CN111748341B - 吩噻嗪弱光上转换体系及其制备方法与应用 - Google Patents

吩噻嗪弱光上转换体系及其制备方法与应用 Download PDF

Info

Publication number
CN111748341B
CN111748341B CN202010614535.3A CN202010614535A CN111748341B CN 111748341 B CN111748341 B CN 111748341B CN 202010614535 A CN202010614535 A CN 202010614535A CN 111748341 B CN111748341 B CN 111748341B
Authority
CN
China
Prior art keywords
phenothiazine
light
conversion
sensitizer
rubrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010614535.3A
Other languages
English (en)
Other versions
CN111748341A (zh
Inventor
王筱梅
于雪
黄苏琴
叶常青
梁作芹
陈硕然
周宇扬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou University of Science and Technology
Original Assignee
Suzhou University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou University of Science and Technology filed Critical Suzhou University of Science and Technology
Priority to CN202010614535.3A priority Critical patent/CN111748341B/zh
Publication of CN111748341A publication Critical patent/CN111748341A/zh
Application granted granted Critical
Publication of CN111748341B publication Critical patent/CN111748341B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/055Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means where light is absorbed and re-emitted at a different wavelength by the optical element directly associated or integrated with the PV cell, e.g. by using luminescent material, fluorescent concentrators or up-conversion arrangements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Nitrogen- Or Sulfur-Containing Heterocyclic Ring Compounds With Rings Of Six Or More Members (AREA)

Abstract

本发明公开了吩噻嗪弱光上转换体系及其制备方法与应用,将发光剂、吩噻嗪盐在DMF溶剂中混合,得到吩噻嗪弱光上转换体系。本发明的目的报道一类即不含贵金属也不含重原子的吩噻嗪盐作为敏化剂,与红荧烯发光剂组成二元体系,可将655 nm的近红外光转化为~560 nm的黄光,这种红‑转‑黄上转换发光与硅电池耦合,可使硅电池的光电流密度提高。

Description

吩噻嗪弱光上转换体系及其制备方法与应用
技术领域
本发明涉及一类不基于重原子效应(即不含重金属元素也不含卤素重原子)的三线态敏化技术,属于有机弱光上转换领域;具体涉及纯有机染料吩噻嗪盐敏化红荧烯实现红-转-黄弱光上转换。
背景技术
在三线态-三线态湮灭上转换(TTA-UC)过程中,首先是敏化剂吸收较低能量的光子,继而发生系间窜跃、三线态-三线态能量转移等微观过程,最后产生高能量上转换光子。可见,敏化剂的作用至关重要。有效的敏化剂应当具有大的系间窜跃几率、高的三线态能级和长的三线态寿命(后两者可确保大的三线态-三线态能量转移)。目前最常用的敏化剂为贵金属配合物,其原因在于贵金属配合物系间窜跃几率为100%,敏化效果好,上转换效率高;然而,贵金属敏化剂制备困难,产率低造价高。因此,含碘或溴的卤素敏化剂通常作为贵金属配合物的替代品,其原理也是在于重原子效应,且含碘或溴的卤素敏化剂在制备过程中存在着环境污染问题,因此,不含重原子的(heavy-atom-free)有机敏化剂的研发最受青睐。
目前,已报道的不含重原子(heavy-atom-free)的有机敏化剂仅三例。如2009年Castellano报道的2,3-丁二酮作为敏化剂,与激光染料2,5-二苯恶唑(PPO)为发光剂,在脱气的苯中实现了由442 nm的蓝光上转换为360 nm的紫外光;2016年马玉国利用咔唑基二氰基苯(CDCB)作为敏化剂,与2,7-二叔丁基苝(DBP)为发光剂复配,也实现了蓝光-转-紫外光上转换。2013年赵建章报道一种含氟的Bodipy二聚体作为敏化剂,与发光剂苝衍生物复配,实现了绿-转-蓝上转换。然而,目前尚未见非重原子敏化剂用于近红光-转-黄光的上转换报道。由于近红外光的上转换在利用太阳能方面具有潜在的应用价值,且使用不含重金属的有机化合物作为敏化剂具有成本低和环境友好等特点,具有更为重要的应用价值。
发明内容
本发明的目的报道一类即不含贵金属也不含重原子的吩噻嗪盐作为敏化剂,与红荧烯发光剂组成二元体系,可将655 nm的近红外光转化为~560 nm的黄光,这种红-转-黄上转换发光与硅电池耦合,可使硅电池的光电流密度提高1.4 mA/cm2
本发明采用如下技术方案:
吩噻嗪弱光上转换体系,包括发光剂、吩噻嗪盐;进一步包括溶剂。
本发明公开了上述吩噻嗪弱光上转换体系的制备方法,包括以下步骤,将发光剂、吩噻嗪盐在溶剂中混合,经过氩气除氧,得到吩噻嗪弱光上转换体系。
优选的,发光剂为红荧烯,吩噻嗪盐为敏化剂,溶剂为DMF组成。
本发明中,将吩噻嗪弱光上转换体系装入比色皿中,在激发光照射下得到上转换光谱;激发光由655 nm半导体激光器发出,激发光强度为200~2000mW·cm2
本发明中,所述敏化剂吩噻嗪盐的化学结构式如下:
Figure 594538DEST_PATH_IMAGE002
Figure 414595DEST_PATH_IMAGE004
Figure 718537DEST_PATH_IMAGE006
所述发光剂的化学结构式如下:
Figure 321557DEST_PATH_IMAGE007
本发明中,发光剂、吩噻嗪盐的摩尔比为0.5~3.5∶1。
本发明中,所述吩噻嗪弱光上转换体系的激发光波长为655nm,激发光强度为200~2000mW/cm2
近年来,曾见报道三例非重原子(heavy-atom-free)的敏化剂材料,用于蓝光-转-紫外光或绿光-转-蓝光的上转换,尚未见非重原(heavy-atom-free)的敏化剂近红光-转-短波长的上转换报道,本发明首次公开了吩噻嗪弱光上转换体系可以实现近红光-转-黄光的上转换,由于近红外光的上转换在利用太阳能方面具有潜在的应用价值,且使用不含重金属的有机化合物作为敏化剂具有成本低和环境友好等特点,其应用前景更为诱人。
本发明将红荧烯与吩噻嗪盐(吩噻嗪A或吩噻嗪B或与吩噻嗪M)在DMF溶剂混合,通氩气除氧后,在655 nm半导体激光器激发下,可获得红-转-黄上转换上转换,发光峰位在~560 nm。
本发明公开了不含重原子效应的吩噻嗪盐作为三线态敏化剂,可以敏化红荧烯(作为发光剂),实现了吸收长波长(红光)转换为短波长(黄光)的TTA-UC上转换;在655nm激发光激发下,三种敏化剂敏化红荧烯,得出红-转-黄上转换效率(UC,%)顺序为:吩噻嗪A(0.085)>吩噻嗪B(0.083)>吩噻嗪M(0.049)。
附图说明
图1固定敏化剂浓度(200μm),上转换强度与发光剂浓度之间的关系(DMF),其中a、b、c分别对应吩噻嗪 A、吩噻嗪 B、吩噻嗪 M;
图2吩噻嗪与红荧烯二元体系随功率密度变化的上转换光谱图(DMF);
图3上转换体系与硅电池耦合示意图;
图4上转换体系硅电池的吸收光谱;
图5在655nm半导体激光器激发下,红-转-黄上转换驱动硅电池光电流曲线。
具体实施方式
下面结合附图以及实施例对本发明作进一步描述:
Figure 230607DEST_PATH_IMAGE009
本实施例中,紫外-可见吸收光谱是在SHIMADZU UV2600型紫外-可见吸收光谱仪上测定的;荧光光谱是在Edinburgh FLS-920型荧光光谱仪上测定的。三线态-三线态湮灭上转换光谱是用SpectraScanPR655光谱仪测定的,用655 nm半导体激光器作为激发光源,比色皿规格为1 cm (长)×1cm(宽)×3cm(高);溶剂为光谱纯的DMF,其中DMF体系中需要氩气氛。
实施例:
吩噻嗪A-红荧烯双组份体系配制:按吩噻嗪A-红荧烯1:1摩尔比将吩噻嗪A溶液(DMF,1×10-2 mol/L)和红荧烯溶液(DMF,1×10-3 mol/L)加入到5mL容量瓶中,振荡混合,然后用DMF溶剂稀释定容至5mL,得到混合溶液,除氧得到吩噻嗪弱光上转换体系,其中,敏化剂吩噻嗪A的浓度固定为200μm。然后,按照同样的方法分别配制得到1:1.5、1:2和1:2.5 摩尔比例的吩噻嗪A-红荧烯双组份体系(其中,敏化剂吩噻嗪A的浓度固定为200μm)。
按照上述的方法,将吩噻嗪B替代吩噻嗪A,分别得到吩噻嗪B-红荧烯1:1、1:1.5、1:2和1:2.5 摩尔比例的吩噻嗪B-红荧烯双组份体系(其中,敏化剂吩噻嗪B的浓度固定为200μm)。
按照上述的方法,将吩噻嗪M替代吩噻嗪A,分别得到吩噻嗪M-红荧烯1:1、1:1.5、1:2和1:2.5 摩尔比例的吩噻嗪M-红荧烯双组份体系(其中,敏化剂吩噻嗪M的浓度固定为200μm)。
所述吩噻嗪盐敏化剂(吩噻嗪 A、吩噻嗪 B与吩噻嗪 M)的化学结构式如下:
Figure DEST_PATH_IMAGE011
所述发光剂红荧烯的化学结构式如下:
Figure 608849DEST_PATH_IMAGE012
分别将三种敏化剂(吩噻嗪 A、吩噻嗪 B、吩噻嗪 M)与红荧烯复配,得到吩噻嗪弱光上转换体系,然后拧紧比色皿帽盖,测其上转换性能,结果如图1所示。
Figure 868929DEST_PATH_IMAGE014
图2为敏化剂吩噻嗪A(吩噻嗪A/红荧烯=200μm /0.5mM)、吩噻嗪B(吩噻嗪B/红荧烯=200μm /0.6 mM)、吩噻嗪M(吩噻嗪M/红荧烯=200μm /0.5 mM)与发光剂红荧烯随功率密度变化的上转换光谱。据此,根据公式(2)计算得上转换效率。
Figure DEST_PATH_IMAGE016
公式(1)中,Ar和As分别是参考物质(酞菁锌)和样品(敏化剂)的吸光度。Fs代表上转换荧光强度,而Fr代表酞菁锌的下转换荧光强度。Fr是酞菁锌(在DMSO中为20%)的荧光量子产率。ηs和ηr分别是发光剂/敏化剂双组份溶液和酞菁锌溶液的折射率。该方程乘以2倍,这说明需要吸收两个的光子才能产生一个上转换的光子。公式(2)中,ε为敏化剂在激发光处(655 nm)的摩尔吸光系数,η为二元体系的总上转换能力。计算结果列于表1。
采用常规方法,将上转换体系(吩噻嗪M/红荧烯二元体系)与硅电池耦合,其示意图见图3。用655 nm半导体激光器激发二元体系,使后者发出563 nm的黄光,该黄光可被硅电池吸收(见图4,硅电池的吸收光谱)。为了排除其它波长的光对测试的干扰,测试是在暗室里进行的,同时在硅电池的前端放上655 nm滤光片,该滤光片能够滤去655~660 nm波段的光。
测试的光电流曲线见图5所示。可见,吩噻嗪M(200μm)/红荧烯(0.5mM)的黄光辐照的硅电池的光电流密度为1.5 mA/cm2,而吩噻嗪M (300μm)/红荧烯(0.5mM)的黄光辐照的硅电池的光电流为1.6 mA/cm2。同时,用655nm激光器辐照空白对照样(即没有吩噻嗪/红荧烯的DMF空白溶剂),发现光电流曲线微乎其微,这说明吩噻嗪M/红莹烯的黄光上转换强度与硅电池耦合具有明显的光电转换效果。

Claims (7)

1.吩噻嗪盐作为三线态敏化剂的应用,其特征在于,吩噻嗪盐作为三线态敏化剂与发光剂组合制备弱光上转换体系;所述发光剂为红荧烯;所述吩噻嗪盐的化学结构式如下:
Figure QLYQS_1
2.根据权利要求1所述的应用,其特征在于,敏化剂与发光剂的摩尔比为1∶0.5~3.5。
3.吩噻嗪弱光上转换体系,其特征在于,所述吩噻嗪弱光上转换体系包括发光剂红荧烯、权利要求1所述吩噻嗪盐。
4.根据权利要求3所述吩噻嗪弱光上转换体系,其特征在于,发光剂、吩噻嗪盐的摩尔比为1~3.5∶1。
5.根据权利要求3所述吩噻嗪弱光上转换体系,其特征在于,所述上转换体系的激发光波长为655 nm,激发光强度200~2000mW×cm2
6.权利要求3所述吩噻嗪弱光上转换体系的制备方法,其特征在于,包括以下步骤,将发光剂、吩噻嗪盐在DMF溶剂中混合,得到吩噻嗪弱光上转换体系。
7.权利要求3所述吩噻嗪弱光上转换体系在制备近红光-转-黄光材料中的应用。
CN202010614535.3A 2020-06-30 2020-06-30 吩噻嗪弱光上转换体系及其制备方法与应用 Active CN111748341B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010614535.3A CN111748341B (zh) 2020-06-30 2020-06-30 吩噻嗪弱光上转换体系及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010614535.3A CN111748341B (zh) 2020-06-30 2020-06-30 吩噻嗪弱光上转换体系及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN111748341A CN111748341A (zh) 2020-10-09
CN111748341B true CN111748341B (zh) 2023-06-16

Family

ID=72678333

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010614535.3A Active CN111748341B (zh) 2020-06-30 2020-06-30 吩噻嗪弱光上转换体系及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN111748341B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011142838A2 (en) * 2010-01-05 2011-11-17 Lombarid John L Chemically-resistant coating composition
CN104212087A (zh) * 2014-09-19 2014-12-17 哈尔滨工业大学 一种单分散荧光微球的制备方法
WO2015059180A2 (en) * 2013-10-24 2015-04-30 Universiteit Leiden Upconverting vesicles and uses
WO2015080668A1 (en) * 2013-11-27 2015-06-04 Agency For Science, Technology And Research A micellar particle
JP2015168667A (ja) * 2014-03-10 2015-09-28 国立大学法人静岡大学 光酸素酸化による酸化生成物の,改良された製造方法
CN105567220A (zh) * 2016-01-22 2016-05-11 苏州科技学院 一种高效红转黄弱光上转换体系及其制备方法与应用
CN109180692A (zh) * 2018-08-26 2019-01-11 苏州科技大学 温敏性上转换体系及其制备方法与在制备温度传感器中的应用
WO2019116020A1 (en) * 2017-12-11 2019-06-20 Pragmatic Printing Ltd Schottky diode
JP2019168337A (ja) * 2018-03-23 2019-10-03 和歌山県 振動可視化センサ
JP2020055960A (ja) * 2018-10-03 2020-04-09 東洋インキScホールディングス株式会社 重合性組成物

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011142838A2 (en) * 2010-01-05 2011-11-17 Lombarid John L Chemically-resistant coating composition
WO2015059180A2 (en) * 2013-10-24 2015-04-30 Universiteit Leiden Upconverting vesicles and uses
WO2015080668A1 (en) * 2013-11-27 2015-06-04 Agency For Science, Technology And Research A micellar particle
JP2015168667A (ja) * 2014-03-10 2015-09-28 国立大学法人静岡大学 光酸素酸化による酸化生成物の,改良された製造方法
CN104212087A (zh) * 2014-09-19 2014-12-17 哈尔滨工业大学 一种单分散荧光微球的制备方法
CN105567220A (zh) * 2016-01-22 2016-05-11 苏州科技学院 一种高效红转黄弱光上转换体系及其制备方法与应用
WO2019116020A1 (en) * 2017-12-11 2019-06-20 Pragmatic Printing Ltd Schottky diode
JP2019168337A (ja) * 2018-03-23 2019-10-03 和歌山県 振動可視化センサ
CN109180692A (zh) * 2018-08-26 2019-01-11 苏州科技大学 温敏性上转换体系及其制备方法与在制备温度传感器中的应用
JP2020055960A (ja) * 2018-10-03 2020-04-09 東洋インキScホールディングス株式会社 重合性組成物

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Fluorescent nanocrystals grown in sol–gel thin films for generic stable and sensitive sensors;Emilie Dubuisson等;《J Sol-Gel Sci Technol》;20111231;第258–262页 *
Optical Limiting Chromophores. Correlation Effects in Computing Triplet-Triplet Absorption Energies of Organic Molecules;Israel D. L. Albert等;《J.Phys.Chem.A》;20000105;第837-844页 *

Also Published As

Publication number Publication date
CN111748341A (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
Ghazy et al. Advances in upconversion enhanced solar cell performance
Li et al. Boosting efficiency of luminescent solar concentrators using ultra-bright carbon dots with large Stokes shift
JP6290079B2 (ja) 極性媒体中で対称破壊性分子内電荷輸送が可能な化合物およびこれを有する有機光起電デバイス
TWI622593B (zh) 用於光伏打裝置之以次甲基二吡咯爲主之材料,可於極化基質中進行對稱斷裂分子內電荷轉移之化合物及包含其之有機光伏打裝置
US10982136B2 (en) Ligand-sensitized lanthanide nanocrystals as ultraviolet downconverters
Obłoza et al. Facile synthesis, triplet‐state properties, and electrochemistry of hexaiodo‐subphthalocyanine
Mirershadi et al. Effects of halogen replacement on the efficiency of luminescent solar concentrator based on methylammonium lead halide perovskite
CN111718320B (zh) 卤代荧光素弱光上转换体系及其制备方法与应用
CN105567220B (zh) 一种高效红转黄弱光上转换体系及其制备方法与应用
KR20130103526A (ko) 삼중선 수집을 위한 광범위 흡수 금속 포르피린계 다발색단 어레이
Ünlü et al. Novel distyryl BODIPY–fullerene dyads: preparation, characterization and photosensitized singlet oxygen generation efficiency
CN111748341B (zh) 吩噻嗪弱光上转换体系及其制备方法与应用
Xue et al. Synthesis, one/two-photon optical and electrochemical properties and the photopolymerization-sensitizing effect of anthracene-based dyes: influence of the donor groups
CN109301021B (zh) 固态红-转-黄上转换共聚物体系的应用
CN108715693A (zh) 一种光化学除去氧气来保护光敏剂的三重激发态的介质以及方法和应用
Han et al. The first transition metal phthalocyanines: sensitizing rubrene emission based on triplet–triplet annihilation
CN111732950B (zh) 氮杂蒽衍生物tta-uc弱光上转换体系及其制备方法与应用
CN113072547B (zh) 一种化合物和三重态-三重态湮灭上转换体系
CN108359267A (zh) 一种光化学除去氧气来保护光敏剂的三重激发态的方法及其应用
CN111909186A (zh) 一种红色荧光材料的制备方法
Nakajima et al. Synthesis of a tetrakis (9-anthryl) substituted porphyrin and intramolecular charge-transfer emission in its dication
CN114671882B (zh) 一种三聚茚基桥联锌卟啉-香豆素星型三重态光敏剂及其制备方法和应用
Olesund et al. Approaching the Spin-Statistical Limit in Visible-to-UV Photon Upconversion
CN117362330A (zh) 一种基于单线态裂分材料敏化产生单线态氧的方法
Seena et al. Photophysical and singlet oxygen generation studies of a few water soluble triazatriangulenium salts

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant