CN111736144B - 一种仅用距离观测的机动转弯目标状态估计方法 - Google Patents

一种仅用距离观测的机动转弯目标状态估计方法 Download PDF

Info

Publication number
CN111736144B
CN111736144B CN202010638406.8A CN202010638406A CN111736144B CN 111736144 B CN111736144 B CN 111736144B CN 202010638406 A CN202010638406 A CN 202010638406A CN 111736144 B CN111736144 B CN 111736144B
Authority
CN
China
Prior art keywords
distance
state
state estimation
measurement
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010638406.8A
Other languages
English (en)
Other versions
CN111736144A (zh
Inventor
周共健
郭正琨
李可毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN202010638406.8A priority Critical patent/CN111736144B/zh
Publication of CN111736144A publication Critical patent/CN111736144A/zh
Application granted granted Critical
Publication of CN111736144B publication Critical patent/CN111736144B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/66Radar-tracking systems; Analogous systems
    • G01S13/70Radar-tracking systems; Analogous systems for range tracking only

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

本发明涉及一种仅用距离观测的机动转弯目标状态估计方法、计算机设备及计算机可读存储介质,该方法包括:在距离‑多普勒子空间对机动转弯目标进行恒转弯运动建模,获得距离坐标系下的状态方程及对应距离量测的量测方程;从雷达处获取距离量测,若当前跟踪的周期k≤3,则利用基于恒转弯运动模型的初始化方法进行滤波初始化,若当前跟踪的周期k>3则跳过滤波初始化;利用距离量测进行非线性滤波,根据k‑1周期的状态估计和状态估计协方差,更新k周期的状态估计和状态估计协方差;判断是否结束状态估计过程。本发明能够针对不含角度量测和多普勒量测的距离量测序列进行滤波,从而估计出目标运动的距离‑多普勒状态。

Description

一种仅用距离观测的机动转弯目标状态估计方法
技术领域
本发明涉及空间目标跟踪技术领域,尤其涉及一种仅用距离观测的机动转弯目标状态估计方法、计算机设备及计算机可读存储介质。
背景技术
传统的固定单站雷达需要同时观测目标距离和方位角才能解算目标位置,如果只有距离量测和多普勒量测,或只有距离量测,固定单站雷达无法独立完成对目标的定位和跟踪,需要多站雷达组网探测实现测距交叉定位,从而获得目标状态的可观测性。这一问题类似于无源定位中仅用角度量测的多站时差定位。随着具有抗反辐射导弹能力的被动雷达的发展和应用,无源定位跟踪方法得到了广泛研究。相对于无源定位,无角度量测的目标跟踪是一个比较新的课题,最近几年才受到关注。
目前,无角度量测的目标跟踪研究主要涉及以下两个方面:(1)基于数据关联的集中式融合方法:此方法是处理仅用距离量测和多普勒量测进行目标跟踪最为直接的方法。然而为数众多的鬼影点将会对这种方法形成极大的困扰,由此造成多维分配问题,当目标数目较多时,多维分配的相关算法处理起来就非常复杂,运算量也会很大,实用性和时效性难以控制。(2)基于数据关联的分布式跟踪方法:在描述距离的动态模型时,传感器所提供的多普勒观测能够提供重要信息,因此许多学者提出了分级处理的思想,先对单传感器的距离量测和多普勒量测进行相关,建立某种意义上的局部航迹并剔除杂波,再对局部航迹进行关联去鬼影。然而单传感器距离量测和多普勒量测相关处理中一般采用的都是匀速经验模型或匀加速经验模型,这种模型往往比较粗糙,与真实的距离和多普勒演化规律不符,在进行状态估计相关处理时,难以获得比较理想的性能。当分布式系统中的部分传感器或全部传感器只能提供目标距离量测时,采用交叉定位或分级处理的思想进行跟踪,就需要每个传感器具有根据距离量测序列解算出目标精确距离的能力,因此,需要提供一种能够只依赖距离量测进行目标跟踪,实现机动转弯目标状态估计的方法。
发明内容
本发明的目的是提供一种针对不含角度量测和多普勒量测的距离量测序列进行滤波,从而估计出机动转弯目标运动的距离-多普勒状态的方法。
为了实现上述目的,本发明提供了一种仅用距离观测的机动转弯目标状态估计方法,包括如下步骤:
S1、在距离-多普勒子空间对机动转弯目标进行恒转弯运动建模,获得距离坐标系下的状态方程及对应距离量测的量测方程;
S2、从雷达处获取距离量测,若当前跟踪的周期k≤3,则利用基于恒转弯运动模型的初始化方法进行滤波初始化,若当前跟踪的周期k>3则跳过滤波初始化执行步骤S3;其中k为正整数,进行滤波初始化时,获取k=1、2、3周期的距离量测,利用k=3周期的状态向量与k=1、2、3周期的距离真值之间的关系,以距离量测替代距离真值,得到k=3周期的状态估计,进而利用不敏变换计算k=3周期的状态估计协方差;
S3、利用距离量测进行非线性滤波,根据k-1周期的状态估计和状态估计协方差,更新k周期的状态估计和状态估计协方差;
S4、判断是否结束状态估计过程,若不结束,则返回执行步骤S2。
优选地,所述步骤S1中在距离-多普勒子空间对机动转弯目标进行恒转弯运动建模时,在只有距离量测的情况下,量测zk表示为:
其中,为目标的距离量测,rk为目标的距离真值,/>为距离量测误差,距离量测误差为零均值高斯白噪声,方差为/>
获得距离坐标系下,目标运动对应的状态方程表示为:
xk+1=f(xk)+vk
其中,xk为状态向量,f为描述状态向量随时间演化规律的非线性函数,vk为过程噪声;
对于恒转弯运动,状态向量和状态方程分别表示为:
其中,表示从k周期的距离-多普勒状态演化而来的、没有过程噪声污染的k+1周期的距离,/>为多普勒,/>为转换多普勒的一阶导数,T为雷达采样间隔,w是恒转弯速率,q为笛卡尔坐标系中沿x轴和y轴方向过程噪声的标准差,过程噪声vk的方差表示为:
其中,
对应距离量测的量测方程表示为:
其中,H为量测矩阵,wk为量测噪声,对应的量测噪声协方差矩阵为Rk
优选地,所述步骤S2中,进行滤波初始化时,在不考虑随机扰动的情况下,得到状态方程表示为:
将包含k、k-1、k-2周期的状态方程联立组成方程组,解方程组,以k、k-1、k-2周期对应的距离真值表示k周期的状态向量的各元素,表达式为:
利用距离量测替代距离真值,得到k周期的状态向量表达式为:
其中,是由k-2、k-1、k周期对应的距离量测组成的向量,g是表征状态向量和k-2、k-1、k周期对应的距离量测组成的向量之间非线性关系的向量值函数;带入k=3,计算相应的状态向量作为k=3周期的状态估计;
采用不敏变换计算k=3周期的状态估计协方差。
优选地,所述步骤S2中,采用不敏变换计算k=3周期的状态估计协方差时,包括如下步骤:
首先计算向量rk的2nx+1个采样点及其相应的权值Wi,表达式为:
其中nx是向量rk的维数,λ是满足nx+λ≠0的标量参数,是矩阵/>均方根的第i行或第i列;
然后计算各采样点的映射值和相应的转移状态,映射值表达式为:
转移状态表达式为:
最后计算状态估计协方差,表达式为:
优选地,所述步骤S3中,根据距离量测进行非线性滤波时,采用转换量测卡尔曼滤波方法、无迹卡尔曼滤波方法、扩展卡尔曼滤波方法或粒子滤波方法中的一种。
优选地,所述步骤S3中,根据距离量测进行非线性滤波时,采用无迹卡尔曼滤波方法,从k=4周期开始滤波,包括如下步骤:
S3-1、通过不敏变换计算2nx+1个采样点及相应的权重Wi,表达式为:
其中,nx是状态向量的维度,λ是满足nx+λ≠0的标量参数,/>是矩阵(nx+λ)Pk-1|k-1均方根的第i行或第i列;
S3-2、计算状态一步预测表达式为:
S3-3、计算一步预测协方差Pk|k-1,表达式为:
S3-4、计算滤波增益Kk,表达式为:
Kk=Pxz(Pzz)-1
其中为采样点对应的量测预测,/>为量测预测,Pzz为量测预测协方差矩阵,Pxz为状态和量测之间的互协方差矩阵;
S3-5、更新状态估计表达式为:
S3-6、更新状态估计协方差Pk|k,表达式为:
Pk|k=Pk|k-1-KkPzz(Kk)′。
本发明还提供了一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现上述任一项所述的仅用距离观测的机动转弯目标状态估计方法的步骤。
本发明还提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现上述任一项所述的仅用距离观测的机动转弯目标状态估计方法的步骤。
本发明的上述技术方案具有如下优点:本发明提供了一种仅用距离观测的机动转弯目标状态估计方法、计算机设备及计算机可读存储介质,本发明在目标做恒转弯运动情况下,对目标运动在距离-多普勒子空间建模,针对不含角度量测和多普勒量测的距离量测序列进行滤波,从而估计出机动转弯目标运动的距离-多普勒状态。本发明提供了一种只依赖距离量测进行目标跟踪的方法,并且在初始化时利用恒转弯运动模型进行滤波初始化,相比常用的两点差分法初始化,由于引入了真实目标运动模型信息,可以获得更好的滤波初始化精度。
附图说明
图1示出了本发明实施例提供的一种仅用距离观测的机动转弯目标状态估计方法步骤示意图;
图2示出了采用两点差分初始化的机动转弯目标状态估计方法和本发明实施例提供的机动转弯目标状态估计方法分别得到的距离均方根误差对比结果;
图3示出了采用两点差分初始化的机动转弯目标状态估计方法和本发明实施例提供的机动转弯目标状态估计方法分别得到的多普勒均方根误差对比结果;
图4示出了采用两点差分初始化的机动转弯目标状态估计方法和本发明实施例提供的机动转弯目标状态估计方法分别得到的距离-多普勒状态向量第三个元素均方根误差对比结果;
图5示出了采用两点差分初始化的机动转弯目标状态估计方法和本发明实施例提供的机动转弯目标状态估计方法分别得到的平均归一化误差平方对比结果。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,本发明实施例提供的一种仅用距离观测的机动转弯目标状态估计方法,包括如下步骤:
S1、在距离-多普勒子空间对机动转弯目标进行恒转弯运动建模,获得距离坐标系下的状态方程及对应距离量测的量测方程。
S2、从雷达处获取距离量测,若当前跟踪的周期k≤3,则利用基于恒转弯运动模型的初始化方法进行滤波初始化,若当前跟踪的周期k>3则跳过滤波初始化执行步骤S3。其中k为正整数,是雷达的扫描周期数(也即跟踪周期数)。
利用基于恒转弯运动模型的初始化方法进行滤波初始化时,获取k=1、2、3周期的距离量测,利用k=3周期的状态向量与k=1、2、3周期的距离真值之间的关系,以距离量测替代距离真值,得到k=3周期的状态估计,进而利用不敏变换计算k=3周期的状态估计协方差。以k=3周期对应的状态估计和状态估计协方差为初始状态和初始协方差,确定初始状态和初始协方差后,即完成滤波初始化。需要说明的是,在k≤3的情况下,即在未完成滤波初始化的情况下,不执行步骤S3。
S3、利用距离量测进行非线性滤波,根据k-1周期的状态估计和状态估计协方差,更新k周期的状态估计和状态估计协方差。
S4、判断是否结束状态估计过程,若不结束,则返回执行步骤S2。
优选地,步骤S1中在距离-多普勒子空间对机动转弯目标进行恒转弯运动建模时,在只有距离量测的情况下,量测zk表示为:
其中,为(k周期)目标的距离量测,对于只有距离量测的情况,量测zk等于距离量测/>rk为(k周期)目标的距离真值,/>为(k周期)距离量测误差,距离量测误差为零均值高斯白噪声,方差为/>
获得距离坐标系下,目标运动对应的状态方程表示为:
xk+1=f(xk)+vk
其中,xk为(k周期)距离-多普勒子空间的状态向量(简称状态向量,或距离-多普勒状态向量),f为描述状态向量随时间演化规律的非线性函数,vk为过程噪声。
对于恒转弯运动,状态向量和状态方程分别表示为:
其中,表示从k周期的距离-多普勒状态演化而来的、没有过程噪声污染的k+1周期的距离,/>为多普勒(真值),/>为转换多普勒的一阶导数(真值),T为雷达采样间隔,w是恒转弯速率,q为笛卡尔坐标系中沿x轴和y轴方向过程噪声的标准差,vk为过程噪声,是距离-多普勒子空间的零均值高斯噪声,过程噪声vk的方差为:
其中,
由过程噪声vk的方差的各矩阵元素可以看出,距离-多普勒子空间的过程噪声只与距离、多普勒和转换多普勒的一阶导数有关,而与目标在笛卡尔空间的状态无关。考虑到在实际应用中,由于真值rk和/>未知,可以用相应的估计值/>和/>替代。
距离量测是距离-多普勒状态向量的线性函数,根据恒转弯运动对应的状态向量形式,对应距离量测的量测方程表示为:
其中,H为量测矩阵,wk为量测噪声,对应的量测噪声协方差矩阵为Rk
本发明根据仅有的距离量测,利用距离坐标系下的状态方程和相应的量测方程,针对恒转弯目标,能够估计出对应的距离-多普勒状态。
优选地,步骤S2中,进行滤波初始化时,在不考虑随机扰动的情况下,得到(恒转弯运动在距离-多普勒子空间下的)状态方程表示为:
将包含k、k-1、k-2周期的状态方程联立组成方程组,解方程组,以k、k-1、k-2周期对应的距离真值表示k周期的状态向量的各元素,表达式为:
利用k、k-1、k-2周期对应的距离量测替代距离真值,得到k周期的状态向量表达式为:
其中,是由k-2、k-1、k周期对应的距离量测组成的向量,g是表征状态向量和k-2、k-1、k周期对应的距离量测组成的向量之间非线性关系的向量值函数。对于k=3周期,相应状态向量可由k=1、k=2、k=3周期对应的距离量测表示,即初始状态向量可由过去连续三个扫描间隔的距离量测计算。带入k=3,计算相应的状态向量作为k=3周期的状态估计,即确定初始状态。
通过上述k周期的状态向量表达式计算出来的初始状态向量与真值之间的误差项中,分母部分含有距离量测误差的表述,在计算协方差求数学期望的积分过程中,会出现不可积的情况。为了便于处理,本发明采用不敏变换计算k=3周期的状态估计协方差。
进一步地,步骤S2中,采用不敏变换计算k=3周期的状态估计协方差时,包括如下步骤:
首先计算向量rk的2nx+1个采样点及其相应的权值Wi,表达式为:
其中nx是向量rk的维数,λ是满足nx+λ≠0的标量参数,是矩阵/>均方根的第i行或第i列;
然后计算各采样点的映射值和相应的转移状态,映射值表达式为:
转移状态表达式为:
最后计算状态估计协方差,表达式为:
带入k=3计算k=3周期的状态估计协方差,即可得到初始协方差。
由于量测与目标状态之间是非线性关系,因此在滤波过程中需要采用非线性滤波方法,常用的非线性滤波方法包括转换量测卡尔曼滤波方法、无迹卡尔曼滤波方法、扩展卡尔曼滤波方法以及粒子滤波方法等,可采用其中一种实现非线性滤波。
步骤S3中,根据距离量测进行非线性滤波时,采用无迹卡尔曼滤波方法,从k=4周期开始滤波,包括如下步骤:
S3-1、通过不敏变换计算(在k-1周期的状态估计附近选取的)2nx+1个采样点及相应的权重Wi,表达式为:
其中,nx是状态向量的维度,λ是满足nx+λ≠0的标量参数,/>是矩阵(nx+λ)Pk-1|k-1均方根的第i行或第i列;
S3-2、计算状态一步预测表达式为:
S3-3、计算一步预测协方差Pk|k-1,表达式为:
S3-4、计算滤波增益Kk,表达式为:
Kk=Pxz(Pzz)-1
其中为采样点对应的量测预测,/>为量测预测,Pzz为量测预测协方差矩阵,Pxz为状态和量测之间的互协方差矩阵;/>
S3-5、更新状态估计表达式为:
S3-6、更新状态估计协方差Pk|k,表达式为:
Pk|k=Pk|k-1-KkPzz(Kk)′。
在完成滤波初始化后,从k=4周期开始迭代,根据步骤S2得到的、k=3周期的状态估计(初始状态)和状态估计协方差(初始协方差)更新k=4周期的状态估计和状态估计协方差,下一次计算根据距离量测基k=4周期的状态估计和状态估计协方差更新k=5周期的状态估计和状态估计协方差,以此类推进行非线性滤波。
当目标距离随时间线性变化时,利用两点差分法初始化滤波器比较精确。但实际情况并不如此,在初始化阶次比较低的情况下,两点差分法也只是近似满足精度要求。在本发明中,距离量测被用来初始化转换多普勒的高阶导数,两点差分法会带来比较大的近似误差。因此,本发明基于恒转弯运动模型的状态方程提出了一种新的初始化方法,首先利用确定性系统的状态演化方程,推导当前周期的目标状态和过去几个连续扫描间隔的距离真值之间的函数关系,然后用过去几个连续扫描间隔的距离量测替代距离真值,表示当前周期的目标状态;同时根据它们之间的函数关系,利用UT变换计算初始协方差。因为状态模型(即恒转弯运动模型)是精确的,新的初始化方法也相对精确,特别是在距离随时间变化非线性的高阶场景下。
为了验证本发明提出的仅用距离观测的机动转弯目标状态估计方法的有效性和基于恒转弯运动模型的初始化方法的优越性,本发明还进行了数值仿真及性能比较。如图2至图5所示,基于1000次蒙特卡洛数值仿真,采用均方根误差(Root Mean Squared Error,RMSE)评价估计性能,采用后验克拉美罗下限(Posterior Cramer-Rao Lower Bound,PCRLB)作为可能达到最优性能的参考。同时,采用平均归一化误差平方(AverageNormalized Error Squared,ANES)评价估计的一致性。对比的方法为采用两点差分法进行初始化的机动转弯目标状态估计方法(即将本发明步骤S2中基于恒转弯运动模型的初始化方法换为两点差分法,简称两点差分法)与本发明提供的仅用距离观测的机动转弯目标状态估计方法(简称本发明所提方法)。
仿真场景设定雷达位于坐标原点,雷达采样间隔T=5s,即每隔5s雷达传回目标距离量测。目标做恒转弯运动,恒转弯速率为-4度/秒,在笛卡尔坐标系下的过程噪声设定为零均值高斯白噪声,其标准差设定为典型值q=0.01m/s2。考虑两种极端场景:距离雷达较远的低速运动,初始位置为(50km,50km),初始速度为10m/s,航向-45度,量测噪声标准差σr=300m;距离雷达较近的高速运动,初始位置为(5km,5km),初始速度为500m/s,初始航向-45度,量测噪声标准差σr=50m。雷达扫描次数(即k的最大值)设为100。
初始状态为(5km,5km),(500m/s,-45度),σr=50m下的仿真结果如图2至图5所示,可以看到本发明所提方法随着迭代次数的增加很快收敛并且接近于PCRLB,ANES也落在98%置信区间。这说明对恒转弯运动在距离-多普勒子空间建立的模型是精确的,在只有距离量测的情况下,采用该模型可有效估计目标距离-多普勒状态。
还可以明显看到采用两点差分法进行初始化滤波后,距离-多普勒状态向量各分量的RMSE出现波动,而采用本发明所提方法对滤波器初始化之后,距离-多普勒状态向量各分量的RMSE收敛更快,并且能始终保持良好的一致性,而两点差分法的一致性明显恶化了。这是因为在距离雷达较近量测噪声较小的情况下,距离-多普勒状态向量各分量伴随着高速恒转弯运动的非线性变化效应更突出,对此场景下的运动目标跟踪滤波初始化,两点差分法相比本发明所提方法显得粗糙,如图3和图4所示,两点差分法对状态向量后两个分量的初始化误差,明显比本发明提出的方法误差更大,而这种误差一直伴随着整个滤波过程。
特别地,在本发明一些优选的实施方式中,还提供了一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现上述任一实施方式中所述的仅用距离观测的机动转弯目标状态估计方法的步骤。
在本发明另一些优选的实施方式中,还提供了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现上述任一实施方式中所述的仅用距离观测的机动转弯目标状态估计方法的步骤。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程,在此不再重复说明。
综上所述,本发明针对机动转弯目标在距离-多普勒子空间建模,推导了准确的距离坐标系状态方程,能够针对不含角度量测和多普勒量测的距离量测序列进行滤波,从而估计出目标运动的距离-多普勒状态。本发明还提出了基于状态模型的初始化方法,根据状态转移矩阵和距离量测计算滤波器初值(即初始状态),利用UT方法计算初始协方差。相比常用的两点差分法,由于引入了真实目标运动模型信息,可以获得更好的滤波初始化精度。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (7)

1.一种仅用距离观测的机动转弯目标状态估计方法,其特征在于,包括如下步骤:
S1、在距离-多普勒子空间对机动转弯目标进行恒转弯运动建模,获得距离坐标系下的状态方程及对应距离量测的量测方程;
S2、从雷达处获取距离量测,若当前跟踪的周期k≤3,则利用基于恒转弯运动模型的初始化方法进行滤波初始化,若当前跟踪的周期k>3则跳过滤波初始化执行步骤S3;其中k为正整数,进行滤波初始化时,获取k=1、2、3周期的距离量测,利用k=3周期的状态向量与k=1、2、3周期的距离真值之间的关系,以距离量测替代距离真值,得到k=3周期的状态估计,进而利用不敏变换计算k=3周期的状态估计协方差;
S3、利用距离量测进行非线性滤波,根据k-1周期的状态估计和状态估计协方差,更新k周期的状态估计和状态估计协方差;
S4、判断是否结束状态估计过程,若不结束,则返回执行步骤S2;
其中,步骤S1中在距离-多普勒子空间对机动转弯目标进行恒转弯运动建模时,在只有距离量测的情况下,量测zk表示为:
其中,为目标的距离量测,rk为目标的距离真值,/>为距离量测误差,距离量测误差为零均值高斯白噪声,方差为/>
获得距离坐标系下,目标运动对应的状态方程表示为:
xk+1=f(xk)+vk
其中,xk为状态向量,f为描述状态向量随时间演化规律的非线性函数,vk为过程噪声;
对于恒转弯运动,状态向量和状态方程分别表示为:
其中,表示从k周期的距离-多普勒状态演化而来的、没有过程噪声污染的k+1周期的距离,/>为多普勒,/>为转换多普勒的一阶导数,T为雷达采样间隔,w是恒转弯速率,q为笛卡尔坐标系中沿x轴和y轴方向过程噪声的标准差,过程噪声vk的方差表示为:
其中,
对应距离量测的量测方程表示为:
其中,H为量测矩阵,wk为量测噪声,对应的量测噪声协方差矩阵为Rk
2.根据权利要求1所述的仅用距离观测的机动转弯目标状态估计方法,其特征在于,
所述步骤S2中,进行滤波初始化时,在不考虑随机扰动的情况下,得到状态方程表示为:
将包含k、k-1、k-2周期的状态方程联立组成方程组,解方程组,以k、k-1、k-2周期对应的距离真值表示k周期的状态向量的各元素,表达式为:
利用距离量测替代距离真值,得到k周期的状态向量表达式为:
其中,是由k-2、k-1、k周期对应的距离量测组成的向量,g是表征状态向量和k-2、k-1、k周期对应的距离量测组成的向量之间非线性关系的向量值函数;带入k=3,计算相应的状态向量作为k=3周期的状态估计;
采用不敏变换计算k=3周期的状态估计协方差。
3.根据权利要求2所述的仅用距离观测的机动转弯目标状态估计方法,其特征在于,
所述步骤S2中,采用不敏变换计算k=3周期的状态估计协方差时,包括如下步骤:
首先计算向量rk的2nx+1个采样点及其相应的权值Wi,表达式为:
其中nx是向量rk的维数,λ是满足nx+λ≠0的标量参数,是矩阵/>均方根的第i行或第i列;
然后计算各采样点的映射值和相应的转移状态,映射值表达式为:
转移状态表达式为:
最后计算状态估计协方差,表达式为:
4.根据权利要求3所述的仅用距离观测的机动转弯目标状态估计方法,其特征在于:所述步骤S3中,根据距离量测进行非线性滤波时,采用转换量测卡尔曼滤波方法、无迹卡尔曼滤波方法、扩展卡尔曼滤波方法或粒子滤波方法中的一种。
5.根据权利要求4所述的仅用距离观测的机动转弯目标状态估计方法,其特征在于,
所述步骤S3中,根据距离量测进行非线性滤波时,采用无迹卡尔曼滤波方法,从k=4周期开始滤波,包括如下步骤:
S3-1、通过不敏变换计算2nx+1个采样点及相应的权重Wi,表达式为:
其中,nx是状态向量的维度,λ是满足nx+λ≠0的标量参数,/>是矩阵(nx+λ)Pk-1|k-1均方根的第i行或第i列;
S3-2、计算状态一步预测表达式为:
S3-3、计算一步预测协方差Pk|k-1,表达式为:
S3-4、计算滤波增益Kk,表达式为:
Kk=Pxz(Pzz)-1
其中为采样点对应的量测预测,/>为量测预测,Pzz为量测预测协方差矩阵,Pxz为状态和量测之间的互协方差矩阵;
S3-5、更新状态估计表达式为:
S3-6、更新状态估计协方差Pk|k,表达式为:
Pk|k=Pk|k-1-KkPzz(Kk)′。
6.一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,其特征在于,所述处理器执行所述计算机程序时实现权利要求1至5中任一项所述的仅用距离观测的机动转弯目标状态估计方法的步骤。
7.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至5中任一项所述的仅用距离观测的机动转弯目标状态估计方法的步骤。
CN202010638406.8A 2020-07-06 2020-07-06 一种仅用距离观测的机动转弯目标状态估计方法 Active CN111736144B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010638406.8A CN111736144B (zh) 2020-07-06 2020-07-06 一种仅用距离观测的机动转弯目标状态估计方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010638406.8A CN111736144B (zh) 2020-07-06 2020-07-06 一种仅用距离观测的机动转弯目标状态估计方法

Publications (2)

Publication Number Publication Date
CN111736144A CN111736144A (zh) 2020-10-02
CN111736144B true CN111736144B (zh) 2023-09-26

Family

ID=72653292

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010638406.8A Active CN111736144B (zh) 2020-07-06 2020-07-06 一种仅用距离观测的机动转弯目标状态估计方法

Country Status (1)

Country Link
CN (1) CN111736144B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112630774A (zh) * 2020-12-29 2021-04-09 北京润科通用技术有限公司 一种目标跟踪数据滤波处理方法及装置
CN113219406B (zh) * 2021-04-29 2022-08-05 电子科技大学 一种基于扩展卡尔曼滤波的直接跟踪方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108152812A (zh) * 2017-12-13 2018-06-12 西安电子科技大学 一种调整网格间距的改进agimm跟踪方法
CN109001699A (zh) * 2018-01-30 2018-12-14 哈尔滨工业大学 基于带噪声目的地信息约束的跟踪方法
CN111077518A (zh) * 2019-12-20 2020-04-28 哈尔滨工业大学 一种基于距离-多普勒量测的跟踪滤波方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108152812A (zh) * 2017-12-13 2018-06-12 西安电子科技大学 一种调整网格间距的改进agimm跟踪方法
CN109001699A (zh) * 2018-01-30 2018-12-14 哈尔滨工业大学 基于带噪声目的地信息约束的跟踪方法
CN111077518A (zh) * 2019-12-20 2020-04-28 哈尔滨工业大学 一种基于距离-多普勒量测的跟踪滤波方法及装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Zhou Gong-jian 等.Bi-station OTH Radar Locating and Tracking Using Only Range and Doppler Measurements.2010 International Conference on Computer Application and System Modeling (ICCASM 2010).2010,全文. *
桑航 等.交互作用多模型集成航迹分裂目标跟踪方法.指挥控制与仿真.2020,第42卷(第2期),全文. *
王永富,黄显林,尹航.只有角度测量的机动目标非线性预测滤波器设计.现代防御技术.2001,(01),全文. *

Also Published As

Publication number Publication date
CN111736144A (zh) 2020-10-02

Similar Documents

Publication Publication Date Title
CN107315171B (zh) 一种雷达组网目标状态与系统误差联合估计算法
CN111736144B (zh) 一种仅用距离观测的机动转弯目标状态估计方法
CN110231620B (zh) 一种噪声相关系统跟踪滤波方法
CN111722214A (zh) 雷达多目标跟踪phd实现方法
CN111722213B (zh) 一种机动目标运动参数的纯距离提取方法
CN110209180B (zh) 一种基于HuberM-Cubature卡尔曼滤波的无人水下航行器目标跟踪方法
CN111708013B (zh) 一种距离坐标系目标跟踪滤波方法
CN112328959B (zh) 一种基于自适应扩展卡尔曼概率假设密度滤波器的多目标跟踪方法
CN108871365B (zh) 一种航向约束下的状态估计方法及系统
Cao et al. Extended object tracking using automotive radar
CN111711432B (zh) 一种基于ukf和pf混合滤波的目标跟踪算法
CN110738275A (zh) 基于ut-phd的多传感器序贯融合跟踪方法
CN116734860A (zh) 一种基于因子图的多auv自适应协同定位方法及系统
CN112379350A (zh) 智能车辆毫米波雷达多目标跟踪方法、装置及设备
Han et al. Method of target tracking with Doppler blind zone constraint
CN110595470A (zh) 一种基于外定界椭球集员估计的纯方位目标跟踪方法
CN115114985A (zh) 一种基于集合理论的传感器系统分布式融合方法
CN116224320B (zh) 一种极坐标系下处理多普勒量测的雷达目标跟踪方法
Sönmez et al. Analysis of performance criteria for optimization based bearing only target tracking algorithms
CN116047495B (zh) 一种用于三坐标雷达的状态变换融合滤波跟踪方法
CN117784114B (zh) 异常噪声下基于混合熵的不规则扩展目标跟踪方法
Ma et al. Variational Bayesian cubature Kalman filter for bearing-only tracking in glint noise environment
Alqaderi et al. Symmetric star-convex shape tracking with Wishart filter
Chen et al. Improved Unscented Kalman Filtering Algorithm Applied to On-vehicle Tracking System
Sun et al. A new maneuvering target tracking method using adaptive cubature Kalman filter

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant