CN111712182B - 用于激光扫描系统的系统反相控制器 - Google Patents

用于激光扫描系统的系统反相控制器 Download PDF

Info

Publication number
CN111712182B
CN111712182B CN201980012374.6A CN201980012374A CN111712182B CN 111712182 B CN111712182 B CN 111712182B CN 201980012374 A CN201980012374 A CN 201980012374A CN 111712182 B CN111712182 B CN 111712182B
Authority
CN
China
Prior art keywords
galvanometer
transfer function
control signal
sic
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980012374.6A
Other languages
English (en)
Other versions
CN111712182A (zh
Inventor
J·K·博吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcon Inc
Original Assignee
Alcon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcon Inc filed Critical Alcon Inc
Publication of CN111712182A publication Critical patent/CN111712182A/zh
Application granted granted Critical
Publication of CN111712182B publication Critical patent/CN111712182B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0008Apparatus for testing the eyes; Instruments for examining the eyes provided with illuminating means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/0016Operational features thereof
    • A61B3/0025Operational features thereof characterised by electronic signal processing, e.g. eye models
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/105Scanning systems with one or more pivoting mirrors or galvano-mirrors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00844Feedback systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F9/00Methods or devices for treatment of the eyes; Devices for putting-in contact lenses; Devices to correct squinting; Apparatus to guide the blind; Protective devices for the eyes, carried on the body or in the hand
    • A61F9/007Methods or devices for eye surgery
    • A61F9/008Methods or devices for eye surgery using laser
    • A61F2009/00844Feedback systems
    • A61F2009/00851Optical coherence topography [OCT]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Signal Processing (AREA)
  • Laser Surgery Devices (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

在某些实施例中,一种眼科诊断系统(100)包括激光源(140)、振镜(130)和联接到所述振镜(130)的系统反相控制器(SIC)(120)。所述振镜(130)包括一个或多个光学元件(134,136,138,139A,139B,139C)、以及一个或多个振镜控制器(132),所述一个或多个振镜控制器被配置为基于振镜控制信号操纵所述一个或多个光学元件(134,136,138,139A,139B,139C)的取向,以跨眼科靶部(150)扫描所述激光源(140)的输出。所述系统反相控制器(SIC)(120)被配置为基于所述振镜的估计的传递函数修改输入的振镜控制信号,并且向所述振镜提供已修改的振镜控制信号。

Description

用于激光扫描系统的系统反相控制器
技术领域
本披露涉及激光扫描系统,更具体地涉及用于眼科诊断装置的激光扫描系统的系统反相控制器。
背景技术
光学相干断层扫描(OCT)是在包括眼科学的生物医学领域中广泛采用的成像技术。OCT系统通过测量反射光的回波时间延迟而在半透明样品(比如生物组织)中进行高分辨率的横断面成像。OCT可以用于眼科诊断系统以协助眼科医生精确切割和/或移除眼睛组织,比如玻璃体液。OCT系统使用激光扫描系统以跨眼睛扫描OCT成像光束。
发明内容
在某些实施例中,眼科诊断系统包括激光源、振镜以及联接到所述振镜的系统反相控制器(SIC)。所述振镜包括一个或多个光学元件以及一个或多个振镜控制器,所述一个或多个振镜控制器被配置为基于振镜控制信号操纵所述一个或多个光学元件的取向以跨眼科靶部扫描激光源的输出。所述系统反相控制器(SIC)被配置为基于所述振镜的估计的传递函数修改输入的振镜控制信号,并且向所述振镜提供已修改的振镜控制信号。
在某些实施例中,扫描眼科诊断系统的激光的方法包括在系统反相控制器(SIC)处接收振镜控制信号、以及由所述SIC基于振镜控制器的估计的传递函数修改所述振镜控制信号。所述方法还包括向振镜提供所述已修改的振镜控制信号、以及由所述振镜基于所述已修改的振镜控制信号操纵一个或多个光学元件以扫描激光。
在某些实施例中,配置眼科诊断系统的系统反相控制器的方法包括由系统反相控制器(SIC)基于所述SIC的初始参数集合向振镜控制器提供命令信号,所述SIC的参数与所述振镜控制器的估计的传递函数相关联。所述方法还包括在所述SIC处从所述振镜控制器接收反馈信号、计算所述初始参数集合的下降梯度、以及基于所述下降梯度修改所述参数集合。所述方法进一步包括确定所述已修改的参数集合相对于所述初始参数集合的变化量、以及响应于确定所述变化量小于阈值来将所述已修改的参数集合存储在所述SIC处。
在一些情况下,某些实施例可以提供一个或多个技术优点。例如,可以提高横向激光扫描的准确度(比如在眼科诊断装置中)。可以相应地改善眼科手术(比如OCT成像或与白内障相关的外科手术)。
鉴于本附图和说明书,这些和其他优点对于本领域技术人员将是显而易见的。
附图说明
为了更彻底地理解本披露及其优点,现在参考结合附图进行的以下说明,在这些附图中相似的附图标记指示相似的特征,并且在附图中:
图1是示例性眼科诊断系统的图。
图2A是示出了眼科诊断装置的理想激光扫描图案和实际激光扫描图案的图。
图2B是示出了图2A的示例性实际激光扫描图案相对于理想扫描图案的示例性误差值的图。
图3A是振镜的示例性传递函数的图。
图3B是示出了在未使用系统反相控制器(SIC)的情况下具有图3A所示的传递函数的相关联振镜的示例性误差值的图。
图3C是示出了在使用系统反相控制器(SIC)的情况下具有图3A所示的传递函数的相关联振镜的示例性误差值的图。
图4是用于基于使用系统反相控制器(SIC)修改的振镜控制信号扫描激光的示例性过程的流程图。
图5是用于配置在激光扫描系统中使用的系统反相控制器(SIC)的示例性过程的流程图。
本领域的技术人员将理解,下文描述的附图仅用于说明目的,而并不旨在限制申请人的披露的范围。
具体实施方式
出于促进对本披露的原理的理解的目的,现在将参考附图中展示的实施例,并且将使用特定语言来描述这些实施例。然而,应当理解,并非旨在限制本披露的范围。可以设想对所描述的系统、装置和方法的改变和进一步修改,以及对本披露的原理的任何进一步应用,正如本披露所涉及的领域内的技术人员通常会想到的。特别地,可以设想关于一个实施例描述的系统、装置和/或方法可以与关于本披露的其他实施例描述的特征、部件和/或步骤组合。然而,为简洁起见,将不单独地描述这些组合的众多重复。为简单起见,在某些情况下,在整个附图中,使用相同的附图标记来指代相同或相似的部分。
图1是示例性眼科诊断系统100的图。示例性系统100包括控制系统110、系统反相控制器(SIC)120、振镜130和激光源140。在所示的示例中,眼科诊断系统100被配置为跨眼科靶部150扫描从激光源140输出的激光。眼科诊断系统可以是光学相干断层扫描(OCT)成像系统、基于激光的外科系统(例如,
Figure BDA0002622809860000031
Laser、/>
Figure BDA0002622809860000032
FS200或EX500,其全部由/>
Figure BDA0002622809860000033
制造),或用于确定眼科靶部150的测量值、对眼科靶部150执行外科手术或两者的装置。
示例性控制系统110生成控制信号,这些控制信号被发送到激光源140(例如,以控制激光源140的重复率或其他特性)或经由SIC 120发送到振镜130(例如,以控制来自激光源的激光跨眼科靶部150的扫描)。示例性控制系统110包括处理器112、存储器114和接口116。示例性处理器112执行指令,例如以基于数据输入来生成输出数据。这些指令可以包括存储在存储器中的程序、代码、脚本或其他类型的数据。另外地或替代性地,指令可以被编码为预编程的或可重新编程的逻辑电路、逻辑门、或其他类型的硬件或固件部件。处理器112可以是或包括通用微处理器,作为专用协处理器或另一种类型的数据处理设备。在一些情况下,处理器112可以被配置为执行或解释存储在存储器114中的软件、脚本、程序、函数、可执行文件或其他指令以生成用于眼科诊断系统100的控制信号。在一些情况下,处理器112包括多个处理器。
示例性存储器114包括一个或多个计算机可读介质。例如,存储器114可以包括易失性存储装置、非易失性存储装置或其组合。存储器114可以包括一个或多个只读存储器装置、随机存取存储器装置、缓冲存储器装置或这些和其他类型的存储器装置的组合。存储器114可以存储可由处理器112执行的指令。
示例性接口116提供控制系统110与一个或多个其他装置之间的通信。例如,接口116可以包括允许用户与控制系统110交互(比如通过键盘、鼠标、触摸屏等)的一个或多个硬件接口。作为另一个示例,接口116可以包括允许控制系统110与激光源140之间、与振镜130(经由SIC 120)之间或与两者之间的通信的网络接口(例如,无线接口或有线接口)。接口116可以包括另一种类型的接口。
示例性SIC 120从控制系统110接收振镜控制信号,基于振镜130的估计的传递函数(如下文进一步描述)修改振镜控制信号(例如,控制由振镜130比如以一定图案进行的跨眼科靶部150的激光扫描的信号),并且将已修改的振镜控制信号提供给振镜130以供执行。SIC120可以被实现为现场可编程门阵列(FPGA)或其他类型的可编程逻辑装置。
示例性振镜130包括振镜控制器132,该振镜控制器基于来自控制系统110的振镜控制信号(经由SIC 120)操纵一组光学元件(反射镜134、136和Z扫描仪138的透镜139),以扫描来自激光源140的激光。振镜控制器132可以被实现为FPGA装置,或将振镜控制信号转换为操纵光学元件以扫描激光的马达的电压的其他类型的可编程逻辑装置。例如,振镜控制器132可以基于振镜控制信号操纵反射镜134或反射镜136的取向,以分别在第一和第二(例如,水平(x)或竖直(y))方向上扫描激光。振镜控制器132还可以基于振镜控制信号操纵透镜139相对于彼此的位置,以在与第一方向和第二方向正交的第三方向(例如,z方向,其中反射镜134、136在x方向和y方向上扫描)上扫描激光。
示例性激光源140生成激光束以用于跨眼科靶部150进行扫描。在一些实施例中,激光源140是OCT引擎。例如,眼科诊断系统100可以是通过测量由激光源140透射并由眼科靶部150反射的光的回波时间延迟来对眼科靶部150的各方面(例如,眼科靶部150的角膜、前房、晶状体、或其他半透明体)进行成像的OCT系统。在一些实施例中,激光源140包括飞秒激光器。例如,在眼科诊断系统100是基于激光的外科系统的情况下,激光源140的飞秒激光器可以生成激光脉冲以用于在眼科靶部150(例如,在白内障外科手术期间为角膜或晶状体)中形成切口。
图2A是示出了眼科诊断装置的理想激光扫描图案202和实际激光扫描图案204的图。在所示的示例中,理想激光扫描图案202表示基于输入信号集合的激光束的预期路径,而实际激光扫描图案204表示激光器基于输入信号集合采取的实际路径。图2B是示出了图2A的示例性实际激光扫描图案204相对于理想扫描图案202的示例性误差值的图。具体地,图2B的图示出了在扫描图案的x方向(例如,图2A中的水平方向)上的误差值206、以及在扫描图案的y方向(例如,图2A中的竖直方向)上的误差值208。在图2B所示的示例中,误差值在+/-0.03光度之间。
如图2A至图2B所示,实际激光扫描图案204不同于理想激光扫描图案202。在所示的示例中,大多数误差朝扫描图案的边缘发生(例如,在光束改变方向时)。至少一部分这种差异是由具有特定传递函数的眼科诊断系统的振镜引起的,该传递函数作用于所述输入信号集合。在一些情况(比如图2A至图2B所示的情况)下,振镜的低通性质引起这种情况。例如,在方向快速改变的扫描图案202、204中的花瓣形的尖处,控制信号具有高频含量。因为振镜在将输入控制信号变换为光束位置时表现得像低通滤波器,所以输入控制信号的一部分高频含量丢失。因此,实际扫描图案204中的花瓣形的尖处的光束位置可能丢失信息,并且不再类似于理想扫描图案202。
图3A是振镜的示例性传递函数300的图。传递函数300可以表示根据输入的振镜控制信号的频率而变的振镜(例如,图1的振镜130)的响应。在所示的示例中,传递函数300是低通传递函数。然而,振镜的传递函数可能不同于图3A所示的传递函数。在一些情况下,可以在眼科诊断中实现/包含振镜之前确定振镜的传递函数,并且可以相应地对SIC进行编程以在眼科诊断装置中使用。在一些情况下,基于来自振镜的反馈信号(例如,振镜的输出信号,可以将其与由SIC发送到振镜的输入振镜控制信号进行比较)在SIC处确定振镜的传递函数。
在一些实施例中,可以使用数值逼近对振镜的传递函数进行建模,这可以开始于注意到可以通过了解传递函数和s域中的输入来计算系统的输出,如下所示:
y(t)=L-1[H(s)X(s)] 方程(1.1)
其中y(t)表示输出电压,X(s)表示输入电压x(t)的拉普拉斯域,并且H(s)表示振镜的传递函数。因为振镜可以被建模为一阶低通系统,所以我们可以使用原型传递函数,比如:
Figure BDA0002622809860000061
其中a表示极点位置,并且k表示振镜系统的总增益。然后可以将传递函数重写为幂级数:
Figure BDA0002622809860000062
可以通过乘以输入并进行拉普拉斯逆变换来确定输出:
Figure BDA0002622809860000063
Figure BDA0002622809860000071
Figure BDA0002622809860000072
从方程1.4c中可以看出一阶系统的效果,这可以被理解为从输入减去导数的某个部分。参考图2A中示出的示例性扫描图案,输入在花瓣形的尖处快速改变,因此与光束沿恒定方向上移动相比,导数项移除了更大部分的输出。
在一些实施例中,可以通过以相同的原型一阶传递函数开始来对传递函数进行建模:
Figure BDA0002622809860000073
将方程1.5作为其传递函数的微分方程可以由以下表示:
Figure BDA0002622809860000074
通过对该方程进行拉普拉斯逆变换,可以确定期望的方程。例如:
Figure BDA0002622809860000075
Figure BDA0002622809860000076
可以针对函数y(t)对它们进行数值积分:
yi+1=aΔt(kxi-y4)+y4. 方程(1.8)
其中a和k是以上针对振镜的一阶传递函数描述的参数,x4是振镜的输入(并因此是期望的输出),y4是SIC的输出,并且Δt是t=i和t=i+1之间的经过时间。由于方程1.8中没有涉及导数,因此可以使用任何输入信号。在一些情况下,方程1.8可以用作振镜的系统反相控制器的估计的传递函数。
为补偿振镜的传递函数,可以将具有逆传递函数的SIC插入信号链中(比如在振镜之前)。可以通过以下方程对系统的输出相应地建模:
y(t)=L-1{H(s)H-1(s)X(s)} 方程(2.1)
使用振镜的以上一阶逼近,逆传递函数可以是
Figure BDA0002622809860000077
实际上,SIC试图补偿受控制的振镜的不期望影响。例如,SIC可能以振镜移除信号导数的相同比例将信号导数添加回信号中,从而有效地仅将原始输入信号留在输出处(期望状况)。输出信号的拉普拉斯域表示然后变为:
Figure BDA0002622809860000081
Figure BDA0002622809860000082
其中对应的时域表示为:
Figure BDA0002622809860000083
图3B是示出了在未使用系统反相控制器(SIC)的情况下在具有图3A所示的传递函数的振镜上运行的扫描图案的示例误差值的图。在所示的示例中,x方向的误差值由302示出,y方向的误差值由304示出,并且由以下方程表示的L2标准误差值:
Figure BDA0002622809860000084
由306示出。图3B中示出的示例性误差值的范围在+/-80μm之间。
图3C是示出了在振镜之前使用系统反相控制器(SIC)(例如,如图1所示)的情况下在具有图3A所示的传递函数的振镜上运行的扫描图案的示例误差值的图。在所示的示例中,x方向的误差值由308示出,y方向的误差值由310示出,并且L2标准误差值由312示出。图3C中示出的示例性误差值的范围在+/-1.5μm之间,这是较图3B中示出的误差值的显著改善。
图4是用于基于使用系统反相控制器(SIC)修改的振镜控制信号扫描激光的示例性过程的流程图。示例性过程400中的操作可以由眼科诊断系统的部件(例如,图1的眼科诊断系统100的控制系统110、SIC 120或振镜130)执行。示例性过程400可以包括附加的或不同的操作,并且可以按所示顺序或按另一顺序执行这些操作。在某些情况下,图4中所示的操作中的一个或多个可以被实现为包括多个操作、子过程或其他类型例程的过程。在一些情况下,操作可以组合、按另一顺序执行、并行执行、迭代或以其他方式重复或以另一方式执行。
在402处,生成用于跨眼科靶部扫描激光的振镜控制信号。振镜控制信号可以从控制系统被接收并且可以以任何合适的方式格式化。在一些情况下,振镜控制信号可以是控制振镜并指示用于扫描激光的一个或多个光学元件的相对位置的输入电压信号。例如,参考图1中示出的示例,控制系统110可以提供电压信号,该电压信号控制反射镜134、136,Z扫描仪138的透镜139或两者的取向,以跨眼科靶部150扫描来自激光源140的激光。
在404处,基于振镜的估计的传递函数修改振镜控制信号。振镜控制信号可以由信号链中的在振镜之前的系统反相控制器(SIC)修改。例如,参考图1中示出的示例,SIC 120在信号链中处于控制系统110与振镜130之间,并且修改由控制系统110生成的振镜控制信号。在一些实施例中,估计的传递函数是一阶传递函数,并且可以等同于yi+1=aΔt(kxi-yi)+yi,其中a和k是一阶传递函数的参数,xi是振镜在时刻t=i处的输入信号,yi是振镜在时刻t=i处的输出,并且Δt是t=(i-1)与t=i之间的经过时间。在一些实施例中,SIC可以被配置为比如以下文结合图5所描述的方式基于估计的传递函数的参数的下降梯度修改振镜控制信号。
在406处,根据已修改的振镜控制信号扫描激光。激光可以由振镜的一个或多个光学元件扫描。例如,参考图1所示的示例,反射镜134、136,Z扫描仪138的透镜139或其组合的取向可以由来自SIC 120的已修改的振镜控制信号控制,以跨眼科靶部150扫描来自激光源140的激光。在一些实施例中,扫描图案可以类似于图2A的理想扫描图案202,误差减小。
图5是用于配置在激光扫描系统中使用的系统反相控制器(SIC)的示例性过程的流程图。示例性过程500中的操作可以由眼科诊断系统的部件(例如,图1的眼科诊断系统100的控制系统110、SIC 120或振镜130)执行。示例性过程500可以包括附加的或不同的操作,并且这些操作可以按所示顺序或按另一顺序执行。在某些情况下,图5中所示的操作中的一个或多个可以被实现为包括多个操作、子过程或其他类型例程的过程。在一些情况下,操作可以组合、按另一顺序执行、并行执行、迭代或以其他方式重复或以另一方式执行。
在502处,将命令信号发送到振镜。命令信号可以与上述振镜控制信号类似地格式化。例如,命令信号可以包括控制振镜并指示用于扫描激光的一个或多个光学元件的相对位置的输入电压信号。
在504处,从振镜接收反馈信号。反馈信号可以以任何合适的方式格式化。在一些情况下,反馈信号以与在502处发送的命令信号相同的方式格式化。例如,反馈信号可以包括基于502处发送的命令信号的来自振镜的输出信号。
在506处,计算下降梯度。这可以通过首先计算基线误差值完成:
Figure BDA0002622809860000101
因为这些项是向量,所以基线误差值等同于
Figure BDA0002622809860000102
由SIC实现的估计的传递函数的参数中的每一个变化(一个接一个地),并且相关联的误差项
Figure BDA0002622809860000103
可以根据每个第n个参数确定。在一些实施例中,估计的传递函数的参数包括上述值a,k。在一些实施例中,估计的传递函数的参数包括添加到上述传递函数的偏离值b。对于每个第n个参数,梯度值可以通过以下方程确定:
Figure BDA0002622809860000104
其中Δp表示第n个参数的变化。可以针对n个参数中的每一个重复该过程,其中每次重置参数(即,相对于初始参数集合,每一轮仅改变一个参数)。
在508处,修改系统反相控制器的参数。参数可以基于在506处确定的梯度值修改。例如,在参数由数组
Figure BDA0002622809860000105
(上述k和a具有x分量和y分量;在一些情况下,k和a也可以具有z分量)表示的情况下,可以在与梯度值相反的方向上修改参数,比如:
Figure BDA0002622809860000111
其中α表示常数并且
Figure BDA0002622809860000112
表示包括根据以上方程3.2确定的每个参数的梯度值。
在510处,确定参数的变化是否小于阈值。例如,可以将该值
Figure BDA0002622809860000113
与阈值误差值ε进行比较。如果该值/>
Figure BDA0002622809860000114
大于阈值误差值ε,则过程可以行进到502,并且可以重复该过程。可以迭代地重复这种过程,直到值/>
Figure BDA0002622809860000115
小于阈值误差值ε。如果值/>
Figure BDA0002622809860000116
小于阈值误差值ε,则新的参数值/>
Figure BDA0002622809860000117
)存储在512处。存储参数可以包括将参数存储在SIC处,使得在激光扫描过程(比如图4的过程400)的下一个迭代中使用新参数集合。
可以在数字电子电路或计算机软件、固件或硬件中实现本说明书中描述的主题和操作中的一些,包括本说明书中披露的结构及其结构等同物、或者它们中的一个或多个的组合。本说明书中描述的主题中的一些可以实现为被编码在计算机可读存储介质上的一个或多个计算机程序,即计算机程序指令的一个或多个模块,以由数据处理设备执行或控制其操作。计算机可读存储介质可以是或可以包括在计算机可读存储装置、计算机可读存储基板、随机或串行访问存储器阵列或装置、或它们中的一个或多个的组合中。而且,尽管计算机可读存储介质不是传播信号,但是计算机可读存储介质可以是以人工生成的传播信号编码的计算机程序指令的来源或目的地。计算机可读存储介质还可以是或包括在一个或多个单独的物理部件或介质(例如,多个CD、磁盘或其他存储装置)中。
本说明书中描述的一些操作可以实现为由数据处理设备对存储在一个或多个计算机可读存储装置上或从其他来源接收的数据执行的操作。术语“数据处理设备”涵盖用于处理数据的所有种类的设备、装置和机器,例如包括可编程处理器、计算机、片上系统、或前述中的多个或其组合。所述设备可以包括专用逻辑电路,例如FPGA(现场可编程门阵列)或ASIC(专用集成电路)。除了硬件之外,所述设备还可以包括为所讨论的计算机程序创建执行环境的代码,例如,构成处理器固件、协议栈、数据库管理系统、操作系统、跨平台运行时环境、虚拟机、或其中的一个或多个的组合的代码。
计算机系统可以包括单个计算装置或者彼此邻近或通常彼此远离地操作并且通常通过通信网络进行交互的多个计算机。通信网络的示例包括局域网(“LAN”)和广域网(“WAN”)、互联网(例如,因特网)、包括卫星链路的网络、以及对等网络(例如,自组对等网络)。所述计算机系统可以包括:一个或多个数据处理设备,所述一个或多个数据处理设备联接到存储可以由这些一个或多个数据处理设备执行的一个或多个计算机程序的计算机可读介质;以及一个或多个用于与其他计算机系统通信的接口。
计算机程序(又称为程序、软件、软件应用、脚本或代码)可以用任何形式的编程语言(包括编译或解释语言、声明性或过程语言)编写,并且可以按任何形式部署,包括作为独立程序或作为模块、部件、子例程、对象、或适合在计算环境中使用的其他单元。计算机程序可以但不必对应于文件系统中的文件。程序可以存储在保存其他程序或数据的文件的一部分中(例如,存储在标记语言文档中的一个或多个脚本)、专用于该程序的单个文件中、或多个协作文件(例如,存储一个或多个模块、子程序或部分代码的文件)中。可以将计算机程序部署为在一台计算机上或在位于一个站点或分布在多个站点上并通过通信网络互连的多台计算机上执行。
本披露的实施例提供了用于获得关于眼科靶部的诊断信息的系统和方法,所述系统和方法可以克服常规系统和方法的局限性。将认识到,以上披露的特征和功能以及其他特征和功能、或其替代方案可以根据本披露按期望组合到许多其他不同的系统或应用中。还将认识到其中各种目前没有看到或未预期到的替代方案、修改、变化或改进可以后续由本领域的技术人员做出,这些替代方案、变化和改进还旨在被以下权利要求所涵盖。

Claims (8)

1.一种眼科诊断系统,包括:
激光源;
振镜,所述振镜包括:
一个或多个光学元件;以及
一个或多个振镜控制器,所述一个或多个振镜控制器被配置为基于振镜控制信号操纵所述一个或多个光学元件的取向,以跨眼科靶部扫描来自所述激光源的激光;以及
联接到所述振镜的系统反相控制器SIC,所述SIC被配置为基于所述振镜的估计的传递函数修改振镜控制信号,并且向所述振镜提供已修改的振镜控制信号,
所述SIC被进一步配置为从所述振镜接收反馈信号,并且基于所述反馈信号修改所述振镜控制信号,
所述SIC被配置为基于所述估计的传递函数的参数的下降梯度修改所述振镜控制信号,
所述估计的传递函数是一阶传递函数,并且
所述估计的传递函数等同于yi+1=aΔt(kxi-yi)+yi,其中,a和k是所述一阶传递函数的参数,xi是所述振镜在时刻t=i处的输入信号,yi是所述振镜在时刻t=i处的输出,并且Δt是t=(i-1)与t=i之间的经过时间。
2.如权利要求1所述的系统,其中,所述一个或多个光学元件包括一组反射镜,所述反射镜被配置为在第一方向和第二方向上扫描来自所述激光源的激光。
3.如权利要求2所述的系统,其中,所述一个或多个光学元件包括一组透镜,所述透镜被配置为在与所述第一方向和所述第二方向正交的第三方向上扫描来自所述激光源的激光。
4.如权利要求1所述的系统,其中,所述激光源包括光学相干断层扫描(OCT)引擎。
5.如权利要求1所述的系统,其中,所述激光源包括飞秒激光器。
6.一种扫描眼科诊断系统的激光的方法,包括:
在系统反相控制器SIC处接收振镜控制信号;
由所述SIC基于振镜控制器的估计的传递函数修改所述振镜控制信号;
向振镜提供已修改的振镜控制信号;
由所述振镜基于所述已修改的振镜控制信号操纵一个或多个光学元件以扫描激光;以及
在所述SIC处从所述振镜接收反馈信号,其中,修改所述振镜控制信号是基于所述反馈信号,
其中,修改所述振镜控制信号是基于所述估计的传递函数的参数的下降梯度,
所述估计的传递函数是一阶传递函数,并且
所述估计的传递函数等同于yi+1=aΔt(kxi-yi)+yi,其中,a和k是所述一阶传递函数的参数,xi是所述振镜在时刻t=i处的输入信号,yi是所述振镜在时刻t=i处的输出,并且Δt是t=(i-1)与t=i之间的经过时间。
7.如权利要求6所述的方法,其中,操纵所述一个或多个光学元件以扫描所述激光包括操纵所述振镜中的一组反射镜的取向以在第一方向和第二方向上扫描所述激光。
8.如权利要求7所述的方法,其中,操纵所述一个或多个光学元件以扫描所述激光包括操纵一个或多个透镜的位置以在与所述第一方向和所述第二方向正交的第三方向上扫描所述激光。
CN201980012374.6A 2018-02-09 2019-02-04 用于激光扫描系统的系统反相控制器 Active CN111712182B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862628620P 2018-02-09 2018-02-09
US62/628,620 2018-02-09
PCT/IB2019/050869 WO2019155344A1 (en) 2018-02-09 2019-02-04 System inverting controller for laser scanning systems

Publications (2)

Publication Number Publication Date
CN111712182A CN111712182A (zh) 2020-09-25
CN111712182B true CN111712182B (zh) 2023-07-14

Family

ID=65685854

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980012374.6A Active CN111712182B (zh) 2018-02-09 2019-02-04 用于激光扫描系统的系统反相控制器

Country Status (7)

Country Link
US (1) US11134839B2 (zh)
EP (1) EP3749171A1 (zh)
JP (1) JP7295870B2 (zh)
CN (1) CN111712182B (zh)
AU (1) AU2019219490A1 (zh)
CA (1) CA3086974A1 (zh)
WO (1) WO2019155344A1 (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3904961A (en) * 1972-02-22 1975-09-09 Xerox Corp Dynamic linearizer for electromagnetically driven moving coil devices
JPH03204948A (ja) * 1990-01-04 1991-09-06 Shinkawa Ltd バンプ付け方法
US5051770A (en) * 1986-01-20 1991-09-24 Scanera S.C. Image processing device for controlling the transfer function of an optical system
CN2089788U (zh) * 1991-04-02 1991-12-04 中国科学院上海生理研究所 多功能运动图像发生器
JPH04299071A (ja) * 1991-03-28 1992-10-22 Kikusui Electron Corp 電源回路
US6120461A (en) * 1999-08-09 2000-09-19 The United States Of America As Represented By The Secretary Of The Army Apparatus for tracking the human eye with a retinal scanning display, and method thereof
CN101088058A (zh) * 2004-05-14 2007-12-12 电子科学工业公司 伺服机构控制系统的自适应命令滤波
CN101646382A (zh) * 2007-02-14 2010-02-10 眼科研究所有限公司 光学系统的表征
WO2012000922A2 (en) * 2010-06-28 2012-01-05 Novartis Ag New Use
CN103890633A (zh) * 2011-09-29 2014-06-25 Fei公司 显微镜装置
JP2015500530A (ja) * 2011-12-28 2015-01-05 インテル コーポレイション 複数車両監視システム
WO2015100422A1 (en) * 2013-12-27 2015-07-02 University Of Washington Through Its Center For Commercialization Adaptive control of a fiber scanner with piezoelectric sensing
WO2016148569A1 (en) * 2015-03-19 2016-09-22 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Optical coherence tomography method, system and computer program product therefor

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3422144A1 (de) * 1984-06-14 1985-12-19 Josef Prof. Dr. 6900 Heidelberg Bille Geraet zur darstellung flaechenhafter bereiche des menschlichen auges
US7404640B2 (en) * 2002-06-14 2008-07-29 Physical Sciences, Inc. Monitoring blood flow in the retina using a line-scanning laser ophthalmoscope
US7706863B2 (en) * 2004-01-21 2010-04-27 University Of Washington Methods for assessing a physiological state of a mammalian retina
WO2007043954A1 (en) * 2005-10-10 2007-04-19 Tobii Technology Ab Eye tracker having an extended span of operating distances
US8262646B2 (en) * 2006-01-20 2012-09-11 Lensar, Inc. System and method for providing the shaped structural weakening of the human lens with a laser
EP2097818A4 (en) * 2006-11-22 2014-01-29 Parkervision Inc MULTIDIMENSIONAL ERROR CORRECTION FOR COMMUNICATION SYSTEMS
JP5247095B2 (ja) 2007-09-18 2013-07-24 株式会社村田製作所 レーザ加工におけるレーザ照射位置の補正方法
JP5100412B2 (ja) * 2008-01-24 2012-12-19 キヤノン株式会社 焦点調節装置及びそれを用いた光学機器
US7988295B2 (en) * 2008-10-28 2011-08-02 Heidelberg Engineering Gmbh Laser control with phase plate feedback
DE102009041996A1 (de) * 2009-09-18 2011-03-24 Carl Zeiss Meditec Ag Ophthalmologisches Biometrie- oder Bilderzeugungssystem und Verfahren zur Erfassung und Auswertung von Messdaten
DE102009041995A1 (de) * 2009-09-18 2011-03-24 Carl Zeiss Meditec Ag Optische Ablenkeinheit für scannende, ophthalmologische Mess- und Therapiesysteme
JP2012050621A (ja) * 2010-08-31 2012-03-15 Canon Inc 撮影ユニット及びその制御方法
US20120184846A1 (en) * 2011-01-19 2012-07-19 Duke University Imaging and visualization systems, instruments, and methods using optical coherence tomography
CN104769481B (zh) 2012-10-12 2018-12-18 统雷有限公司 紧凑、低色散以及低像差自适应光学扫描系统
WO2014209987A1 (en) * 2013-06-26 2014-12-31 Zygo Corporation Coherence scanning interferometry using phase shifted interferometrty signals
WO2017218738A1 (en) * 2016-06-15 2017-12-21 David Huang Systems and methods for automated widefield optical coherence tomography angiography
RU2022103876A (ru) * 2017-03-31 2022-03-29 ЭннМари ХИПСЛЕЙ Системы и способы для лазерных хирургических и терапевтических лечений глаз

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3904961A (en) * 1972-02-22 1975-09-09 Xerox Corp Dynamic linearizer for electromagnetically driven moving coil devices
US5051770A (en) * 1986-01-20 1991-09-24 Scanera S.C. Image processing device for controlling the transfer function of an optical system
JPH03204948A (ja) * 1990-01-04 1991-09-06 Shinkawa Ltd バンプ付け方法
JPH04299071A (ja) * 1991-03-28 1992-10-22 Kikusui Electron Corp 電源回路
CN2089788U (zh) * 1991-04-02 1991-12-04 中国科学院上海生理研究所 多功能运动图像发生器
US6120461A (en) * 1999-08-09 2000-09-19 The United States Of America As Represented By The Secretary Of The Army Apparatus for tracking the human eye with a retinal scanning display, and method thereof
CN101088058A (zh) * 2004-05-14 2007-12-12 电子科学工业公司 伺服机构控制系统的自适应命令滤波
CN101646382A (zh) * 2007-02-14 2010-02-10 眼科研究所有限公司 光学系统的表征
WO2012000922A2 (en) * 2010-06-28 2012-01-05 Novartis Ag New Use
CN103890633A (zh) * 2011-09-29 2014-06-25 Fei公司 显微镜装置
JP2015500530A (ja) * 2011-12-28 2015-01-05 インテル コーポレイション 複数車両監視システム
WO2015100422A1 (en) * 2013-12-27 2015-07-02 University Of Washington Through Its Center For Commercialization Adaptive control of a fiber scanner with piezoelectric sensing
WO2016148569A1 (en) * 2015-03-19 2016-09-22 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Optical coherence tomography method, system and computer program product therefor

Also Published As

Publication number Publication date
US11134839B2 (en) 2021-10-05
CN111712182A (zh) 2020-09-25
AU2019219490A1 (en) 2020-07-02
CA3086974A1 (en) 2019-08-15
JP7295870B2 (ja) 2023-06-21
WO2019155344A1 (en) 2019-08-15
JP2021512664A (ja) 2021-05-20
EP3749171A1 (en) 2020-12-16
US20190246897A1 (en) 2019-08-15

Similar Documents

Publication Publication Date Title
JP7385558B2 (ja) カスタマイズされた眼科手術プロファイル
JP7127171B2 (ja) 自律走行シミュレーションシーンにおける障害物の模擬方法及び装置
Hongler et al. The resonant retina: exploiting vibration noise to optimally detect edges in an image
JP6897360B2 (ja) 制御装置、制御プログラムおよび制御システム
CN111712182B (zh) 用于激光扫描系统的系统反相控制器
Roquette et al. On an analytical, spatially-varying, point-spread-function
EP4285386A1 (de) Theorie-motivierte domänenkontrolle für ophthalmologische machine-learning-basierte vorhersagemethode
JP2009134751A (ja) 物理的システムにおいて入力信号を発生する方法及び装置
TW202121477A (zh) 帶電粒子線裝置及帶電粒子線檢查系統
CN114254430A (zh) 处理与技术系统方面的仿真模型关联的数据的方法和设备
CN107567670A (zh) 使光频梳稳定
US11653830B2 (en) Multi-view ophthalmic diagnostic systems
Paplinski et al. Segmentation of a class of ophthalmological images using a directional variance operator and co-occurrence arrays
Zhornikova et al. Noise model estimation with application to gene expression
US20230384084A1 (en) Method and device for determining an optimized parameter set to perform a measurement
EP4252662A1 (en) Correction of intra-scan focal-spot displacement
AU2018352182B2 (en) Customized ophthalmic surgical profiles
JP7268731B2 (ja) 学習データ生成装置、学習装置、学習データ生成方法、及び学習データ生成プログラム
DE102017103732A1 (de) Hardwareüberwachungsvorrichtung, Laufzeitüberwachungsvorrichtung und entsprechende Verfahren
Torres et al. Challenges for the 28nm half node: Is the optical shrink dead?
CN114468975A (zh) 体积oct图像数据处理
CN117562657A (zh) 针对手术机器人的地图构建方法、装置和设备
EP3953900A1 (de) Verfahren und vorrichtung zum steuern mindestens einer aktorik
Preusser et al. Sensitivity Analysis
WO2022038314A1 (en) Biometric shape recognition

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant