CN111733378A - 一种钢表面的涂层结构及其制备方法 - Google Patents
一种钢表面的涂层结构及其制备方法 Download PDFInfo
- Publication number
- CN111733378A CN111733378A CN202010414721.2A CN202010414721A CN111733378A CN 111733378 A CN111733378 A CN 111733378A CN 202010414721 A CN202010414721 A CN 202010414721A CN 111733378 A CN111733378 A CN 111733378A
- Authority
- CN
- China
- Prior art keywords
- layer
- coating
- steel
- target
- diffusion layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/021—Cleaning or etching treatments
- C23C14/022—Cleaning or etching treatments by means of bombardment with energetic particles or radiation
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C27/00—Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
- C22C27/06—Alloys based on chromium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/02—Pretreatment of the material to be coated
- C23C14/024—Deposition of sublayers, e.g. to promote adhesion of the coating
- C23C14/025—Metallic sublayers
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Physical Vapour Deposition (AREA)
Abstract
本发明涉及一种钢表面的涂层结构及其制备方法,其中,一种钢表面的涂层结构由表面Cr沉积层、Cr扩散层及辐射损伤层组成,所述表面Cr沉积层、中间Cr扩散层及辐射损伤层自上而下依次布置。与现有技术相比,本发明的优点在于:钢的涂层与基体通过Cr扩散层的互相扩散来实现冶金结合,提高了表面耐烧蚀和耐磨损。
Description
技术领域
本发明属于耐烧蚀和耐磨损涂层的制备领域,具体涉及一种钢表面的涂层结构及其制备方法。
背景技术
身管是火炮与自动武器中最主要的部件之一,通常为钢管。武器击发后,发射药在身管内膛迅速燃烧,产生高温、高压的火药气体,推动弹丸沿膛线运动,赋予弹丸相对稳定的内、外弹道,同时能够使弹丸高速旋转向前运动,确保弹丸在膛口获得规定的初速和保证飞行稳定性的转速。弹丸在膛内高速运动时,在膛线顶部和导转侧的挤压应力可达100~200MPa,高温、高速摩擦条件下,身管材料表面将发生氧化、熔化、相变等组织结构和成分的变化,导致摩擦表面的化学及力学性能变化。如此恶劣的工作条件将造成身管内膛尤其是膛线起始部严重的烧蚀和磨损现象。
身管的传统表面处理工艺为电镀铬,该工艺可提升身管的耐烧蚀和耐磨性能,同时保持身管的整体力学性能。随着火炮的威力不断提高,所带来的炮管严重烧蚀问题也越来越突出,该处理工艺逐渐难以满足兵器工业对高质量火炮身管的要求。该工艺的缺陷表现为三个方面,一是电镀铬脆性大、剪切强度和抗拉强度比较低,与基体的结合力较弱,易剥落;二是尚未服役的电镀铬镀层内部不可避免存在大量的微裂纹和残余应力,降低涂层的保护作用;电镀铬工艺中的六价铬是一种致癌物质,存在严重的环境危害问题。
双层辉光等离子表面合金化以离子氮化为基础,主要是在离子渗氮两个电极之间再增加一个阴极,称为源极,组成两组可以独立调节的电极系统。由于双辉等离子渗金属技术独特的溅射作用、空心阴极效应、电场和磁场的加速作用以及扩散作用,形成的渗金属合金层不仅均匀致密、残余应力小,而且能够与基体形成冶金结合,界面成分呈梯度分布,涂层表面质量较高,无需后续加工。
但是如果金属内存在大量地晶体缺陷如空位、空位团或者线缺陷以及晶界等,则这些缺陷可作为易扩散的快速传质通道,显著可以降低扩散温度或缩短周期。金属受离子辐照可产生的缺陷包括:点缺陷(间隙原子和空位)、小的空位团(贫原子区)、位错环(空位型或间隙型,层错的或非层错的)、层错四面体、位错线(和原有位错网已经联在一起的非层错环)、空洞等。采用单一的双辉渗金属技术,处理温度较高,严重影响基体的整体力学性能。
发明内容
本发明所要解决的第一个技术问题是针对上述现有技术的现状,提供一种提高钢表面耐烧蚀和耐磨损性能的钢表面的涂层结构。
本发明所要解决的第二个技术问题是,提供了一种钢表面涂层结构的制备方法,通过将离子辐照处理技术和双层辉光表面等离子渗金属技术结合,进而降低等离子渗金属技术的处理温度,在不影响基体整体力学性能的基础上,大幅提高钢材料的耐烧蚀和耐磨损性能。
本发明解决上述第一个技术问题所采用的技术方案为:一种钢表面的涂层结构,其特征在于:所述涂层结构由表面Cr沉积层、Cr扩散层及辐射损伤层组成,所述表面Cr沉积层、中间Cr扩散层及辐射损伤层自上而下依次布置。
优选地,所述表面Cr沉积层的厚度为5~10μm,所述Cr扩散层厚度为10~15μm,所述辐射损伤层的厚度为1~5μm。5~10μm厚度高硬度Cr沉积层内应力小,不易剥落;10~15μm厚度扩散层保证沉积层与基体结合力良好,保证涂层和基体界面组织成分无突变,匹配良好;1~5μm辐射损伤层则可起到辐射强化基体作用,辅助改善涂层的表面磨损性能。
优选地,所述Cr扩散层中Cr的含量呈梯度分布,且自上而下逐渐递减。Cr成分的梯度分布改善了涂层和界面组织和性能的相对连续,在外场热力耦合作用下内应力小,不易剥落,有效改善涂层的烧蚀防护和磨损防护功能。
本发明解决上述第二个技术问题所采用的技术方案为:一种上述的涂层结构的制备方法,其特征在于,依次包括以下步骤:
(1)采用20Ne离子对钢进行辐照;
(2)将离子辐照处理的钢、Cr靶材加入双层辉光渗离子表面合金化装置中,以钢为工件极,以Cr靶材为源极;
(3)抽真空,送氩气,启动辉光,调试工艺参数;
(4)停止辉光,断电,调整真空至大气压下,完成渗Cr合金涂层的制备,得到耐烧蚀和耐磨损性能涂层。
优选地,在步骤(1)中,辐照过程中靶室的真空为1×10-5~5×10-4Pa,温度保持在300~550℃,束流加热影响波动范围14℃~16℃,Ne离子的辐照剂量为5×1016~2×1017ions/cm2。
辐照过程中,温度保持在350~450℃或者,温度保持在450~550℃。
具体地,在步骤(3)中,调试工艺参数为:纯Cr合金靶材电压:700~750V,工件电压:400~450V,氩气气压:25~45Pa,靶材与工件极间距:10~15mm,保温时间:5~8h,处理温度:400℃~600℃。
优选地,辐照过程中,温度保持在350~450℃或者,温度保持在450~550℃。
优选地,在步骤(2)中,所述Cr靶材中加入了2%~5wt%的稀土元素Y。2%~5wt%的稀土元素Y可以促进双辉渗金属过程中Cr元素在基体表面的扩散,形成较厚的Cr扩散层,添加量过少催渗效果不好,添加量过多容易导致Y元素的偏聚,导致催渗效果不均匀。
所述涂层的表面显微硬度600~750HV。如此,加入稀土元素后,使得涂层具有良好的力学性能。
具体地,20Ne离子的能量为6.17MeV/u,总能量为123.4MeV。
与现有技术相比,本发明的优点在于:1、Cr合金表面涂层结构由表面Cr沉积层、Cr扩散层和辐射损伤层组成,辐射损伤层起到辅助强化基体表层作用,有助于表面耐磨性能的更进一步提升,钢的涂层与基体通过Cr扩散层的互相扩散来实现冶金结合,有效提高了该涂层结构的烧蚀防护和磨损防护效果。
2、通过将离子辐照技术和双层辉光表面处理技术结合,首先在钢表面形成具有大量缺陷的损伤区,然后采用双层辉光表面处理技术对钢材进行Cr改性层制备,整个处理过程中温度控制在450℃~600℃,在不影响钢材料整体力学性能的基础上,大幅提升钢材料的耐烧蚀和耐磨损性能。
附图说明
图1为实施例1的涂层的结构示意图
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
本实施例的钢表面的涂层结构由表面Cr沉积层11、Cr扩散层12及辐射损伤层13组成,表面Cr沉积层11、Cr扩散层12及辐射损伤层13自上而下依次布置。表面Cr沉积层11的厚度为5~10μm,Cr扩散层12厚度为10~15μm,辐射损伤层13的厚度为1~5μm。上述Cr扩散层12中Cr的含量呈梯度分布,且Cr扩散层12中Cr的含量自上而下逐渐降低。
上述的涂层结构的制备方法依次包括以下步骤:
(1)采用20Ne离子对钢进行辐照,20Ne离子的能量为6.17MeV/u,总能量为123.4MeV,辐照过程中靶室的真空为1×10-5~5×10-4Pa,温度保持在300~550℃,束流加热影响波动范围14℃~16℃,Ne离子的辐照剂量为5×1016~2×1017ions/cm2;
(2)将离子辐照处理的钢、Cr靶材加入双层辉光渗离子表面合金化装置中,以钢为工件极,以Cr靶材为源极;按重量百分比计,Cr靶材的成分组成为2~4wt%Y,余量为Cr;
(3)抽真空,送氩气,启动辉光,调试工艺参数:纯Cr合金靶材电压:700~750V,工件电压:400~450V,氩气气压:25~45Pa,靶材与工件极间距:10~15mm,保温时间:5~8h,处理温度:400℃~600℃;
(4)停止辉光,断电,调整真空至大气压下,打开装置,取出试样,完成渗Cr合金涂层的制备,得到耐烧蚀和耐磨损性能涂层。
Cr靶材中加入了2%~5wt%的稀土元素Y,具体参见下表中的11个实施例。11个实施例中Cr靶材的组成成分如下表1所示,11个实施例的工艺参数如下表2所示,11个实施例中涂层的厚度及烧蚀和磨损性能参数如下表3所示。
表1各实施例的Cr靶材组成成分
表2各实施例的工艺参数
表3各实施例的涂层的厚度及烧蚀和磨损性能参数
由表3可知,靶材中加入稀土元素后,涂层的表面显微硬度为650~950HV。在无添加稀土元素时,在500℃的比磨损率较小,在25℃下的磨损失重较小,烧蚀失重也较小。而在添加稀土元素Y后,在500℃的比磨损率明显降低,在25℃下的磨损失重明显减小,烧蚀失重也明显降低。
上述11个实施例在经过一次射击试验后,镀铬涂层表面没有裂纹,也没有出现剥落现象,只有火药燃气作用而产生的冲刷沟,这表面镀铬层与基体的结合力较好,不会发生剥落,使基体免受高温高压火药燃气的直接作用,因而可以大幅提升基体材料的耐烧蚀性能。
上述各个实施例中,硬度测试方法为:采用401MVA型维氏硬度仪测量各个实施例中钢的表面显微硬度,压头为标准努氏压头。为减小读取压痕长度L的试验误差,选择载荷为100g,加载时间为15s;试验结果选取5个测量点的算术平均值。
试样的磨损性能测试方法为:本实验采用中国科学院兰州物理化学研究所研制的HT-500型摩擦磨损试验机进行试验。试验样品为原始T10钢试样,优选工艺参数下制备的改性试样,尺寸均为20mm×20mm×5mm。试验过程中无任何润滑条件,分别在室温(25±5℃)和高温(500±5℃)下进行试验,相对湿度为45±5%。室温试验(25±4℃)中,摩擦副材料为Φ4.75mm的GCr15小球,测试载荷砝码450g,转速为560r/min,旋转半径设置为3mm,磨损时间为10min,滑动距离为105.5m。相对湿度为45±5%。高温试验(500±10℃)中,摩擦副材料为Φ4.75mm的Si3N4小球,测试载荷砝码450g,转速为560r/min,旋转半径设置为3mm,磨损时间为10min,滑动距离为105.5m。
耐烧蚀性能测试方法为:主要参照樊新民在弹道学报发表的《三种镀覆层材料抗烧蚀性能评价》中的耐烧蚀性能评价方法,本实施例中将不再详细赘述。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下还可以做出若干改进,这些改进也应视为本发明的保护范围。
Claims (10)
1.一种钢表面的涂层结构,其特征在于:所述涂层结构由表面Cr沉积层(11)、Cr扩散层(12)及辐射损伤层(13)组成,所述表面Cr沉积层(11)、Cr扩散层(12)及辐射损伤层(13)自上而下依次布置。
2.根据权利要求1所述的涂层结构,其特征在于:所述表面Cr沉积层(11)的厚度为5~10μm,所述Cr扩散层(12)厚度为10~15μm,所述辐射损伤层(13)的厚度为1~5μm。
3.根据权利要求1所述的涂层结构,其特征在于:所述Cr扩散层(12)中Cr的含量呈梯度分布,且自上而下逐渐递减。
4.一种权利要求1至3中任一项权利要求所述的涂层结构的制备方法,其特征在于,依次包括以下步骤:
(1)采用20Ne离子对钢进行辐照;
(2)将离子辐照处理的钢、Cr靶材加入双层辉光渗离子表面合金化装置中,以钢为工件极,以Cr靶材为源极;
(3)抽真空,送氩气,启动辉光,调试工艺参数;
(4)停止辉光,断电,调整真空至大气压下,完成渗Cr合金涂层的制备,得到耐烧蚀和耐磨损性能涂层。
5.根据权利要求4所述的制备方法,其特征在于:在步骤(1)中,辐照过程中靶室的真空为1×10-5~5×10-4Pa,温度保持在300~550℃,束流加热影响波动范围14℃~16℃,Ne离子的辐照剂量为5×1016~2×1017ions/cm2。
6.根据权利要求5所述的制备方法,其特征在于:辐照过程中,温度保持在350~450℃或者,温度保持在450~550℃。
7.根据权利要求4所述的制备方法,其特征在于:在步骤(3)中,调试工艺参数为:纯Cr合金靶材电压:700~750V,工件电压:400~450V,氩气气压:25~45Pa,靶材与工件极间距:10~15mm,保温时间:5~8h,处理温度:400℃~600℃。
8.根据权利要求4所述的制备方法,其特征在于:在步骤(2)中,所述Cr靶材中加入了2%~5wt%的稀土元素Y。
9.根据权利要求8所述的制备方法,其特征在于:所述涂层的表面显微硬度600~750HV。
10.根据权利要求5所述的制备方法,其特征在于:20Ne离子的能量为6.17MeV/u,总能量为123.4MeV。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010414721.2A CN111733378B (zh) | 2020-05-15 | 2020-05-15 | 一种钢表面的涂层结构及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010414721.2A CN111733378B (zh) | 2020-05-15 | 2020-05-15 | 一种钢表面的涂层结构及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111733378A true CN111733378A (zh) | 2020-10-02 |
CN111733378B CN111733378B (zh) | 2022-12-13 |
Family
ID=72647394
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010414721.2A Active CN111733378B (zh) | 2020-05-15 | 2020-05-15 | 一种钢表面的涂层结构及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111733378B (zh) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5429843A (en) * | 1991-11-21 | 1995-07-04 | Nisshin Steel Co., Ltd. | Vapor deposition for formation of plating layer |
WO1996033293A1 (en) * | 1995-04-19 | 1996-10-24 | Korea Institute Of Science And Technology | Modification of surfaces of polymers, metal or ceramic |
US20060166475A1 (en) * | 2003-03-10 | 2006-07-27 | Siegfried Mantl | Method for the production of stree-relaxed layer structure on a non-lattice adapted substrate and utilization of said layer system in electronic and/or optoelectronic components |
US20060211221A1 (en) * | 2003-04-22 | 2006-09-21 | Siegfried Mantl | Method for producing a strained layer on a substrate and corresponding layer structure |
CN101128523A (zh) * | 2005-02-24 | 2008-02-20 | 丰田自动车株式会社 | 功能膜和用于燃料电池中的电解质膜以及它们的制备方法 |
US20090004458A1 (en) * | 2007-06-29 | 2009-01-01 | Memc Electronic Materials, Inc. | Diffusion Control in Heavily Doped Substrates |
US20180334739A1 (en) * | 2015-11-10 | 2018-11-22 | Sandvik Intellectual Property Ab | Method for pre-treating a surface for coating |
-
2020
- 2020-05-15 CN CN202010414721.2A patent/CN111733378B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5429843A (en) * | 1991-11-21 | 1995-07-04 | Nisshin Steel Co., Ltd. | Vapor deposition for formation of plating layer |
WO1996033293A1 (en) * | 1995-04-19 | 1996-10-24 | Korea Institute Of Science And Technology | Modification of surfaces of polymers, metal or ceramic |
US20060166475A1 (en) * | 2003-03-10 | 2006-07-27 | Siegfried Mantl | Method for the production of stree-relaxed layer structure on a non-lattice adapted substrate and utilization of said layer system in electronic and/or optoelectronic components |
US20060211221A1 (en) * | 2003-04-22 | 2006-09-21 | Siegfried Mantl | Method for producing a strained layer on a substrate and corresponding layer structure |
CN101128523A (zh) * | 2005-02-24 | 2008-02-20 | 丰田自动车株式会社 | 功能膜和用于燃料电池中的电解质膜以及它们的制备方法 |
US20090004458A1 (en) * | 2007-06-29 | 2009-01-01 | Memc Electronic Materials, Inc. | Diffusion Control in Heavily Doped Substrates |
US20180334739A1 (en) * | 2015-11-10 | 2018-11-22 | Sandvik Intellectual Property Ab | Method for pre-treating a surface for coating |
Non-Patent Citations (1)
Title |
---|
孟天旭等: "刻蚀对高碳马氏体不锈钢表面等离子渗铬层结合强度的影响", 《表面技术》 * |
Also Published As
Publication number | Publication date |
---|---|
CN111733378B (zh) | 2022-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0201557B1 (en) | Gun barrel for use at high temperature | |
Leyens et al. | Recent progress in the coating protection of gamma titanium-aluminides | |
CN100584994C (zh) | 采用多弧离子镀制备(TiAlZr)N超硬涂层的方法 | |
Lee et al. | High-rate sputter deposited tantalum coating on steel for wear and erosion mitigation | |
US3442172A (en) | Gun barrel liner | |
CN111733378B (zh) | 一种钢表面的涂层结构及其制备方法 | |
Vorkötter et al. | Oxide dispersion strengthened bond coats with higher alumina content: Oxidation resistance and influence on thermal barrier coating lifetime | |
Hu et al. | Thermal shock behaviour and failure mechanism of two-kind Cr coatings on non-planar structure | |
CN106282887B (zh) | 微晶氧化物颗粒弥散强化合金涂层的原位制备方法 | |
US2799959A (en) | Nitrided gun barrel with chromium deposit | |
RU2338990C1 (ru) | Способ получения покрытия канала ствола огнестрельного оружия | |
CN109252137B (zh) | 锆合金表面涂层的制备方法 | |
CN110656301A (zh) | 一种高速钢刀具可控渗氮-pvd复合涂层制备方法 | |
CN104818483A (zh) | 一种中碳CrNiMo钢表面铬钽梯度涂层及其制备方法 | |
Mulligan et al. | Characterization and comparison of magnetron sputtered and electroplated gun bore coatings | |
Ray et al. | Crack propagation studies and bond coat properties in thermal barrier coatings under bending | |
CN113913763A (zh) | 一种身管抗烧蚀磨损涂层的制备方法 | |
Men et al. | Erosion and wear resistance of Cr3C2-NiCr composite ceramic coating for gun barrel | |
Łęczycki | Analysis of premature wear-out of aircraft gun barrel by applying a transmission electron microscopy (TEM) | |
CN112725754A (zh) | 一种涂层材料、制备方法及合金材料 | |
Mehan et al. | The use of a ring tensile test to evaluate plasma-deposited metals | |
CN111850483A (zh) | 一种多层梯度硬质涂层及其制备工艺 | |
CN114959570B (zh) | 一种钢用硬质膜及其制备方法 | |
RU2530218C2 (ru) | Способ изготовления ствола крупнокалиберного пулемета | |
Yıldız et al. | Electrodeposition of hard chromium on the interior surface of infantry rifle barrels: an experimental investigation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |