘铭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 11 Research Institute
Original Assignee
CETC 11 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 11 Research Institute filed Critical CETC 11 Research Institute
Priority to CN202010535426.2A priority Critical patent/CN111748847B/zh
Publication of CN111748847A publication Critical patent/CN111748847A/zh
Application granted granted Critical
Publication of CN111748847B publication Critical patent/CN111748847B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/46Sulfur-, selenium- or tellurium-containing compounds
    • C30B29/48AIIBVI compounds wherein A is Zn, Cd or Hg, and B is S, Se or Te
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/007Apparatus for preparing, pre-treating the source material to be used for crystal growth

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种碲锌镉晶体配料方法,所述方法包括:设定容器中自由空间的体积分数;基于自由空间的体积分数以及容器的体积,计算待配碲锌镉晶体的质量;基于待配碲锌镉晶体的质量,根据待配碲锌镉晶体中各组分的质量分数关系,依次获取第一质量的锌、第二质量的镉、以及第三质量的碲,以配制碲锌镉晶体。采用本发明,不仅可以简化碲锌镉晶体配料方法的过程,还可以保证在容器体积变化的基础上每根碲锌镉晶体中碲、锌、镉三种组分比例保持一致,碲锌镉晶体晶体内部夹杂缺陷的尺寸(基本小于10μm)基本稳定,夹杂缺陷的密度也基本稳定。

Description

碲锌镉晶体配料方法
技术领域
本发明涉及半导体领域,尤其涉及一种碲锌镉晶体配料方法。
背景技术
碲锌镉晶体原料是由碲、锌、镉三种单质按照特定组分化学式组成。作为碲镉汞外延衬底用的碲锌镉材料化学式一般为Cd0.96Zn0.04Te,而作为核辐射探测器应用的碲锌镉材料化学式一般为Cd0.9Zn0.1Te。如果组分中Te或者Cd偏离化学计量比约0.001%以上,其生长的碲锌镉晶体内部容易出现微米级别的夹杂缺陷,对晶体的后续应用极为不利。为保证晶体化学计量比生长,配料过程组分控制是目前最重要的手段。但是,由于碲锌镉初始合成容器一般选用体积不固定的石英坩埚,坩埚内部晶体体积以及自由空间体积又都是影响晶体按照化学计量比生长的关键参数。因此在初始坩埚容器一直变化的基础上,如何得到组分一致性强、晶体内部无大尺寸夹杂缺陷的碲锌镉晶体是碲锌镉晶体商业化应用的重中之重。
发明内容
本发明实施例提供一种碲锌镉晶体配料方法,用以解决现有技术中碲锌镉晶体配料过程组分控制困难的问题。
根据本发明实施例的碲锌镉晶体配料方法,包括:
设定容器中自由空间的体积分数;
基于所述自由空间的体积分数以及所述容器的体积,计算待配碲锌镉晶体的质量;
基于所述待配碲锌镉晶体的质量,根据所述待配碲锌镉晶体中各组分的质量分数关系,依次获取第一质量的锌、第二质量的镉、以及第三质量的碲,以配制碲锌镉晶体。
根据本发明的一些实施例,所述设定容器中自由空间的体积分数,包括:
选择安瓿为初始合成待配碲锌镉晶体的容器;
设定所述安瓿中自由空间的体积分数大于等于55%且小于等于60%。
根据本发明的一些实施例,所述基于所述自由空间的体积分数以及所述容器的体积,计算待配碲锌镉晶体的质量,包括:
基于所述自由空间的体积分数以及所述容器的体积,确定待配碲锌镉晶体的体积;
基于所述待配碲锌镉晶体的体积以及所述待配碲锌镉晶体的密度,计算待配碲锌镉晶体的质量。
根据本发明的一些实施例,所述基于所述待配碲锌镉晶体的质量,根据所述待配碲锌镉晶体中各组分的质量分数关系,依次获取第一质量的锌、第二质量的镉、以及第三质量的碲,以配制碲锌镉晶体,包括:
基于所述待配碲锌镉晶体的质量、以及所述待配碲锌镉晶体中锌的质量分数,计算待配锌的第一理论质量;
基于所述待配锌的第一理论质量,获取第一质量的锌。
根据本发明的一些实施例,所述第一质量与所述第一理论质量之间的误差小于1%。
根据本发明的一些实施例,所述基于所述待配碲锌镉晶体的质量,根据所述待配碲锌镉晶体中各组分的质量分数关系,依次获取第一质量的锌、第二质量的镉、以及第三质量的碲,以配制碲锌镉晶体,还包括:
基于获取的第一质量的锌,根据所述待配碲锌镉晶体中锌与镉的原子摩尔比,计算待配镉的第二理论质量;
基于所述待配镉的第二理论质量,获取第二质量的镉;
根据本发明的一些实施例,所述第二质量与所述第二理论质量之间的误差小于0.03%。
根据本发明的一些实施例,所述基于所述待配碲锌镉晶体的质量,根据所述待配碲锌镉晶体中各组分的质量分数关系,依次获取第一质量的锌、第二质量的镉、以及第三质量的碲,以配制碲锌镉晶体,还包括:
基于获取的第一质量的锌以及第二质量的镉,根据所述待配碲锌镉晶体中碲的摩尔量是锌的摩尔量与镉的摩尔量之和的原则,计算待配碲的第三理论质量;
基于所述待配碲的第三理论质量,获取第三质量的碲。
根据本发明的一些实施例,所述基于获取的第一质量的锌以及第二质量的镉,根据所述待配碲锌镉晶体中碲的摩尔量是锌的摩尔量与镉的摩尔量之和的原则,计算待配碲的第三理论质量,包括:
基于获取的第一质量的锌以及第二质量的镉,根据所述待配碲锌镉晶体中碲的摩尔量是锌的摩尔量与镉的摩尔量之和的原则,计算待配碲的初步质量;
基于所述碲锌镉晶体生产过程中镉的挥发量,计算待配碲的补充质量;
基于所述初步质量和所述补充质量,计算所述待配碲的第三理论质量。
根据本发明的一些实施例,所述基于所述碲锌镉晶体生产过程中镉的挥发量,计算待配碲的补充质量,包括:
基于所述碲锌镉晶体的相图,将镉的蒸气压力设定为所述相图中碲锌镉晶体生长温度对应气压的50%~100%,根据理想气体状态方程,确定所述碲锌镉晶体生产过程中镉的挥发量。
根据本发明的一些实施例,所述第三质量与所述第三理论质量之间的误差小于0.0003%。
采用本发明实施例,不仅可以简化碲锌镉晶体配料方法的过程,还可以保证在容器体积变化的基础上每根碲锌镉晶体中碲、锌、镉三种组分比例保持一致,碲锌镉晶体晶体内部夹杂缺陷的尺寸(基本小于10μm)基本稳定,夹杂缺陷的密度也基本稳定。
上述说明仅是本发明技术方案的概述,为了能够更清楚了解本发明的技术手段,而可依照说明书的内容予以实施,并且为了让本发明的上述和其它目的、特征和优点能够更明显易懂,以下特举本发明的具体实施方式。
附图说明
通过阅读下文实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。在附图中:
图1是本发明实施例中碲锌镉晶体配料方法流程示意图。
具体实施方式
下面将参照附图更详细地描述本发明的示例性实施例。虽然附图中显示了本发明的示例性实施例,然而应当理解,可以以各种形式实现本发明而不应被这里阐述的实施例所限制。相反,提供这些实施例是为了能够更透彻地理解本发明,并且能够将本发明的范围完整的传达给本领域的技术人员。
如图1所示,根据本发明实施例的碲锌镉晶体配料方法,包括:
S1,设定容器中自由空间的体积分数。
这里所提到的“容器中自由空间”可以理解为将晶体放入容器后,容器中晶体上方的空间。
S2,基于自由空间的体积分数以及容器的体积,计算待配碲锌镉晶体的质量。
这里所提到的“待配碲锌镉晶体”可以理解为需要配制的碲锌镉晶体。例如,当作为碲镉汞外延衬底用,待配碲锌镉晶体可以为Cd0.96Zn0.04Te;当作为核辐射探测器应用,待配碲锌镉晶体可以为Cd0.9Zn0.1Te。
S3,基于待配碲锌镉晶体的质量,根据待配碲锌镉晶体中各组分的质量分数关系,依次获取第一质量的锌、第二质量的镉、以及第三质量的碲,以配制碲锌镉晶体。
采用本发明实施例,不仅可以简化碲锌镉晶体配料方法的过程,还可以保证在容器体积变化的基础上每根碲锌镉晶体中碲、锌、镉三种组分比例保持一致,碲锌镉晶体晶体内部夹杂缺陷的尺寸(基本小于10μm)基本稳定,夹杂缺陷的密度也基本稳定。
在上述实施例的基础上,进一步提出各变型实施例,在此需要说明的是,为了使描述简要,在各变型实施例中仅描述与上述实施例的不同之处。
根据本发明的一些实施例,设定容器中自由空间的体积分数,包括:
选择安瓿为初始合成待配碲锌镉晶体的容器;
设定安瓿中自由空间的体积分数大于等于55%且小于等于60%。
根据本发明的一些实施例,基于自由空间的体积分数以及容器的体积,计算待配碲锌镉晶体的质量,包括:
基于自由空间的体积分数以及容器的体积,确定待配碲锌镉晶体的体积;
基于待配碲锌镉晶体的体积以及待配碲锌镉晶体的密度,计算待配碲锌镉晶体的质量。
根据本发明的一些实施例,基于待配碲锌镉晶体的质量,根据待配碲锌镉晶体中各组分的质量分数关系,依次获取第一质量的锌、第二质量的镉、以及第三质量的碲,以配制碲锌镉晶体,包括:
基于待配碲锌镉晶体的质量、以及待配碲锌镉晶体中锌的质量分数,计算待配锌的第一理论质量;
基于待配锌的第一理论质量,获取第一质量的锌。
由于通常情况下碲锌镉晶体中锌的组分质量最少,锌的误差也相对小,因此,先配制锌,并基于锌的质量配制其他组分,可以相对提高碲锌镉晶体配料精确性。
根据本发明的一些实施例,第一质量与第一理论质量之间的误差小于1%。
根据本发明的一些实施例,基于待配碲锌镉晶体的质量,根据待配碲锌镉晶体中各组分的质量分数关系,依次获取第一质量的锌、第二质量的镉、以及第三质量的碲,以配制碲锌镉晶体,还包括:
基于获取的第一质量的锌,根据待配碲锌镉晶体中锌与镉的原子摩尔比,计算待配镉的第二理论质量;
基于待配镉的第二理论质量,获取第二质量的镉;
根据本发明的一些实施例,第二质量与第二理论质量之间的误差小于0.03%。
根据本发明的一些实施例,基于待配碲锌镉晶体的质量,根据待配碲锌镉晶体中各组分的质量分数关系,依次获取第一质量的锌、第二质量的镉、以及第三质量的碲,以配制碲锌镉晶体,还包括:
基于获取的第一质量的锌以及第二质量的镉,根据待配碲锌镉晶体中碲的摩尔量是锌的摩尔量与镉的摩尔量之和的原则,计算待配碲的第三理论质量;
基于待配碲的第三理论质量,获取第三质量的碲。
根据本发明的一些实施例,基于获取的第一质量的锌以及第二质量的镉,根据待配碲锌镉晶体中碲的摩尔量是锌的摩尔量与镉的摩尔量之和的原则,计算待配碲的第三理论质量,包括:
基于获取的第一质量的锌以及第二质量的镉,根据待配碲锌镉晶体中碲的摩尔量是锌的摩尔量与镉的摩尔量之和的原则,计算待配碲的初步质量;
基于碲锌镉晶体生产过程中镉的挥发量,计算待配碲的补充质量;
基于初步质量和补充质量,计算待配碲的第三理论质量。
这里,考虑自由空间中镉的挥发,确定碲的第三理论质量还需要减去自由空间内镉的挥发对应在碲锌镉晶体产生富余碲含量,可以进一步提高碲锌镉晶体的配制精确度。挥发镉的物质的量n可以根据理想气体状态方程进行计算,即n=PVf/RT,将其中P为容器的压强,V为容器的体积,R为常数8.314,T为生长时气体平均温度,f为自由空间体积分数。进一步的,待配碲的补充质量可以根据公式mTe补=MTePVf/RT确定,MTe为碲的相对原子质量。
根据本发明的一些实施例,所述基于所述碲锌镉晶体生产过程中镉的挥发量,计算待配碲的补充质量,包括:
基于所述碲锌镉晶体的相图,将镉的蒸气压力设定为所述相图中碲锌镉晶体生长温度对应气压的50%~100%,根据理想气体状态方程,确定所述碲锌镉晶体生产过程中镉的挥发量。
考虑自由空间镉Cd组分的挥发,确定碲Te组分第三理论质量还需要在初步质量的基础上减去自由空间内Cd组分的挥发对应在碲锌镉晶体产生富余Te含量。根据碲锌镉晶体的三元相图,相同生长条件下,温度T及容器压强P确定,挥发Cd物质的量近似满足理想状态方程n=PVf/RT,对应晶体中会富余的Te质量计算公式即mTe补=MTePVf/RT。在规定自由空间体积和总安瓿体积比例确定情况下,该富余Te含量就与安瓿总体积成比例关系,将mTe补=MTePVf/RT进一步简化为富余Te质量mTe补=k5V,k5=fMTeP/RT。
根据本发明的一些实施例,第三质量与第三理论质量之间的误差小于0.0003%。
下面以一个具体的实施例详细描述根据本发明实施例的碲锌镉晶体配料方法。值得理解的是,下述描述仅是示例性说明,而不是对本发明的具体限制。凡是采用本发明的相似结构及其相似变化,均应列入本发明的保护范围。
一般碲锌镉晶体初始合成的容器一般选用体积不固定的石英坩埚。如果固定晶体质量,则由于不同石英坩埚之间自由空间体积的差异,将导致在高温合成以及生长中,镉的挥发量不同,最终不同体积生长石英坩埚晶体的组分会有差异。偏离组分较大的情况会出现≥10μm的夹杂缺陷,影响后续使用。而不确定晶体质量的情况下,如何确认晶体三组分原料各自质量以保证每根晶体的化学计量比基本统一,生长时内部无≥10μm的夹杂缺陷是目前碲锌镉配料首要解决的问题。
本发明实施例提出一种碲锌镉晶体配料方法,该方法在确定碲锌镉晶体的化学式以及其他工艺条件一致的情况下,以石英安瓿总体积为唯一变量,可以消除了安瓿容器体积的影响,得到组分偏差小、性能一致的碲锌镉晶体。
本发明实施例的碲锌镉晶体配料方法包括以下步骤:
设定石英安瓿中位于碲锌镉晶体上方的自由空间的体积分数f,根据经验,一般以55%-60%为宜。
测定安瓿的总体积V,并按照比例得到碲锌镉晶体体积Vc=V(1-f),继而根据碲锌镉晶体密度ρ计算得到碲锌镉晶体理论质量mc=ρVc
由于碲锌镉晶体需要的三种组分中锌(Zn)组分质量最少,先根据碲锌镉化学式中Zn组分质量分数WZn计算碲锌镉晶体中锌组分的第一理论质量mZn理=mcWZn=ρWZnV(1-f)。简化该公式可得到mZn理=k1V,其中k1=ρWZn(1-f)。为保证不同碲锌镉晶体Zn组分的一致性,Zn组分的目标质量(即第一质量)称量误差上限可控制在1‰以下。
步骤二:根据Zn组分实际称量质量mZn实(即第一质量),按照碲锌镉晶体化学式中Zn和Cd的原子摩尔比N计算Cd组分的第二理论质量mCd理=mZn实*MCd/(MZn*N),该式可简化为mCd理=k2mZn实,其中k2=MCd/(MZn*N),其中MCd、MZn分别为Cd和Zn的相对原子质量。Cd组分的目标质量(即第二质量)称量时的误差限控制在0.03%以下。
步骤三:根据称量的Zn组分质量mZn实以及Cd组分质量mCd实,按照化学式Te摩尔量是Zn、Cd的摩尔量之和原则,确定Te组分初步质量mTe初=(mZn实/MZn+mCd实/MCd)*MTe,其中MTe为Te的相对原子质量。将式中确定量进行简化得到mTe初=k3mZn实+k4 mCd实,其中k3=MTe/MZn,k4=MTe/Mcd。考虑自由空间Cd组分的挥发,确定Te组分第三理论质量还需要在初步质量的基础上减去自由空间内Cd组分的挥发对应在碲锌镉晶体产生富余Te含量。根据碲锌镉的三元相图,相同生长条件下,温度T及容器压强P确定,挥发Cd物质的量近似满足理想状态方程n=PVf/RT,对应晶体中会富余的Te质量计算公式即mTe补=MTePVf/RT。在规定自由空间体积和总安瓿体积比例确定情况下,该富余Te含量就与安瓿总体积成比例关系,将mTe补=MTePVf/RT进一步简化为富余Te质量mTe补=k5V,k5=fMTeP/RT。
实际上碲锌镉晶体生长过程熔体温度T受温场所限一般无法保持恒定,因此系数k5中的P可根据长晶温场摸索出一个经验值,一般为相图中初始熔体温度T对应的Cd蒸气压力值的50%~100%,在该经验值下可获得夹杂尺寸较小的碲锌镉碲锌镉晶体。
最终Te组分目标称量质量MTe理=mTe初-mTe补。Te组分目标质量称量误差限可控制在0.0003%以下。
例如,以体积为1360ml的石英安瓿配制Cd0.955Zn0.045Te(化学式中Zn质量分数WZn为1.237%)为例,其中,自由空间的体积分数60%,高温下Cd蒸汽压力设定为2atm,温度为1400K,碲锌镉密度5.68g/cm3
计算各步骤中系数k1、k2、k3、k4、k5。
k1=ρwZn(1-f)=5.68×1.237%×(1-60%)=0.02810g/ml
k2=MCd/(MZn*N)=112.411/(65.39×0.04712)=36.48281
k3=MTe/MZn=127.6/65.39=1.95137
k4=MTe/Mcd=127.6/112.411=1.13512
k5=fMTeP/RT=0.6×127.6×2×1.01×105/8.314/1400=1.3287×10-3g/ml
确认Zn组分的第一理论质量为:
mZn理=1360×0.02810=38.2160g。
根据误差范围,称量Zn组分的第一质量应在38.2110~38.2210之间,以38.2154g为假设Zn的第一质量mZn实
根据该质量mZn实确认Cd组分的第二理论质量为:
mCd理=38.2154×36.48281=1394.2052g。
根据Cd组分的误差范围,称量Cd组分的质量应在1394.1552~1394.2552之间,以1394.2033g为Cd的第二质量mCd实
根据Zn的第一质量mZn实、Cd的第二质量mCd实,确认Te的初始质量:
mTe初=38.2154×1.95137+1394.2033×1.13512=1657.1607g。
Te补充质量为:
mTe补=1.3287×10-3×1360=1.8070g。
则最终需要称量的Te的第三理论质量为:
mTe理=1657.1607-1.8070=1655.3537g。
引入Te的误差范围,将Te称量值控制在1655.3487~1655.3587g范围。
由此,在工艺条件不变情况下,k1~k5值即保持不变,输入安瓿体积即可根据简化公式逐步确认晶体各组分原料质量。
采用本发明实施例,不仅可以简化碲锌镉晶体配料方法的过程,还可以保证在容器体积变化的基础上每根碲锌镉晶体中碲、锌、镉三种组分比例保持一致,碲锌镉晶体晶体内部夹杂缺陷的尺寸(基本小于10μm)基本稳定,夹杂缺陷的密度也基本稳定。
需要说明的是,以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
另外,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (6)

1.一种碲锌镉晶体配料方法,其特征在于,包括:
设定容器中自由空间的体积分数;
基于所述自由空间的体积分数以及所述容器的体积,计算待配碲锌镉晶体的质量;
基于所述待配碲锌镉晶体的质量,根据所述待配碲锌镉晶体中各组分的质量分数关系,依次获取第一质量的锌、第二质量的镉、以及第三质量的碲,以配制碲锌镉晶体;
所述基于所述待配碲锌镉晶体的质量,根据所述待配碲锌镉晶体中各组分的质量分数关系,依次获取第一质量的锌、第二质量的镉、以及第三质量的碲,以配制碲锌镉晶体,包括:
基于所述待配碲锌镉晶体的质量、以及所述待配碲锌镉晶体中锌的质量分数,计算待配锌的第一理论质量;
基于所述待配锌的第一理论质量,获取第一质量的锌;
基于获取的第一质量的锌,根据所述待配碲锌镉晶体中锌与镉的原子摩尔比,计算待配镉的第二理论质量;
基于所述待配镉的第二理论质量,获取第二质量的镉;
基于获取的第一质量的锌以及第二质量的镉,根据所述待配碲锌镉晶体中碲的摩尔量是锌的摩尔量与镉的摩尔量之和的原则,计算待配碲的第三理论质量;
基于所述待配碲的第三理论质量,获取第三质量的碲;
所述基于获取的第一质量的锌以及第二质量的镉,根据所述待配碲锌镉晶体中碲的摩尔量是锌的摩尔量与镉的摩尔量之和的原则,计算待配碲的第三理论质量,包括:
基于获取的第一质量的锌以及第二质量的镉,根据所述待配碲锌镉晶体中碲的摩尔量是锌的摩尔量与镉的摩尔量之和的原则,计算待配碲的初步质量;
基于所述碲锌镉晶体生产过程中镉的挥发量,计算待配碲的补充质量;
基于所述初步质量和所述补充质量,计算所述待配碲的第三理论质量;
所述基于所述碲锌镉晶体生产过程中镉的挥发量,计算待配碲的补充质量,包括:
基于所述碲锌镉晶体的相图,将镉的蒸气压力设定为所述相图中碲锌镉晶体生长温度对应气压的50%~100%,根据理想气体状态方程,确定所述碲锌镉晶体生产过程中镉的挥发量。
2.如权利要求1所述的方法,其特征在于,所述设定容器中自由空间的体积分数,包括:
选择安瓿为初始合成待配碲锌镉晶体的容器;
设定所述安瓿中自由空间的体积分数大于等于55%且小于等于60%。
3.如权利要求1所述的方法,其特征在于,所述基于所述自由空间的体积分数以及所述容器的体积,计算待配碲锌镉晶体的质量,包括:
基于所述自由空间的体积分数以及所述容器的体积,确定待配碲锌镉晶体的体积;
基于所述待配碲锌镉晶体的体积以及所述待配碲锌镉晶体的密度,计算待配碲锌镉晶体的质量。
4.如权利要求1所述的方法,其特征在于,所述第一质量与所述第一理论质量之间的误差小于1%。
5.如权利要求1所述的方法,其特征在于,所述第二质量与所述第二理论质量之间的误差小于0.03%。
6.如权利要求1所述的方法,其特征在于,所述第三质量与所述第三理论质量之间的误差小于0.0003%。
CN202010535426.2A 2020-06-12 2020-06-12 碲锌镉晶体配料方法 Active CN111748847B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010535426.2A CN111748847B (zh) 2020-06-12 2020-06-12 碲锌镉晶体配料方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010535426.2A CN111748847B (zh) 2020-06-12 2020-06-12 碲锌镉晶体配料方法

Publications (2)

Publication Number Publication Date
CN111748847A CN111748847A (zh) 2020-10-09
CN111748847B true CN111748847B (zh) 2021-11-05

Family

ID=72675108

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010535426.2A Active CN111748847B (zh) 2020-06-12 2020-06-12 碲锌镉晶体配料方法

Country Status (1)

Country Link
CN (1) CN111748847B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101220514A (zh) * 2007-09-30 2008-07-16 西北工业大学 高电阻率碲锌镉晶体的制备方法
CN101871123A (zh) * 2010-06-12 2010-10-27 上海大学 移动碲溶剂熔区法生长碲锌镉晶体的方法及装置
CN102230213A (zh) * 2011-06-08 2011-11-02 上海大学 碲溶剂溶液法生长碲锌镉晶体的方法
CN103088409A (zh) * 2013-01-31 2013-05-08 中国科学院上海技术物理研究所 一种垂直提拉生长碲锌镉单晶的装置和方法
CN104914093A (zh) * 2014-03-12 2015-09-16 广东先导稀材股份有限公司 碲锌镉晶体中常量镉和锌的测试方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7014702B2 (en) * 2000-05-31 2006-03-21 Pirelli Cavi E Sistemi S.P.A. Method and apparatus for preparation of binary and higher order compounds and devices fabricated using same
FR2828214B1 (fr) * 2001-08-06 2003-12-12 Centre Nat Rech Scient PROCEDE D'OBTENTION D'UN MONOCRISTAL DE CdTd OU DE CdZnTe, ET MONOCRISTAL OBTENU PAR CE PROCEDE

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101220514A (zh) * 2007-09-30 2008-07-16 西北工业大学 高电阻率碲锌镉晶体的制备方法
CN101871123A (zh) * 2010-06-12 2010-10-27 上海大学 移动碲溶剂熔区法生长碲锌镉晶体的方法及装置
CN102230213A (zh) * 2011-06-08 2011-11-02 上海大学 碲溶剂溶液法生长碲锌镉晶体的方法
CN103088409A (zh) * 2013-01-31 2013-05-08 中国科学院上海技术物理研究所 一种垂直提拉生长碲锌镉单晶的装置和方法
CN104914093A (zh) * 2014-03-12 2015-09-16 广东先导稀材股份有限公司 碲锌镉晶体中常量镉和锌的测试方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
A Modified Vertical Bridgman Method for Growth of High-Quality Cd1–xZnxTe Crystals;GUOQIANG LI,et al.;《Journal of ELECTRONIC MATERIALS》;20050930;1215-1224 *
Cd1-xZnxTe: Growth and characterization of crystals for X-ray and gamma-ray detectors;Guoqiang Li,et al.;《Progress in Crystal Growth and Characterization of Materials》;20040415;85-104 *

Also Published As

Publication number Publication date
CN111748847A (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
Phelan et al. On the chemistry and physical properties of flux and floating zone grown SmB6 single crystals
Sakata et al. Studies on the formation of FeSi2 from the FeSi Fe2Si5 eutectic
CN102383181B (zh) 制备n-型Ⅲ族氮化物单晶的方法、所述单晶、和晶体基板
Rimmington et al. The growth by iodine vapour transport techniques and the crystal structures of layer compounds in the series TiSxSe2− x, TiSxTe2− x, TiSexTe2− x
Huntelaar et al. The thermodynamic properties of Ce2O3 (s) fromT→ 0 K to 1500 K
CN111748847B (zh) 碲锌镉晶体配料方法
US20050215057A1 (en) Arsenic dopants for pulling of silicon single crystal, process for producing thereof and process for producing silicon single crystal using thereof
Chandrasekharaiah et al. The disilicides of tungsten, molybdenum, tantalum, titanium, cobalt, and nickel, and platinum monosilicide: a survey of their thermodynamic properties
Sobolev et al. Nanostructured crystals of fluorite phases Sr 1− x R x F 2+ x (R are rare-earth elements) and their ordering. I. Crystal growth of Sr 1− x R x F 2+ x (R= Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu)
Wang et al. Study of congruent-melting composition of langasite and its effects on crystal quality
Khedim et al. Kinetic and equilibrium factors affecting saturation of chromium oxide in soda-silicate melts
EP0096922B1 (en) Method of preparing a plurality of castings having a predetermined composition
CN106294302A (zh) 一种硅靶材配料调节极性、电阻率测算方法
CN112831828B (zh) 掺镓直拉单晶硅的生长方法、掺镓单晶硅及应用
Lowe et al. The effect of crystal size on chemical hysteresis in praseodymium and terbium oxides
CN108360062B (zh) 一种多步反复合成制备稀土掺杂钆镓铝单晶原料的方法
Portillo-Moreno et al. CdSe band-splitting on thermal annealed films
JP5984058B2 (ja) タンタル酸リチウム単結晶の製造方法及びタンタル酸リチウム単結晶
JP2823741B2 (ja) ゲルマニウム酸ビスマス単結晶の製造方法
Sen et al. Short-range structure and chemical order in In–Ge sulfide and selenide glasses by X-ray absorption fine structure spectroscopy
Le Roy et al. Structure of lithium iodate-iodic acid solid solution Li1-xHxIO3 (x= 0.33)
Badikov et al. Growth and X-ray diffraction study of Tl 4 HgI 6 crystals
Hayakawa et al. Chemical transport reactions of some rare earth phosphides: syntheses of new rare earth-silicon-phosphorus ternary compounds
JP2651118B2 (ja) ニオブ酸リチウム単結晶の製造方法
JPH1121198A (ja) シレナイト単結晶の製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant