CN111748788A - 成膜方法和成膜装置 - Google Patents

成膜方法和成膜装置 Download PDF

Info

Publication number
CN111748788A
CN111748788A CN202010201549.2A CN202010201549A CN111748788A CN 111748788 A CN111748788 A CN 111748788A CN 202010201549 A CN202010201549 A CN 202010201549A CN 111748788 A CN111748788 A CN 111748788A
Authority
CN
China
Prior art keywords
temperature
halogen
source gas
containing silicon
silicon source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010201549.2A
Other languages
English (en)
Other versions
CN111748788B (zh
Inventor
林宽之
藤田成树
熊谷圭太
藤田圭介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Publication of CN111748788A publication Critical patent/CN111748788A/zh
Application granted granted Critical
Publication of CN111748788B publication Critical patent/CN111748788B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02428Structure
    • H01L21/0243Surface structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02636Selective deposition, e.g. simultaneous growth of mono- and non-monocrystalline semiconductor materials
    • H01L21/02639Preparation of substrate for selective deposition
    • H01L21/02645Seed materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0209Pretreatment of the material to be coated by heating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • C23C16/463Cooling of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02373Group 14 semiconducting materials
    • H01L21/02381Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02592Microstructure amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本公开提供一种能够改善膜厚度的面内均匀性的成膜方法和成膜装置。基于本公开的一个方式的成膜方法包括:降温步骤,一边使被收容于处理容器内的基板的温度从第一温度降温至第二温度,一边向所述处理容器内供给非含卤硅原料气体和含卤硅原料气体;以及恒温步骤,在所述降温步骤之后进行,在所述恒温步骤中,一边将所述基板的温度维持为第三温度,一边向所述处理容器内供给所述非含卤硅原料气体和所述含卤硅原料气体。

Description

成膜方法和成膜装置
技术领域
本公开涉及一种成膜方法和成膜装置。
背景技术
已知一种向表面形成有细微凹部的基板供给硅烷系气体和硅系含氯化合物气体来形成硅膜的技术(例如参照专利文献1)。
现有技术文献
专利文献
专利文献1:日本特开2017-152426号公报
发明内容
发明要解决的问题
本公开提供一种能够改善膜厚度的面内均匀性的技术。
用于解决问题的方案
基于本公开的一个方式的成膜方法包括:降温步骤,一边使被收容于处理容器内的基板的温度从第一温度降温至第二温度,一边向所述处理容器内供给非含卤硅原料气体和含卤硅原料气体;以及恒温步骤,在所述降温步骤之后进行,在该恒温步骤中,一边将所述基板的温度维持为第三温度,一边向所述处理容器内供给所述非含卤硅原料气体和所述含卤硅原料气体。
发明的效果
根据本公开,能够改善膜厚度的面内均匀性。
附图说明
图1是表示一个实施方式的成膜方法的流程图。
图2是表示形成晶种层的工序中的温度控制的一例的图。
图3是表示立式热处理装置的结构例的纵剖截面图。
图4是用于说明图3的立式热处理装置的处理容器的图。
图5是用于说明实施例1和比较例1的评价样本的图。
图6是表示膜厚度的面内分布的测定结果的图。
图7是表示实施例1的评价结果的图。
图8是表示比较例1的评价结果的图。
图9是用于说明实施例2和比较例2的评价样本的图。
图10是表示膜厚度的面内分布的测定结果的图。
具体实施方式
下面,参照附图来说明本公开的非限定性的例示的实施方式。在所附的所有附图中,对相同或对应的构件或部件标注相同或对应的参照标记,并省略重复的说明。
〔成膜方法〕
对一个实施方式的成膜方法进行说明。图1是表示一个实施方式的成膜方法的流程图。
如图1所示,一个实施方式的成膜方法包括准备基板的工序S10、在基板上形成晶种层的工序S20、以及在晶种层上形成非晶硅膜的工序S30。下面,对各工序进行说明。
(准备基板的工序S10)
在准备基板的工序S10中,准备要形成非晶硅膜的基板。作为基板,可以为表面平滑的基板,也可以为在表面形成有沟槽、孔等凹部的基板。基板例如可以为硅基板等半导体基板。另外,在基板的表面例如可以形成有氧化硅膜(SiO2膜)、氮化硅膜(SiN膜)等绝缘膜。
(形成晶种层的工序S20)
在形成晶种层的工序S20中,向基板供给晶种层用的硅原料气体来在基板上形成晶种层。图2是表示形成晶种层的工序S20中的温度控制的一例的图。在图2中,横轴表示时间,纵轴表示设定温度。如图2所示,形成晶种层的工序S20具有第一升温步骤S21、降温步骤S22、第二升温步骤S23、恒温步骤S24。
第一升温步骤S21为使被收容于能够减压的处理容器内的基板的温度从初始温度T0升温至第一温度T1的步骤。例如在利用真空泵等对处理容器内抽真空的状态下进行第一升温步骤S21。另外,例如可以一边向处理容器内供给非活性气体、或氢气一边进行第一升温步骤S21。第一温度T1为比初始温度T0高的温度。根据在后述的降温步骤S22、恒温步骤S24中向处理容器内供给的非含卤硅原料气体和含卤硅原料气体的种类来决定初始温度T0和第一温度T1。此外,第一升温步骤S21可以设为温度稳定步骤,在该情况下,可以设为初始温度T0=第一温度T1。
降温步骤S22为一边使被收容于能够减压的处理容器内的基板的温度从第一温度T1降温至第二温度T2、一边向处理容器内供给非含卤硅原料气体和含卤硅原料气体的步骤。该步骤的目的如下。在供给非含卤硅原料气体和含卤硅原料气体时,在基板的中央部与周缘部的温度大致相同的情况下,原料气体浓度高的基板周缘部的成核的进展快,从而在基板面内、成核的进展产生偏差。通过进行降温,能够将基板面内温度设为中央部>周缘部,从而能够使成核的进展在面内一致。降温步骤S22为在形成晶种层的工序S20的初期进行的步骤,并在恒温步骤S24之前进行。
在降温步骤S22中,例如在从第一温度T1向第二温度T2降温的中途起开始向处理容器内供给非含卤硅原料气体和含卤硅原料气体。由此,在基板的中央部和周缘部产生温度差后开始供给原料气体,从而起到能够有效地使基板的中央部与周缘部的成核的进展一致的效果。
另外,在降温步骤S22中,也可以在从第一温度T1向第二温度T2开始降温的同时开始向处理容器内供给非含卤硅原料气体和含卤硅原料气体。
第二温度T2例如为比初始温度T0和第一温度T1低的温度。但是,第二温度T2为比第一温度T1低的温度即可,例如可以为初始温度T0以上的温度。根据非含卤硅原料气体和含卤硅原料气体的种类来决定第二温度T2。
优选降温步骤S22的时间为与针对基板培养硅膜的培养时间(incubation time)相同或大致相同的时间。此外,培养时间是指在开始供给非含卤硅原料气体和含卤硅原料气体后、到实际在基板上开始成膜为止的成核的时间。此外,在基板的表面形成有绝缘膜的情况下,优选降温步骤S22的时间为与针对绝缘膜培养硅膜的培养时间相同或大致相同的时间。另外,将降温步骤S22的时间例如设定得比恒温步骤S24的时间短。但是,可以将降温步骤S22的时间设定得比恒温步骤S24的时间长。
例如能够利用氨基硅烷系气体、氢化硅气体来作为非含卤硅原料气体。作为氨基硅烷系气体,例如能够举出DIPAS(二异丙氨基硅烷)、3DMAS(三二甲基氨基硅烷)、BTBAS(双叔丁基氨基硅烷)。作为氢化硅气体,例如能够举出SiH4、Si2H6、Si3H8、Si4H10
例如能够利用含氟硅气体、含氯硅气体、含溴硅气体来作为含卤硅原料气体。作为含氟硅气体,例如能够举出SiF4、SiHF3、SiH2F2、SiH3F。作为含氯硅气体,例如能够举出SiCl4、SiHCl3、SiH2Cl2(DCS)、SiH3Cl、Si2Cl6。作为含溴硅气体,例如能够举出SiBr4、SiHBr3、SiH2Br2、SiH3Br。
第二升温步骤S23为使被收容于能够减压的处理容器内的基板的温度从第二温度T2升温至第三温度T3的步骤。例如在向处理容器内供给氢气的状态下进行第二升温步骤S23。另外,例如可以在利用真空泵等对处理容器内抽真空的状态下进行第二升温步骤S23,也可以一边向处理容器内供给非活性气体一边进行第二升温步骤S23。根据非含卤硅原料气体和含卤硅原料气体的种类来决定第三温度T3。第三温度T3例如可以为第二温度T2以上且第一温度T1以下的温度。然而,不限于此。第三温度T3也可以为第二温度T2以下或第一温度T1以上的温度。
恒温步骤S24为一边将被收容于能够减压的处理容器内的基板的温度维持为第三温度T3、一边向处理容器内供给非含卤硅原料气体和含卤硅原料气体的步骤。作为非含卤硅原料气体和含卤硅原料气体,例如能够利用与降温步骤S22同样的气体。
此外,使用SiH4气体作为非含卤硅原料气体、使用DCS气体作为含卤硅原料气体的情况下的初始温度T0、第一温度T1、第二温度T2和第三温度T3的优选的温度范围如下。是基于中心温度并根据各种原料气体供给量、供给量比、或处理容器内的压力等来决定的。
初始温度T0:400~500℃(中心温度:450℃)
第一温度T1:430~530℃(中心温度:480℃)
第二温度T2:390~490℃(中心温度:440℃)
第三温度T3:420~520℃(中心温度:470℃)
(形成非晶硅膜的工序S30)
在形成非晶硅膜的工序S30中,向基板供给硅原料气体来在晶种层上形成非晶硅膜。在一个实施方式中,例如通过化学气相沉积(CVD:Chemical Vapor Deposition)法,在将基板加热至规定温度(例如400~550℃)的状态下供给硅原料气体来在晶种层上共形地(conformal)形成非晶硅膜。非晶硅膜可以为非掺杂硅膜,也可以为掺杂了杂质的硅膜。作为杂质,例如能够举出硼(B)、磷(P)、砷(As)、氧(O)、碳(C)。
作为硅原料气体,能够应用于CVD法即可,例如能够组合地利用氢化硅气体、含卤硅气体、氨基硅烷系气体中的一种或多种。另外,作为掺杂杂质的情况下的含杂质气体,例如能够举出B2H6、BCl3、PH3、AsH3
另外,在基板面内的温度大致相同的状态下向处理容器内供给非含卤硅原料气体和含卤硅原料气体来形成膜的情况下,基板周缘的膜厚度相对于基板中央部的膜厚度变厚。作为形成这样的膜形成分布的原因,考虑如下。第一是培养时间差,第二是膜形成进展的差(成膜速率差)。进行深入研究的结果,想到了主要原因是培养时间差。尤其当为在表面形成有孔、沟槽等凹部(凹坑图案)的基板、即表面积大的基板的情况下,基板面内的培养时间差变大。相比于培养时间长的区域,在培养时间短的区域中,直到在基板上开始成膜为止的时间短,因此膜厚度变厚。因此,膜厚度的面内均匀性恶化。
因此,在一个实施方式的成膜方法中,在形成晶种层的工序S20中,在成膜初期进行降温步骤S22,在降温步骤S22之后进行恒温步骤S24。降温步骤S22为一边使被收容于处理容器内的基板的温度从第一温度T1降温至第二温度T2一边向处理容器内供给非含卤硅原料气体和含卤硅原料气体的步骤。恒温步骤S24为一边将基板的温度维持为第三温度T3一边向处理容器内供给非含卤硅原料气体和含卤硅原料气体的步骤。由此,减小作为面内均匀性恶化的主要原因的培养时间差,之后确保成膜速率进行膜形成。
在一个实施方式的成膜方法中,在形成晶种层的工序S20中,只在成膜初期进行降温步骤S22。由此,能够抑制生产率的恶化,并且改善膜厚度的面内均匀性。
〔成膜装置〕
以对多张基板一并进行热处理的批量式的立式热处理装置为例、对能够实施上述的成膜方法的成膜装置进行说明。但是,成膜装置并不限定于批量式的装置,例如也可以为逐张地处理基板的单张式的装置。
图3是表示立式热处理装置的结构例的纵剖截面图。图4是用于说明图3的立式热处理装置的处理容器的图。
如图3所示,立式热处理装置1具有处理容器34、盖体36、晶圆舟38、气体供给部40、排气部41、以及加热部42。
处理容器34为用于收容晶圆舟38的处理容器。晶圆舟38为在上下方向上具有规定间隔地以架状保持多张半导体晶圆(下面称作“晶圆W”。)的基板保持具。处理容器34具有下端开放的有顶的圆筒形状的内管44、下端开放且覆盖内管44的外侧的有顶的圆筒形状的外管46。内管44和外管46由石英等耐热性材料形成,内管44和外管46被同轴状地配置而成为双层管构造。
内管44的顶部44A例如平坦。在内管44的一侧,沿其长边方向(上下方向)形成有收容气体供给管的喷嘴收容部48。例如图4所示,使内管44的侧壁的一部分朝向外侧突出而形成凸部50,将凸部50内形成为喷嘴收容部48。与喷嘴收容部48相向地在内管44的相反侧的侧壁,沿其长边方向(上下方向)形成有宽度为L1的矩形状的开口52。
开口52为形成为能够对内管44内的气体进行排气的气体排气口。开口52的长度形成为与晶圆舟38的长度相同、或比晶圆舟38的长度长且向上下方向分别延伸。即,开口52的上端延伸到位于与晶圆舟38的上端对应的位置以上的高度,开口52的下端延伸到位于与晶圆舟38的下端对应的位置以下的高度。具体地说,如图3所示,晶圆舟38的上端与开口52的上端之间的高度方向上的距离L2处于0mm~5mm左右的范围内。另外,晶圆舟38的下端与开口52的下端之间的高度方向上的距离L3处于0mm~350mm左右的范围内。
处理容器34的下端被例如由不锈钢形成的圆筒形状的岐管54支承。在岐管54的上端形成有凸缘部56,在凸缘部56上设置外管46的下端来对其进行支承。在凸缘部56与外管46的下端之间夹设有O环等密封构件58,来使外管46内呈气密状态。
在岐管54的上部的内壁设置有圆环状的支承部60,在支承部60上设置内管44的下端来对其进行支承。盖体36经由O环等密封构件62气密地安装于岐管54的下端的开口,气密地封闭处理容器34的下端的开口、即岐管54的开口。盖体36例如由不锈钢形成。
在盖体36的中央部,经由磁性流体密封部64贯通设置有旋转轴66。旋转轴66的下部旋转自如地支承于包括晶舟升降机的升降部68的臂68A。
在旋转轴66的上端设置有旋转板70,经由石英制的保温台72在旋转板70上载置用于保持晶圆W的晶圆舟38。因而,能够通过使升降部68升降,来使盖体36与晶圆舟38一体地上下移动,从而能够将晶圆舟38插入于处理容器34内或使晶圆舟38从理容器34内脱离。
气体供给部40设置于岐管54,用于向内管44内导入成膜气体、蚀刻气体、吹扫气体等气体。气体供给部40具有多个(例如3个)石英制的气体供给管76、78、80。各气体供给管76、78、80沿内管44的长边方向设置在内管44内,并且该各气体供给管76、78、80的基端被弯曲为L字状并贯通岐管54,从而被支承。
如图4所示,气体供给管76、78、80被设置为在内管44的喷嘴收容部48内沿周向成为一列。在各气体供给管76、78、80,沿其长边方向以规定间隔形成有多个气体孔76A、78A、80A。各气体孔76A、78A、80A朝向水平方向释放各气体。由此,从晶圆W的周围与晶圆W的主表面大致平行地供给各气体。规定间隔例如被设定为与支承于晶圆舟38的晶圆W的间隔相同。另外,高度方向上的位置被设定为使各气体孔76A、78A、80A位于在上下方向上相邻的晶圆W间的中间,从而能够将各气体有效地供给至晶圆W间的空间部。作为气体的种类,能够使用成膜气体、蚀刻气体以及吹扫气体,能够对各气体进行流量控制,来根据需要经由各气体供给管76、78、80进行供给。成膜气体例如包括前述的非含卤硅原料气体和含卤硅原料气体。
在岐管54的上部的侧壁且支承部60的上方形成有气体出口82,能够对内管44内的、从开口52经由内管44与外管46之间的空间部84排出的气体进行排气。在气体出口82设置有排气部41。排气部41具有与气体出口82连接的排气通路86,在排气通路86依次设置有压力调整阀88和真空泵90,从而能够对处理容器34内进行抽真空。
在外管46的外周侧,以覆盖外管46的方式设置有圆筒形状的加热部42。加热部42用于加热被收容于处理容器34内的晶圆W。
立式热处理装置1的整体的动作由控制部95来控制。控制部95例如可以为计算机等。另外,用于进行立式热处理装置1的整体的动作的计算机的程序存储于存储介质96。存储介质96例如可以为软盘、光盘、硬盘、闪存、DVD等。
对利用所述的立式热处理装置1在晶圆W形成非晶硅膜的成膜方法的一例进行说明。首先,通过升降部68将保持有多张晶圆W的晶圆舟38搬入处理容器34内,通过盖体36气密地封闭处理容器34的下端的开口进行密封。接着,通过控制部95控制气体供给部40、排气部41、加热部42等的动作以执行前述的成膜方法。由此,在晶圆W上形成非晶硅膜。
另外,在从晶圆W的周围与晶圆W的主表面大致平行地供给非含卤硅原料气体和含卤硅原料气体的情况下,晶圆周缘部的膜厚度容易比晶圆中央部的膜厚度厚。尤其在上下方向上具有规定间隔地以架状保持多张晶圆W的情况下,该间隔越窄则晶圆中央部与晶圆周缘部之间产生的膜厚度差越大。因此,考虑扩大该间隔以减小晶圆中央部与晶圆周缘部之间产生的膜厚度差的方法。然而,当扩大该间隔时,能够收容于处理容器内的晶圆W的张数变少,因此生产率下降。
因此,在一个实施方式的成膜方法中,在形成晶种层的工序S20中,在成膜初期进行降温步骤S22,在降温步骤S22之后进行恒温步骤S24。其结果,晶圆W的面内的培养时间差变小,晶圆W上形成的非晶硅膜的膜厚度的面内均匀性得到改善,因此能够不扩大该间隔而改善非晶硅膜的膜厚度的面内均匀性。换言之,能够不使生产率恶化而改善非晶硅膜的膜厚度的面内均匀性。
〔实施例〕
接着,对为了确认一个实施方式的成膜方法的效果而进行的实施例进行说明。
在实施例1中,通过执行在硅晶圆501(参照图5)上形成前述的晶种层的工序S20,来形成膜厚度不同的多个非晶硅膜503,其中,该硅晶圆501的表面平滑,且在该硅晶圆501的表面形成有SiO2膜502。此外,使用前述的立式热处理装置1来作为成膜装置。形成晶种层的工序S20中的处理条件如下。
初始温度T0:450℃
第一温度T1:480℃
第二温度T2:440℃
第三温度T3:470℃
非含卤硅原料气体:SiH4气体
含卤硅原料气体:DCS气体
另外,为了对实施例1进行比较,将晶圆温度维持固定(470℃)地、在与实施例1相同的硅晶圆501上形成了膜厚度不同的多个非晶硅膜503(比较例1)。此外,比较例1中的晶圆温度以外的处理条件与实施例1的处理条件相同。
接着,对在实施例1和比较例1中分别形成的非晶硅膜503测定了晶圆的面内的膜厚度分布。
图6是表示膜厚度的面内分布的测定结果的图。在图6中,横轴表示晶圆位置[mm],纵轴表示非晶硅膜503的膜厚度[nm]。另外,在图6中,用圆(●)标记表示实施例1的测定结果,用三角(▲)标记表示比较例1的测定结果。此外,晶圆位置0mm表示晶圆中心,晶圆位置-150mm、+150mm表示晶圆端部。
如图6所示,在比较例1中,晶圆周缘部的膜厚度比晶圆中央部的膜厚度厚。与此相对,相比于比较例1,在实施例1中,晶圆中央部的膜厚度变厚,晶圆中央部与晶圆周缘部之间的膜厚度差变小。具体地说,在实施例1中,膜厚度的面内均匀性为±1.7%,与此相对,在比较例1中,膜厚度的面内均匀性为±3.6%。根据这些结果,可以说:相比于比较例1所涉及的成膜方法,根据实施例1所涉及的成膜方法,能够改善膜厚度的面内均匀性。
接着,通过测定在实施例1和比较例1中形成的多个非晶硅膜503的晶圆中央部和晶圆周缘部的膜厚度,计算出了晶圆中央部和晶圆周缘部的培养时间。
图7是表示实施例1的评价结果的图。图8是表示比较例1的评价结果的图。在图7和图8中,横轴表示形成晶种层的工序S20的处理时间[min],纵轴表示非晶硅膜503的膜厚度[nm]。另外,在图7和图8中,用圆(○)标记表示晶圆中央部的测定结果,用三角(△)标记表示晶圆周缘部的测定结果。
如图7所示,在实施例1中,晶圆中央部与晶圆周缘部之间的培养时间差ΔTi为1.5min。另一方面,如图8所示,在比较例1中,晶圆中央部与晶圆周缘部之间的培养时间差ΔTi为2.8min。即,可知:相比于比较例1所涉及的成膜方法,在实施例1所涉及的成膜方法中,培养时间差ΔTi变小。并且,比较例1的培养时间是在晶圆周缘部短,与此相对,实施例1的培养时间是在晶圆中央部短。由此可知,通过一边通过成膜初期的降温步骤S22进行降温一边供给非含有硅原料气体和含卤硅原料气体,能够控制培养时间差。另外可知,在晶圆中央部与周缘部,成膜速率(曲线图的斜率)相同。
根据以上的实施例1和比较例1的结果,可以说:在形成晶种层的工序S20中,通过按照降温步骤S22和恒温步骤S24的顺序进行这些步骤,能够减小晶圆面内的培养时间差ΔTi。其结果,可以说能够有效地改善在具有平滑的表面的基板上形成非晶硅膜时的膜厚度的面内均匀性。
在实施例2中,通过执行在硅晶圆901(参照图9)上形成前述的晶种层的工序S20来形成非晶硅膜903,其中,该硅晶圆901在表面形成有凹部901a,且在该硅晶圆901的凹部901a的表面形成有SiO2膜902。此外,使用前述的立式热处理装置1来作为成膜装置。形成晶种层的工序S20中的处理条件与实施例1相同。
另外,为了对实施例2进行比较,将晶圆温度维持固定(470℃)地、在与实施例2相同的硅晶圆901上形成非晶硅膜903(比较例2)。此外,比较例2的晶圆温度以外的处理条件与实施例2的处理条件相同。
接着,针对在实施例2和比较例2中分别形成的非晶硅膜903测定了晶圆的面内的膜厚度分布。
图10是表示膜厚度的面内分布的测定结果的图。在图10中,横轴表示晶圆位置[mm],纵轴表示非晶硅膜903的膜厚度[nm]。另外,在图10中,用圆(●)标记表示实施例2的测定结果,用三角(▲)标记表示比较例2的测定结果。此外,晶圆位置0mm表示晶圆中心,晶圆位置-150mm、+150mm表示晶圆端部。
如图10所示,在实施例2和比较例2的任一例中,晶圆周缘部的膜厚度均比晶圆中央部的膜厚度厚,但相比于比较例2,在实施例2中,晶圆中央部与晶圆周缘部之间的膜厚度差小。具体地说,在实施例2中,膜厚度的面内均匀性为±5.1%,与此相对,在比较例2中,膜厚度的面内均匀性为±7.8%。根据这些结果,可以说:相比于比较例2所涉及的成膜方法,根据实施例2所涉及的成膜方法,能够改善膜厚度的面内均匀性。
应认为本次公开的实施方式的所有点均是例示性的,而非限制性的。可以不脱离所附的权利要求书及其主旨地对上述的实施方式以各种方式进行省略、置换、变更。
在上述的实施方式中,以基板为半导体基板的情况为例进行了说明,但不限定于此。例如,基板可以为平板显示器(FPD:Flat Panel Display)用的大型基板、EL元件或太阳能电池用的基板。

Claims (10)

1.一种成膜方法,包括:
降温步骤,一边使被收容于处理容器内的基板的温度从第一温度降温至第二温度,一边向所述处理容器内供给非含卤硅原料气体和含卤硅原料气体;以及
恒温步骤,在所述降温步骤之后进行,在所述恒温步骤中,一边将所述基板的温度维持为第三温度,一边向所述处理容器内供给所述非含卤硅原料气体和所述含卤硅原料气体。
2.根据权利要求1所述的成膜方法,其特征在于,
从所述基板的周围供给所述非含卤硅原料气体和所述含卤硅原料气体。
3.根据权利要求1或2所述的成膜方法,其特征在于,
与所述基板的主表面大致平行地供给所述非含卤硅原料气体和所述含卤硅原料气体。
4.根据权利要求1至3中的任一项所述的成膜方法,其特征在于,
在所述降温步骤中,从降温中途开始向所述处理容器内供给非含卤硅原料气体和含卤硅原料气体。
5.根据权利要求1至3中的任一项所述的成膜方法,其特征在于,
在所述降温步骤中,在开始降温的同时开始向所述处理容器内供给非含卤硅原料气体和含卤硅原料气体。
6.根据权利要求1至5中的任一项所述的成膜方法,其特征在于,
所述第三温度为所述第二温度以上且所述第一温度以下的温度。
7.根据权利要求1至6中的任一项所述的成膜方法,其特征在于,
所述降温步骤的时间比所述恒温步骤的时间短。
8.根据权利要求1至7中的任一项所述的成膜方法,其特征在于,
在所述基板的表面形成有凹部。
9.根据权利要求1至8中的任一项所述的成膜方法,其特征在于,
在所述处理容器内,在上下方向上具有规定间隔地以架状收容多个基板。
10.一种成膜装置,具备:
处理容器,其收容基板;
加热部,其用于加热所述基板;
气体供给部,其向所述处理容器内供给气体;以及
控制部,
其中,所述控制部控制所述加热部和所述气体供给部,以执行以下步骤:
降温步骤,一边使所述基板的温度从第一温度降温至第二温度,一边向所述处理容器内供给非含卤硅原料气体和含卤硅原料气体;以及
恒温步骤,在所述降温步骤之后进行,在所述恒温步骤中,一边将所述基板的温度控制为固定,一边向所述处理容器内供给非含卤硅原料气体和含卤硅原料气体。
CN202010201549.2A 2019-03-28 2020-03-20 成膜方法和成膜装置 Active CN111748788B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-064843 2019-03-28
JP2019064843A JP7149890B2 (ja) 2019-03-28 2019-03-28 成膜方法及び成膜装置

Publications (2)

Publication Number Publication Date
CN111748788A true CN111748788A (zh) 2020-10-09
CN111748788B CN111748788B (zh) 2023-12-12

Family

ID=72607947

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010201549.2A Active CN111748788B (zh) 2019-03-28 2020-03-20 成膜方法和成膜装置

Country Status (4)

Country Link
US (1) US11410847B2 (zh)
JP (1) JP7149890B2 (zh)
KR (1) KR102651480B1 (zh)
CN (1) CN111748788B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1701133A (zh) * 2003-02-07 2005-11-23 东京毅力科创株式会社 处理被处理基板的半导体处理方法和装置
CN101101859A (zh) * 2006-07-07 2008-01-09 东京毅力科创株式会社 立式热处理装置及其使用方法
US20170243742A1 (en) * 2016-02-22 2017-08-24 Tokyo Electron Limited Film forming method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9343304B2 (en) * 2014-09-26 2016-05-17 Asm Ip Holding B.V. Method for depositing films on semiconductor wafers
JP6456764B2 (ja) * 2015-04-28 2019-01-23 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
JP6078604B2 (ja) * 2015-09-24 2017-02-08 株式会社日立国際電気 半導体装置の製造方法、基板処理方法、基板処理装置およびガス供給系
FR3046862B1 (fr) * 2016-01-18 2018-03-02 Atos Infogerance Procede de collecte periodique d'informations sur un reseau de postes informatiques par un serveur informatique de ce reseau

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1701133A (zh) * 2003-02-07 2005-11-23 东京毅力科创株式会社 处理被处理基板的半导体处理方法和装置
CN101101859A (zh) * 2006-07-07 2008-01-09 东京毅力科创株式会社 立式热处理装置及其使用方法
US20170243742A1 (en) * 2016-02-22 2017-08-24 Tokyo Electron Limited Film forming method

Also Published As

Publication number Publication date
KR102651480B1 (ko) 2024-03-27
JP7149890B2 (ja) 2022-10-07
CN111748788B (zh) 2023-12-12
KR20200115247A (ko) 2020-10-07
US20200312661A1 (en) 2020-10-01
JP2020167227A (ja) 2020-10-08
US11410847B2 (en) 2022-08-09

Similar Documents

Publication Publication Date Title
TWI819348B (zh) 半導體裝置之製造方法、基板處理方法、基板處理裝置及程式
US9758865B2 (en) Silicon film forming method, thin film forming method and cross-sectional shape control method
US11047048B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
US10032629B2 (en) Method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP6613213B2 (ja) 半導体装置の製造方法、基板処理装置、およびプログラム
US20200308696A1 (en) Film Forming Method and Film Forming Apparatus
JP2012186275A (ja) 基板処理装置及び半導体装置の製造方法
US20220178019A1 (en) Method of processing substrate, method of manufacturing semiconductor device, substrate processing apparatus, and recording medium
CN111748788B (zh) 成膜方法和成膜装置
US10957535B2 (en) Semiconductor film forming method and film forming apparatus
KR20220040395A (ko) 반도체 장치의 제조 방법, 프로그램 및 기판 처리 장치
US20140287599A1 (en) Substrate processing apparatus, process container, and method of manufacturing semiconductor device
KR102709049B1 (ko) 기판 처리 장치
CN113025996B (zh) 成膜方法
US11239076B2 (en) Film forming method and heat treatment apparatus
US20220415659A1 (en) Method of processing substrate, substrate processing apparatus, recording medium, and method of manufacturing semiconductor device
WO2018163250A1 (ja) 半導体装置の製造方法、基板処理装置および記録媒体

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant