CN111721436A - An over-temperature detection circuit of a power device - Google Patents
An over-temperature detection circuit of a power device Download PDFInfo
- Publication number
- CN111721436A CN111721436A CN202010433667.6A CN202010433667A CN111721436A CN 111721436 A CN111721436 A CN 111721436A CN 202010433667 A CN202010433667 A CN 202010433667A CN 111721436 A CN111721436 A CN 111721436A
- Authority
- CN
- China
- Prior art keywords
- over
- triode
- temperature detection
- detection circuit
- power device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 33
- 239000002184 metal Substances 0.000 claims abstract description 19
- 210000004899 c-terminal region Anatomy 0.000 claims abstract description 15
- 239000003990 capacitor Substances 0.000 claims abstract description 11
- 230000000694 effects Effects 0.000 claims abstract description 6
- 230000005669 field effect Effects 0.000 claims description 19
- 238000000034 method Methods 0.000 claims description 15
- 238000002955 isolation Methods 0.000 claims description 11
- 230000000052 comparative effect Effects 0.000 claims 1
- 238000010438 heat treatment Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 2
- 208000033999 Device damage Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
- G01K7/42—Circuits effecting compensation of thermal inertia; Circuits for predicting the stationary value of a temperature
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K1/00—Details of thermometers not specially adapted for particular types of thermometer
- G01K1/16—Special arrangements for conducting heat from the object to the sensitive element
- G01K1/18—Special arrangements for conducting heat from the object to the sensitive element for reducing thermal inertia
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K7/00—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
- G01K7/01—Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using semiconducting elements having PN junctions
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
本发明公开了一种功率器件的过温检测电路,属于过温检测电路技术领域,三极管的PN结发射极与场效应管共享一个PGND,相对应的比较电平也对应到同一个电位,场效应管的热能可以通过PGND的金属连线绕过DTI传到三极管的发射极,其次PGND与三极管的B,C端节点在NPN的版图上形成类似于插指电容结构,用于加热NPN的B,C端金属连线,从而加热NPN管,所有以上金属层的面积需要完全覆盖NPN管以实现最佳的热传导。
The invention discloses an over-temperature detection circuit of a power device, which belongs to the technical field of over-temperature detection circuits. The heat energy of the effect tube can be passed to the emitter of the triode through the metal connection of the PGND bypassing the DTI. Next, the PGND and the B and C terminal nodes of the triode form a structure similar to the finger capacitor on the layout of the NPN, which is used to heat the B of the NPN. , C-terminal metal connection, thereby heating the NPN tube, the area of all the above metal layers needs to completely cover the NPN tube to achieve the best heat conduction.
Description
技术领域technical field
本发明涉及一种过温检测电路,特别是涉及一种功率器件的过温检测电路,属于过温检测电路技术领域。The invention relates to an over-temperature detection circuit, in particular to an over-temperature detection circuit of a power device, and belongs to the technical field of over-temperature detection circuits.
背景技术Background technique
在功率集成电路中,在功率器件上过大的电流会引起功率模块剧烈升温导致器件损坏。为安全考虑,过温检测电路被引入以防止上述失效。In a power integrated circuit, excessive current on the power device will cause the power module to heat up violently and cause device damage. For safety reasons, an over-temperature detection circuit is introduced to prevent the above-mentioned failures.
以低边的DMOS为例(图1),用于检测DMOS的温度,Vref为带隙基准产生温度不敏感电平,利用PN结点压的负温度特性实现特定温度下的报警机制,当温度上升时,VBE的电压下降至Vref时为过温检测点(图2),过温检测电路的PN结放在功率器件DMOS边上,当DMOS升温发热时,经过晶圆表面热传导引起PN结的温度上升。在DMOS工艺引入DTI工艺,现有DTI工艺隔离层的实现,一种为空气隔离,直接挖深凹槽物理隔离,一种为凹槽中先做氧化层,再填充导电层,无论哪种结构,DTI为热隔离,功率器件的热量被局限在DMOS自己的DTI内,导致热能不能传导到DTI外部的检测PN结,进而导致检测不到DMOS的升温,为此设计一种功率器件的过温检测电路来解决上述问题。Taking the low-side DMOS as an example (Figure 1), it is used to detect the temperature of the DMOS. Vref is the bandgap reference to generate a temperature-insensitive level. The negative temperature characteristic of the PN junction voltage is used to realize the alarm mechanism at a specific temperature. When it rises, the voltage of VBE drops to Vref, which is the over-temperature detection point (Figure 2). The PN junction of the over-temperature detection circuit is placed on the side of the DMOS of the power device. The temperature rises. Introducing the DTI process into the DMOS process, the existing DTI process isolation layer implementation, one is air isolation, directly digging deep grooves for physical isolation, and the other is to make an oxide layer in the groove first, and then fill the conductive layer, no matter what kind of structure , DTI is thermal isolation, the heat of the power device is confined in the DTI of the DMOS itself, so that the heat energy cannot be conducted to the detection PN junction outside the DTI, and thus the temperature rise of the DMOS cannot be detected. detection circuit to solve the above problems.
发明内容SUMMARY OF THE INVENTION
本发明的主要目的是为了提供一种功率器件的过温检测电路(图3),三极管的PN结发射极与场效应管共享一个PGND,相对应的比较电平也对应到同一个电位,场效应管的热能可以通过PGND的金属连线绕过DTI传到三极管的发射极,其次PGND与三极管的B,C端节点在NPN的版图上形成类似于插指电容结构,用于加热NPN的B,C端金属连线,从而加热NPN管,所有以上金属层的面积需要完全覆盖NPN管以实现最佳的热传导(图4,左边为DMOS,右边为NPN)。The main purpose of the present invention is to provide an over-temperature detection circuit of a power device (Fig. 3). The PN junction emitter of the triode shares a PGND with the field effect transistor, and the corresponding comparison level also corresponds to the same potential. The heat energy of the effect tube can be passed to the emitter of the triode through the metal connection of the PGND bypassing the DTI. Next, the PGND and the B and C terminal nodes of the triode form a structure similar to the finger capacitor on the layout of the NPN, which is used to heat the B of the NPN. , C-terminal metal connection, thereby heating the NPN tube, the area of all the above metal layers needs to completely cover the NPN tube to achieve the best heat conduction (Figure 4, DMOS on the left, NPN on the right).
本发明的目的可以通过采用如下技术方案达到:Object of the present invention can be achieved by adopting the following technical solutions:
一种功率器件的过温检测电路,包括场效应管、三极管、电阻R0和信号放大器,所述场效应管的漏极外接负载,所述场效应管的源极接地,所述场效应管的栅极接驱动电路,所述场效应管的源极电性连接所述三极管的发射极,所述三极管的集电极外接偏置电流,所述三极管的基极连接发射极以及比较器的正极,所述比较器的负极连接电阻R0的一端,电阻R0的另一端连接三极管的发射极,所述电阻R0的一端连接偏置电流,且所述比较器输出端报警信号OT(Over Temperature,过温)。An over-temperature detection circuit of a power device includes a field effect transistor, a triode, a resistor R0 and a signal amplifier, the drain of the field effect transistor is connected to a load, the source of the field effect transistor is grounded, and the The gate is connected to the drive circuit, the source of the FET is electrically connected to the emitter of the triode, the collector of the triode is connected to an external bias current, the base of the triode is connected to the emitter and the positive electrode of the comparator, The negative pole of the comparator is connected to one end of the resistor R0, the other end of the resistor R0 is connected to the emitter of the triode, one end of the resistor R0 is connected to the bias current, and the output end of the comparator is an alarm signal OT (Over Temperature, over temperature) ).
优选的,所述场效应管的外侧生产通过将DTI(Deep Trench Isolation,深槽隔离)工艺引入到BCD(双极型、CMOS和DMOS)工艺中。Preferably, the outer side of the field effect transistor is produced by introducing a DTI (Deep Trench Isolation, deep trench isolation) process into a BCD (bipolar, CMOS and DMOS) process.
优选的,在DTI工艺引入到BCD工艺中时,避免了DTI的热隔离作用使热能能传导到外部检测PN结上。Preferably, when the DTI process is introduced into the BCD process, the thermal isolation effect of the DTI is avoided so that the thermal energy can be conducted to the external detection PN junction.
优选的,三极管中PN结的发射极与场效应管共享一个PGND,相对应的比较电平也对应到同一个电位。Preferably, the emitter of the PN junction in the triode shares a PGND with the field effect transistor, and the corresponding comparison level also corresponds to the same potential.
优选的,场效应管的热能通过PGND的金属连线绕过DTI传到到三极管的发射极。Preferably, the heat energy of the FET is transmitted to the emitter of the triode through the metal connection of PGND, bypassing the DTI.
优选的,PGND与三极管的B,C端节点在NPN的版图上形成类似于插指电容结构。Preferably, the PGND and the B and C terminal nodes of the triode form a structure similar to an interdigital capacitor on the layout of the NPN.
优选的,金属层的面积完全覆盖NPN管。Preferably, the area of the metal layer completely covers the NPN tube.
优选的,PGND与三极管的B,C端节点在NPN的版图上形成类似于插指电容结构。Preferably, the PGND and the B and C terminal nodes of the triode form a structure similar to an interdigital capacitor on the layout of the NPN.
本发明的有益技术效果:Beneficial technical effects of the present invention:
本发明提供的一种功率器件的过温检测电路,三极管的PN结发射极与场效应管共享一个PGND,相对应的比较电平也对应到同一个电位,场效应管的热能可以通过PGND的金属连线绕过DTI传到三极管的发射极,其次PGND与三极管的B,C端节点在NPN的版图上形成类似于插指电容结构,用于加热NPN的B,C端金属连线,从而加热NPN管,所有以上金属层的面积需要完全覆盖NPN管以实现最佳的热传导(图4,左边为DMOS,右边为NPN)。In the over-temperature detection circuit of a power device provided by the present invention, the PN junction emitter of the triode and the field effect transistor share a PGND, the corresponding comparison level also corresponds to the same potential, and the heat energy of the field effect transistor can pass through the PGND. The metal connection bypasses the DTI and is transmitted to the emitter of the triode. Next, the PGND and the B and C terminal nodes of the triode form a structure similar to a finger capacitor on the layout of the NPN, which is used to heat the B and C terminals of the NPN. The metal connection, thus To heat the NPN tube, the area of all the above metal layers needs to completely cover the NPN tube for optimal heat conduction (Figure 4, DMOS on the left, NPN on the right).
附图说明Description of drawings
图1为现有技术中的过温检测电路电路图;1 is a circuit diagram of an over-temperature detection circuit in the prior art;
图2为现有技术中的过温检测电路版图;2 is a layout of an over-temperature detection circuit in the prior art;
图3为按照本发明的一种功率器件的过温检测电路的一优选实施例的过温检测电路图;3 is an over-temperature detection circuit diagram of a preferred embodiment of an over-temperature detection circuit of a power device according to the present invention;
图4为按照本发明的一种功率器件的过温检测电路的一优选实施例的导热版图。FIG. 4 is a thermal conduction layout of a preferred embodiment of an over-temperature detection circuit of a power device according to the present invention.
具体实施方式Detailed ways
为使本领域技术人员更加清楚和明确本发明的技术方案,下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。In order to make the technical solution of the present invention clearer and clearer to those skilled in the art, the present invention will be described in further detail below with reference to the embodiments and accompanying drawings, but the embodiments of the present invention are not limited thereto.
如图3-4所示,本实施例提供的,一种功率器件的过温检测电路,包括场效应管、三极管、电阻R0和信号放大器,所述场效应管的漏极外接负载,所述场效应管的源极接地,所述场效应管的栅极接驱动电路,所述场效应管的源极电性连接所述三极管的发射极,所述三极管的集电极外接偏置电流,所述三极管的基极连接发射极以及比较器的正极,所述比较器的负极连接电阻R0的一端,电阻R0的另一端连接三极管的发射极,所述电阻R0的一端连接偏置电流,且所述比较器输出端报警信号OT(Over Temperature,过温)。As shown in Figures 3-4, this embodiment provides an over-temperature detection circuit for a power device, including a field effect transistor, a triode, a resistor R0, and a signal amplifier. The drain of the field effect transistor is connected to an external load, and the The source of the FET is grounded, the gate of the FET is connected to the drive circuit, the source of the FET is electrically connected to the emitter of the triode, and the collector of the triode is connected to an external bias current, so the The base of the triode is connected to the emitter and the positive electrode of the comparator, the negative electrode of the comparator is connected to one end of the resistor R0, the other end of the resistor R0 is connected to the emitter of the triode, and one end of the resistor R0 is connected to the bias current, and all The comparator output terminal alarm signal OT (Over Temperature, over temperature).
三极管的PN结发射极与场效应管共享一个PGND,相对应的比较电平也对应到同一个电位,场效应管的热能可以通过PGND的金属连线绕过DTI传到三极管的发射极,其次PGND与三极管的B,C端节点在NPN的版图上形成类似于插指电容结构,用于加热NPN的B,C端金属连线,从而加热NPN管,所有以上金属层的面积需要完全覆盖NPN管以实现最佳的热传导。The PN junction emitter of the triode shares a PGND with the FET, and the corresponding comparison level also corresponds to the same potential. The thermal energy of the FET can bypass the DTI through the metal connection of PGND and pass to the emitter of the triode, followed by PGND and the B and C terminal nodes of the triode form a structure similar to a finger capacitor on the layout of the NPN, which is used to heat the B and C terminals of the NPN metal connection, thereby heating the NPN tube. The area of all the above metal layers needs to completely cover the NPN tube for optimum heat transfer.
在本实施例中,所述场效应管的外侧生产通过将DTI工艺引入到BCD工艺中。In this embodiment, the outer side of the FET is produced by introducing the DTI process into the BCD process.
在本实施例中,在DTI工艺引入到BCD工艺中时,避免了DTI的热隔离作用使热能能传导到外部检测PN结上。In this embodiment, when the DTI process is introduced into the BCD process, the thermal isolation effect of the DTI is avoided so that the thermal energy can be conducted to the external detection PN junction.
在本实施例中,三极管中PN结的发射极与场效应管共享一个PGND,相对应的比较电平也对应到同一个电位。In this embodiment, the emitter of the PN junction in the triode shares a PGND with the field effect transistor, and the corresponding comparison level also corresponds to the same potential.
在本实施例中,场效应管的热能通过PGND的金属连线绕过DTI传到到三极管的发射极。In this embodiment, the heat energy of the FET is transmitted to the emitter of the triode through the metal connection of PGND, bypassing the DTI.
在本实施例中,PGND与三极管的B,C端节点在NPN的版图上形成类似于插指电容结构。In this embodiment, the PGND and the B and C terminal nodes of the triode form a structure similar to an interdigital capacitor on the layout of the NPN.
在本实施例中,金属层的面积完全覆盖NPN管。In this embodiment, the area of the metal layer completely covers the NPN tube.
在本实施例中,PGND与三极管的B,C端节点在NPN的版图上形成类似于插指电容结构。In this embodiment, the PGND and the B and C terminal nodes of the triode form a structure similar to an interdigital capacitor on the layout of the NPN.
以上所述,仅为本发明进一步的实施例,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明所公开的范围内,根据本发明的技术方案及其构思加以等同替换或改变,都属于本发明的保护范围。The above are only further embodiments of the present invention, but the protection scope of the present invention is not limited thereto. Equivalent replacements or changes to the concept all belong to the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010433667.6A CN111721436B (en) | 2020-05-21 | 2020-05-21 | Over-temperature detection circuit of power device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010433667.6A CN111721436B (en) | 2020-05-21 | 2020-05-21 | Over-temperature detection circuit of power device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111721436A true CN111721436A (en) | 2020-09-29 |
CN111721436B CN111721436B (en) | 2021-11-23 |
Family
ID=72564880
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010433667.6A Active CN111721436B (en) | 2020-05-21 | 2020-05-21 | Over-temperature detection circuit of power device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111721436B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102394237A (en) * | 2011-12-06 | 2012-03-28 | 电子科技大学 | Composite VDMOS device possessing temperature sampling and over-temperature protection function |
CN104362595A (en) * | 2014-11-10 | 2015-02-18 | 深圳市卓能新能源科技有限公司 | Battery pack power supply circuit capable of achieving over-temperature protection |
US20150325694A1 (en) * | 2014-05-12 | 2015-11-12 | Macronix International Co., Ltd. | Semiconductor device, method of manufacturing the same and method of operating the same |
CN109638774A (en) * | 2018-12-24 | 2019-04-16 | 中国电子科技集团公司第五十八研究所 | A kind of thermal-shutdown circuit |
-
2020
- 2020-05-21 CN CN202010433667.6A patent/CN111721436B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102394237A (en) * | 2011-12-06 | 2012-03-28 | 电子科技大学 | Composite VDMOS device possessing temperature sampling and over-temperature protection function |
US20150325694A1 (en) * | 2014-05-12 | 2015-11-12 | Macronix International Co., Ltd. | Semiconductor device, method of manufacturing the same and method of operating the same |
CN104362595A (en) * | 2014-11-10 | 2015-02-18 | 深圳市卓能新能源科技有限公司 | Battery pack power supply circuit capable of achieving over-temperature protection |
CN109638774A (en) * | 2018-12-24 | 2019-04-16 | 中国电子科技集团公司第五十八研究所 | A kind of thermal-shutdown circuit |
Non-Patent Citations (2)
Title |
---|
MOHAMMAD A. HUQUE 等: "A 200 °C Universal Gate Driver Integrated Circuit for Extreme Environment Applications", 《IEEE》 * |
T. VANHOUCKE: "A new analytical model for the thermal resistance of deep-trench bipolar transistors", 《IEEE》 * |
Also Published As
Publication number | Publication date |
---|---|
CN111721436B (en) | 2021-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2521783B2 (en) | Semiconductor device and manufacturing method thereof | |
CN101943613B (en) | Sub-threshold CMOS temperature detector | |
KR100471521B1 (en) | Power semiconductor devices with a temperature sensor circuit | |
US8780517B2 (en) | Semiconductor apparatus and temperature detection circuit | |
CN102646962B (en) | An over-temperature protection circuit for power devices | |
CN104596658B (en) | Power device and intelligent power module | |
JPH01122170A (en) | Vertical type mosfet having protective function | |
CN108646812A (en) | A kind of high accuracy temperature control circuit with DAC amplifying circuits | |
US20230198514A1 (en) | Electronic device | |
CN111721436A (en) | An over-temperature detection circuit of a power device | |
CN206099304U (en) | Over-temperature protection circuit applied in thick film hybrid integration process | |
CN104596655B (en) | SPM, power device and its temperature sensing circuit and method | |
CN102169618A (en) | Temperature control alarm circuit | |
EP0488088B1 (en) | Overheating detection circuit for detecting overheating of a power device | |
JPS5947467B2 (en) | Semiconductor element for temperature sensor | |
CN112071914B (en) | Semiconductor device with MOS unit and voltage sensing and control unit | |
JPH05129598A (en) | Power device overheat detection circuit | |
CN106647917B (en) | A kind of temperature hysteresis for smart power chip protects circuit | |
CN219304805U (en) | Digital power amplifier capable of rapidly detecting temperature | |
CN222127706U (en) | Supercapacitor discharge device and wind turbine generator set | |
JP3198820B2 (en) | Temperature detector | |
JPS59189665A (en) | Semiconductor device | |
JPH01102963A (en) | semiconductor equipment | |
CN208939905U (en) | A kind of radio-frequency power amplifier | |
CN210297668U (en) | An analog switch circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |