CN111748081B - 一种双核钒催化剂及其制备方法和应用 - Google Patents

一种双核钒催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN111748081B
CN111748081B CN202010697719.0A CN202010697719A CN111748081B CN 111748081 B CN111748081 B CN 111748081B CN 202010697719 A CN202010697719 A CN 202010697719A CN 111748081 B CN111748081 B CN 111748081B
Authority
CN
China
Prior art keywords
binuclear
vanadium
solvent
vanadium catalyst
product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010697719.0A
Other languages
English (en)
Other versions
CN111748081A (zh
Inventor
侯小华
陈小建
高翔
聂金鑫
周昕玥
邹辉
周丽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN202010697719.0A priority Critical patent/CN111748081B/zh
Publication of CN111748081A publication Critical patent/CN111748081A/zh
Application granted granted Critical
Publication of CN111748081B publication Critical patent/CN111748081B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/11Homopolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/13Morphological aspects
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3321Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from cyclopentene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/332Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3324Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing only carbon atoms derived from norbornene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/418Ring opening metathesis polymerisation [ROMP]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

本发明公开了一种双核钒催化剂,其结构通式如下:
Figure DDA0002591860100000011
其中,Linker的结构式为
Figure DDA0002591860100000012
Figure DDA0002591860100000013
中的一种;R1、R2、R3、R4、R5、R′1、R′2、R′3、R′4、R′5均为氢原子、烷基基团、氟原子、溴原子、氯原子中的一种或几种;上述双核钒催化剂包含吸电子基团能够用于催化反应能力弱的单体和其他环烯烃单体的开环易位聚合反应,能有效调节极性基团数量和控制聚合物的拓扑结构,为合成功能化聚烯烃提供新的策略。

Description

一种双核钒催化剂及其制备方法和应用
技术领域
本发明属于烯烃聚合有机金属催化剂和烯烃配位聚合领域,具体涉及一种双核钒催化剂及其制备方法和应用。
背景技术
聚烯烃是工业上产量最大的高分子材料,大约占世界热塑性塑料产率的一半多。以其质轻价廉及低吸湿性而广泛应用于工业生产的各个领域,但由于其非极性、表面能低导致它的染色性、粘接性、亲水性、抗静电性以及与其他极性高分子或无机填料的相容性差,限制了其应用范围的拓展。因此,将非极性的聚烯烃进行功能化,即在其分子链中引入极性的功能基团或聚合物链段,可以显著改善聚合物材料的柔韧性、粘附力、防护性能、表面性能、耐溶剂性、与其他聚合物的混溶性以及流变等性能,成为拓展聚烯烃材料应用领域的重要研究方向之一。
近20年来双核催化剂也受到广泛研究,不同金属之间通过复杂配体的共价键作用连接。或者是两金属中心通过双核的助催化剂连在一起,借此在催化烯烃聚合中表现出协同效应。
通过设计合成一系列骨架可调的双核钒配合物,通过采用不同的骨架实现调节金属原子之间距离的目的,并为研究不同金属中心的协同效应提供可能。尤其是对配体上取代基的筛选,可以进一步实现金属原子周围的位阻和电子环境的调节,从而确立代表性的具有协同作用的钒配合物体系,揭示配合物金属原子的空间位置与协同作用之间的内在联系。
发明内容
本发明旨在:提供一种双核钒催化剂及其制备方法和应用,首先通过双核钒的三氯化物与烷基锂试剂反应,得到烷基化产物。然后将得到的烷基化产物和双酚试剂按照精确投料比进行反应,得到双核钒的二烷基化物,在室温下加入一定的三甲基膦即可促进α-H消除反应,生成金属钒的alkylidene配合物或称为钒卡宾。本发明能合成分离一系列双核钒的二烷基化物,并发现其在室温下都能高效引发降冰片烯和环戊烯的开环易位聚合,与单核钒的配合物相比具有更高的催化活性,以及对聚合物的微观结构控制方面有更好的表现。
为实现上述目的,本发明提供如下技术方案:
一种双核钒催化剂,其结构通式如下:
Figure BDA0002591860080000021
其中,Linker的结构式为
Figure BDA0002591860080000022
Figure BDA0002591860080000023
中的一种;
R1、R2、R3、R4、R5、R′1、R′2、R′3、R′4、R′5均为氢原子、烷基基团、氟原子、溴原子、氯原子中的一种或几种。
一种双核钒催化剂的制备方法,包括以下步骤:
(1)双核钒三氯化物的制备:在氮气保护下,称取试剂A于Schlenk瓶中,加入溶剂正辛烷,缓慢加入三氯氧钒,将Schlenk瓶置于油浴锅中,120~140℃搅拌6~12h后,经硅藻土过滤得到墨绿色溶液,滤液经真空除去溶剂,用正己烷、DCM洗涤,-5℃静置6h,真空除去溶剂,得到墨绿色固体产物a;
(2)双核钒三烷基化物的制备:称取步骤(1)产物放入到反应瓶中,加入溶剂甲苯,-5℃静置1h,缓慢加入试剂B,室温搅拌6h后,经硅藻土过滤得到红褐色溶液,真空除去溶剂,得到红褐色油状产物b;
(3)双核钒二烷基化物的制备:称取步骤(2)中产物放入到反应瓶中,加入溶剂C,-5℃静置1h,分两批加入试剂C,室温搅拌12h后,经硅藻土过滤得到褐色溶液,真空除去溶剂,得到所述双核钒催化剂;
其中,所述的试剂A为2,6-二甲基异氰酸酯、2,6-二异丙基异氰酸酯、2,4-二氟异氰酸酯中的一种;
所述的试剂B为0.56M LiCH2SiMe3己烷溶液;
所述的试剂C为4,4-二羟基联苯,3,5,3',5'-四甲基-4,4'-联苯二酚,4,4'-亚甲基双(2,6-二甲苯酚),联苯二酚中的一种;
所述溶剂C为甲苯,THF,正己烷,正辛烷,DCM中的一种或几种。
一种双核钒催化剂的应用,能够应用于催化烯烃聚合。
优选地,能够用于包含吸电子基团的反应能力弱的单体和含有杂原子的单体的ROMP。
优选地,一种双核钒催化剂的应用,具体应用过程如下:
无水无氧氮气保护下,在一螺口瓶中依次加入单体D和溶剂甲苯,再加入双核钒催化剂和三甲基膦,80℃搅拌,0.25~4h小时后,加入甲醇终止反应,将所得产物用甲醇洗涤后,真空干燥至质量不变,得到开环易位聚合产物;
其中,单体D为降冰片烯,环戊烯,环辛烯,降冰片二烯,环辛二烯的一种或几种。
优选地,当所加入的单体D为降冰片烯时,所述的双核钒催化剂:单体D:PMe3的摩尔比为1:850:5,当单体降冰片烯的质量为200mg,PMe3的质量为1.9mg时,溶剂甲苯的量为4-5mL,其开环易位聚合通式如下:
Figure BDA0002591860080000041
优选地,当所加入的单体D为环戊烯时,所述的双核钒催化剂:单体D:PMe3的摩尔比为1:5880:10,当单体环戊烯的质量为1.02mg,PMe3的质量为1.9mg时,溶剂甲苯的量为0.6-0.8mL;其开环易位聚合通式如下:
Figure BDA0002591860080000051
本发明中双核钒催化剂及其制备方法和用途,其合成反应通式为:
Figure BDA0002591860080000052
本发明所提供的双核钒催化剂具有以下有益效果:
(1)本发明中的双核钒催化剂合成简单,能合理调节催化剂结构,制备条件不苛刻,操作简单,反应易进行。
(2)本发明中所进行的开环易位聚合,不仅可以制备线型聚合物,亦可合成环状聚合物。
(3)首次开展双核钒卡宾配合物用于催化环烯烃的开环易位聚合反应,研究金属之间的协同效应,弥补此领域的认识空白,丰富了开环易位聚合方法的应用,具有很强的原始创新性;为合成环状聚合物提供新的策略。
附图说明
图1是本发明实施例1中降冰片烯开环易位聚合后所得产物P1的核磁氢谱图,可以证明所得聚合物P1的结构符合聚合通式。
图2是本发明实施例2中环戊烯开环易位聚合后所得产物P2的核磁氢谱图,可以证明所得聚合物P2的结构符合聚合通式。
图3(a)是本发明实施例1中降冰片烯开环易位聚合的分子量、分子量分布与温度的关系图,随着温度的增加分子量逐渐减小,说明温度对催化剂活性有显著影响;(b)是本发明实施例1中降冰片烯开环易位聚合的分子量、分子量分布与时间的关系图,随着时间的增加分子量并无明显变化,说明催化剂活性和温度并无关系。
图4是本发明实施例1中基于骨架结构为4,4-二羟基联苯的Cat.1的核磁氢谱图,可以确定所得催化剂分子式结构。
图5是本发明实施例2中基于骨架结构为3,5,3',5'-四甲基-4,4'-联苯二酚的Cat.2的核磁氢谱图,可以确定所得催化剂分子式结构。
图6是本发明实施例3中基于骨架结构为4,4'-亚甲基双(2,6-二甲苯酚)的Cat.3的核磁氢谱图,可以确定所得催化剂分子式结构。
图7是本发明实施例4中基于骨架结构为联苯二酚的Cat.4的核磁氢谱图,可以确定所得催化剂分子式结构。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
(1)双核钒三氯化物的制备:在氮气保护下,称取2,6-二甲基异氰酸酯(3.54g,20mmol)于Schlenk瓶中,加入溶剂正辛烷(15mL),缓慢加入三氯氧钒,将Schlenk瓶置于油浴锅中,120℃搅拌12h后,经硅藻土过滤得到墨绿色溶液,滤液经真空除去溶剂,用正己烷、DCM洗涤,-5℃静置6h,真空除去溶剂,得到墨绿色双核钒三氯化物(3.76g,40%);
(2)双核钒三烷基化物的制备:称取步骤(1)产物(150mg,0.54mmol)放入到反应瓶中,加入溶剂甲苯(5mL),-5℃静置1h,缓慢加入烷基锂试剂(1.91g,1.62mmol),室温搅拌6h后,经硅藻土过滤得到红褐色溶液,真空除去溶剂,得到红褐色油状三烷基化物(202mg,86%);
(3)双核钒二烷基化物的制备:称取步骤(2)中产物(235mg,0.54mmol)放入到反应瓶中,加入溶剂甲苯(5mL),-5℃静置1h,分两批加入4,4-二羟基联苯(39.8mg,0.27mmol),室温搅拌12h后,经硅藻土过滤得到褐色溶液,真空除去溶剂,得到主催化剂Cat.1,结构式如下:
Figure BDA0002591860080000071
(4)降冰片烯聚合:无水无氧氮气保护下,在一螺口瓶中依次加入200mg降冰片烯和4.5mL甲苯,再加入2.5μmol双核钒配合物和1.9mg PMe3,80摄氏度搅拌,1h小时后,加入甲醇终止反应,将所得产物用甲醇洗涤后,真空干燥至质量不变,得到降冰片烯聚合物P1。
(5)环戊烯聚合:无水无氧氮气保护下,在一螺口瓶中依次加入1.02g环戊烯和0.7mL甲苯,再加入2.5μmol双核钒配合物和1.9mg PMe3,80℃搅拌,4h小时后,加入甲醇终止反应,将所得产物用甲醇洗涤后,真空干燥至质量不变,得到环戊烯聚合物P2。
实施例2
(1)双核钒三氯化物的制备:在氮气保护下,称取2,6-二甲基异氰酸酯(3.54g,20mmol)于Schlenk瓶中,加入溶剂正辛烷(15mL),缓慢加入三氯氧钒,将Schlenk瓶置于油浴锅中,120℃搅拌12h后,经硅藻土过滤得到墨绿色溶液,滤液经真空除去溶剂,用正己烷、DCM洗涤,-5℃静置6h,真空除去溶剂,得到墨绿色双核钒三氯化物(3.76g,40%);
(2)双核钒三烷基化物的制备:称取步骤(1)产物(150mg,0.54mmol)放入到反应瓶中,加入溶剂甲苯(5mL),-5℃静置1h,缓慢加入烷基锂试剂(1.91g,1.62mmol),室温搅拌6h后,经硅藻土过滤得到红褐色溶液,真空除去溶剂,得到红褐色油状三烷基化物(202mg,86%);
(3)双核钒二烷基化物的制备:称取步骤(2)中产物(235mg,0.54mmol)放入到反应瓶中,加入溶剂甲苯(5mL),-5℃静置1h,分两批加入3,5,3',5'-四甲基-4,4'-联苯二酚(66.0mg,0.27mmol),室温搅拌12h后,经硅藻土过滤得到褐色溶液,真空除去溶剂,得到主催化剂Cat.2,结构式如下:
Figure BDA0002591860080000091
(4)降冰片烯聚合:无水无氧氮气保护下,在一螺口瓶中依次加入200mg降冰片烯和4.5mL甲苯,再加入2.5μmol双核钒配合物和1.9mg PMe3,80摄氏度搅拌,1h小时后,加入甲醇终止反应,将所得产物用甲醇洗涤后,真空干燥至质量不变,得到降冰片烯聚合物P3。
(5)环戊烯聚合:无水无氧氮气保护下,在一螺口瓶中依次加入1.02g环戊烯和0.7mL甲苯,再加入2.5μmol双核钒配合物和1.9mg PMe3,80℃搅拌,4h小时后,加入甲醇终止反应,将所得产物用甲醇洗涤后,真空干燥至质量不变,得到环戊烯聚合物P4。
实施例3
(1)双核钒三氯化物的制备:在氮气保护下,称取2,6-二甲基异氰酸酯(3.54g,20mmol)于Schlenk瓶中,加入溶剂正辛烷(15mL),缓慢加入三氯氧钒,将Schlenk瓶置于油浴锅中,120℃搅拌12h后,经硅藻土过滤得到墨绿色溶液,滤液经真空除去溶剂,用正己烷、DCM洗涤,-5℃静置6h,真空除去溶剂,得到墨绿色双核钒三氯化物(3.76g,40%);
(2)双核钒三烷基化物的制备:称取步骤(1)产物(150mg,0.54mmol)放入到反应瓶中,加入溶剂甲苯(5mL),-5℃静置1h,缓慢加入烷基锂试剂(1.91g,1.62mmol),室温搅拌6h后,经硅藻土过滤得到红褐色溶液,真空除去溶剂,得到红褐色油状三烷基化物(202mg,86%);
(3)双核钒二烷基化物的制备:称取步骤(2)中产物(235mg,0.54mmol)放入到反应瓶中,加入溶剂甲苯(5mL),-5℃静置1h,分两批加入4,4'-亚甲基双(2,6-二甲苯酚)(70.0mg,0.27mmol),室温搅拌12h后,经硅藻土过滤得到褐色溶液,真空除去溶剂,得到主催化剂Cat.3,结构式如下:
Figure BDA0002591860080000101
(4)降冰片烯聚合:无水无氧氮气保护下,在一螺口瓶中依次加入200mg降冰片烯和4.5mL甲苯,再加入2.5μmol双核钒配合物和1.9mg PMe3,80摄氏度搅拌,1h小时后,加入甲醇终止反应,将所得产物用甲醇洗涤后,真空干燥至质量不变,得到降冰片烯聚合物P5。
(5)环戊烯聚合:无水无氧氮气保护下,在一螺口瓶中依次加入1.02g环戊烯和0.7mL甲苯,再加入2.5μmol双核钒配合物和1.9mg PMe3,80℃搅拌,4h小时后,加入甲醇终止反应,将所得产物用甲醇洗涤后,真空干燥至质量不变,得到环戊烯聚合物P6。
实施例4
(1)双核钒三氯化物的制备:在氮气保护下,称取2,6-二甲基异氰酸酯(3.54g,20mmol)于Schlenk瓶中,加入溶剂正辛烷(15mL),缓慢加入三氯氧钒,将Schlenk瓶置于油浴锅中,120℃搅拌12h后,经硅藻土过滤得到墨绿色溶液,滤液经真空除去溶剂,用正己烷、DCM洗涤,-5℃静置6h,真空除去溶剂,得到墨绿色双核钒三氯化物(3.76g,40%);
(2)双核钒三烷基化物的制备:称取步骤(1)产物(150mg,0.54mmol)放入到反应瓶中,加入溶剂甲苯(5mL),-5℃静置1h,缓慢加入烷基锂试剂(1.91g,1.62mmol),室温搅拌6h后,经硅藻土过滤得到红褐色溶液,真空除去溶剂,得到红褐色油状三烷基化物(202mg,86%);
(3)双核钒二烷基化物的制备:称取步骤(2)中产物(235mg,0.54mmol)放入到反应瓶中,加入溶剂甲苯(5mL),-5℃静置1h,分两批加入对苯二酚(30.0mg,0.27mmol),室温搅拌12h后,经硅藻土过滤得到褐色溶液,真空除去溶剂,得到主催化剂Cat.4,结构式如下:
Figure BDA0002591860080000111
(4)降冰片烯聚合:无水无氧氮气保护下,在一螺口瓶中依次加入200mg降冰片烯和4.5mL甲苯,再加入2.5μmol双核钒配合物和1.9mg PMe3,80摄氏度搅拌,1h小时后,加入甲醇终止反应,将所得产物用甲醇洗涤后,真空干燥至质量不变,得到降冰片烯聚合物P7。
(5)环戊烯聚合:无水无氧氮气保护下,在一螺口瓶中依次加入1.02g环戊烯和0.7mL甲苯,再加入2.5μmol双核钒配合物和1.9mg PMe3,80℃搅拌,4h小时后,加入甲醇终止反应,将所得产物用甲醇洗涤后,真空干燥至质量不变,得到环戊烯聚合物P8。
各实施例中聚合反应的结果如下表:
Figure BDA0002591860080000121
a聚合物分子量通过GPC测得,以聚苯乙烯为标准样品。
以上内容仅仅是对本发明结构所作的举例和说明,所属本技术领域的技术人员对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离本发明的结构或者超越本权利要求书所定义的范围,均应属于本发明的保护范围。

Claims (7)

1.一种双核钒催化剂,其特征在于含有双金属中心,并通过共价键桥连,其结构通式如下:
Figure FDA0002591860070000011
其中,Linker的结构式为
Figure FDA0002591860070000012
Figure FDA0002591860070000013
中的一种;
R1、R2、R3、R4、R5、R′1、R′2、R′3、R′4、R′5均为氢原子、烷基基团、氟原子、溴原子、氯原子中的一种或几种。
2.根据权利要求1所述的一种双核钒催化剂的制备方法,其特征在于,包括以下步骤:
(1)双核钒三氯化物的制备:在氮气保护下,称取试剂A于Schlenk瓶中,加入溶剂正辛烷,缓慢加入三氯氧钒,将Schlenk瓶置于油浴锅中,120~140℃搅拌6~12h后,经硅藻土过滤得到墨绿色溶液,滤液经真空除去溶剂,用正己烷、DCM洗涤,-5℃静置6h,真空除去溶剂,得到墨绿色固体产物a;
(2)双核钒三烷基化物的制备:称取步骤(1)产物放入到反应瓶中,加入溶剂甲苯,-5℃静置1h,缓慢加入试剂B,室温搅拌6h后,经硅藻土过滤得到红褐色溶液,真空除去溶剂,得到红褐色油状产物b;
(3)双核钒二烷基化物的制备:称取步骤(2)中产物放入到反应瓶中,加入溶剂C,-5℃静置1h,分两批加入试剂C,室温搅拌12h后,经硅藻土过滤得到褐色溶液,真空除去溶剂,得到所述双核钒催化剂;
其中,所述的试剂A为2,6-二甲基异氰酸酯、2,6-二异丙基异氰酸酯、2,4-二氟异氰酸酯中的一种;
所述的试剂B为0.56M LiCH2SiMe3己烷溶液;
所述的试剂C为4,4-二羟基联苯、3,5,3',5'-四甲基-4,4'-联苯二酚、4,4'-亚甲基双(2,6-二甲苯酚)、联苯二酚中的一种;
所述溶剂C为甲苯、THF、正己烷、正辛烷、DCM中的一种或几种。
3.一种如权利要求1所述的双核钒催化剂的应用,其特征在于:能够应用于催化烯烃聚合。
4.根据权利要求3所述的双核钒催化剂的应用,其特征在于:包含吸电子基团能够用于催化反应能力弱的单体和其他环烯烃单体的开环易位聚合反应。
5.根据权利要求3所述的双核钒催化剂的应用,其特征在于:具体应用过程如下:
无水无氧氮气保护下,在一螺口瓶中依次加入单体D和溶剂甲苯,再加入双核钒催化剂和PMe3,80℃搅拌,1~4h小时后,加入甲醇终止反应,将所得产物用甲醇洗涤后,真空干燥至质量不变,得到开环易位聚合产物;
其中,单体D为降冰片烯、环戊烯、环辛烯、降冰片二烯、环辛二烯的一种或几种。
6.根据权利要求5所述的双核钒催化剂的应用,其特征在于:
当所加入的单体D为降冰片烯时,所述的双核钒催化剂:单体D:PMe3的摩尔比为1:850:5,当单体降冰片烯的质量为200mg,PMe3的质量为1.9mg时,溶剂甲苯的量为4-5mL。
7.根据权利要求5所述的双核钒催化剂的应用,其特征在于:
当所加入的单体D为环戊烯时,所述的双核钒催化剂:单体D:PMe3的摩尔比为1:5880:10,当单体环戊烯的质量为1.02mg,PMe3的质量为1.9mg时,溶剂甲苯的量为0.6-0.8mL。
CN202010697719.0A 2020-07-20 2020-07-20 一种双核钒催化剂及其制备方法和应用 Active CN111748081B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010697719.0A CN111748081B (zh) 2020-07-20 2020-07-20 一种双核钒催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010697719.0A CN111748081B (zh) 2020-07-20 2020-07-20 一种双核钒催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN111748081A CN111748081A (zh) 2020-10-09
CN111748081B true CN111748081B (zh) 2022-05-31

Family

ID=72711716

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010697719.0A Active CN111748081B (zh) 2020-07-20 2020-07-20 一种双核钒催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111748081B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114395058B (zh) * 2022-03-08 2023-05-12 合肥工业大学 一种双核钒催化剂及其制备方法和用途

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101475602A (zh) * 2009-01-22 2009-07-08 华中师范大学 双核钴配合物及其制备方法和用途
CN102268030A (zh) * 2011-05-26 2011-12-07 华东理工大学 含氮双酚氧基配体双核铝化合物及其制备方法和应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100455713B1 (ko) * 2001-01-29 2004-11-06 호남석유화학 주식회사 올레핀 중합용 다중핵 메탈로센 촉매 및 이를 이용한중합방법
CN105289741B (zh) * 2015-10-19 2018-11-20 中国石油化工股份有限公司 一种氮磷配位骨架的铬催化剂及其在催化乙烯齐聚中的应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101475602A (zh) * 2009-01-22 2009-07-08 华中师范大学 双核钴配合物及其制备方法和用途
CN102268030A (zh) * 2011-05-26 2011-12-07 华东理工大学 含氮双酚氧基配体双核铝化合物及其制备方法和应用

Also Published As

Publication number Publication date
CN111748081A (zh) 2020-10-09

Similar Documents

Publication Publication Date Title
Berenbaum et al. Synthesis, electronic structure, and novel reactivity of strained, boron-bridged [1] ferrocenophanes
US9611345B2 (en) Transition metal based pro-catalyst and a process for its preparation
Brassat et al. Synthesis and catalytic activity of allyl, methallyl and methyl complexes of nickel (II) and palladium (II) with biphosphine monoxide ligands: oligomerization of ethylene and copolymerization of ethylene and carbon monoxide
Hu et al. Novel highly active binuclear neutral nickel and palladium complexes as precatalysts for norbornene polymerization
Li et al. Neutral nickel (II) complexes bearing aryloxide imidazolin-2-imine ligands for efficient copolymerization of norbornene and polar monomers
Li et al. Norbornene polymerization and copolymerization with 1-alkenes by neutral palladium complexes bearing aryloxide imidazolin-2-imine ligand
CN111748081B (zh) 一种双核钒催化剂及其制备方法和应用
Mou et al. Perfectly isoselective polymerization of 2-vinylpyridine promoted by β-diketiminato rare-earth metal cationic complexes
Smolensky et al. Formation of elastomeric polypropylene promoted by a dynamic octahedral titanium complex
Misumi et al. Living polymerization of phenylacetylene by rhodium‐based ternary catalysts,(diene) Rh (I) complex/vinyllithium/phosphorus ligand. Effects of catalyst components
Serin et al. Addition-Isomerization Polymerization of Chiral Phosphaalkenes: Observation of Styrene–Phosphaalkene Linkages in a Random Copolymer
Sturge et al. Organometallic Polymer and Linear Mono-, Bi-, and Trimetailk Octafluoro-p, p’-blphenylene-Bridged Complexes of Bls (methyldiphenylphosphine) nickel: X-ray Crystal Structures of NI (PMePh2),(4, 4’-C12F, H) Br and Ni (PMePh2),(4, 4 ‘-C12F8H) 21i2
Zhang et al. Bis (phenolate) N-heterocyclic carbene rare earth metal complexes: Synthesis, characterization and applications in the polymerization of n-hexyl isocyanate
Li et al. Polymerization of disubstituted acetylenes by monodentate NHC-Pd catalysts
Trofymchuk et al. Synthesis and structures of N-arylcyano-β-diketiminate zinc complexes and adducts and their application in ring‐opening polymerization of L-lactide
CN108484809B (zh) 一种烯烃聚合催化剂
Suslov et al. Cationic palladium (II)–acetylacetonate complexes bearing α-diimine ligands as catalysts in norbornene polymerization
Guo et al. Mono-and di-nuclear nickel (II) complexes bearing 3-aryliminomethyl-2-hydroxybenzaldehydes: Synthesis, structures and vinyl polymerization of norbornene
CN109364998B (zh) 一种用于烯烃复分解反应的催化剂及其制备和应用方法
US8236907B2 (en) Neutral bimetallic transition metal phenoxyiminato catalysts and related polymerization methods
Long et al. Synthesis and characterization of niii and pdii complexes bearing n, n, s tridentate ligands and their catalytic properties for norbornene polymerization
Zhang et al. Synthesis and characterization of bis-[2-[[(2-alkoxyphenyl) imino] methyl]-phenolato-O, N, O] nickel (II) complexes and their norbornene polymerization
Vasudevan et al. New bimetallic complexes supported by a tetrakis (imino) pyracene (TIP) ligand
CN104592425A (zh) 一种环庚三烯基稀土金属催化剂、制备方法及应用
CN110368994B (zh) 乙烯选择性齐聚的反应方法、催化剂体系及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant