CN111710647A - Process for electroplating thick copper film on two sides of window opening - Google Patents

Process for electroplating thick copper film on two sides of window opening Download PDF

Info

Publication number
CN111710647A
CN111710647A CN202010641706.1A CN202010641706A CN111710647A CN 111710647 A CN111710647 A CN 111710647A CN 202010641706 A CN202010641706 A CN 202010641706A CN 111710647 A CN111710647 A CN 111710647A
Authority
CN
China
Prior art keywords
wafer
layer
etching
copper
sides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010641706.1A
Other languages
Chinese (zh)
Other versions
CN111710647B (en
Inventor
严立巍
李景贤
陈政勋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaoxing Tongxincheng Integrated Circuit Co ltd
Original Assignee
Shaoxing Tongxincheng Integrated Circuit Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaoxing Tongxincheng Integrated Circuit Co ltd filed Critical Shaoxing Tongxincheng Integrated Circuit Co ltd
Priority to CN202010641706.1A priority Critical patent/CN111710647B/en
Publication of CN111710647A publication Critical patent/CN111710647A/en
Application granted granted Critical
Publication of CN111710647B publication Critical patent/CN111710647B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/6835Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3672Foil-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68327Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support used during dicing or grinding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2221/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof covered by H01L21/00
    • H01L2221/67Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere
    • H01L2221/683Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L2221/68304Apparatus for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components; Apparatus not specifically provided for elsewhere for supporting or gripping using temporarily an auxiliary support
    • H01L2221/68381Details of chemical or physical process used for separating the auxiliary support from a device or wafer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

The invention discloses a process for electroplating thick copper films on two sides of a window, belonging to the field of wafer processing, and comprising the following steps of S1: plating an adhesion layer, a barrier layer and a copper seed layer on the back of the wafer in sequence; s2: bonding the glass carrier plate; s3: grinding and etching the back of the wafer; s4: carrying out a manufacturing process; s5: plating Ti/Ni/Cu; s6: opening a window; s7: performing a yellow light process on the front surface of the wafer; s8: performing a yellow light process on the back surface of the wafer; s9: removing the photoresist layer after plating the thick film on both sides; s10: removing Ti/Ni/Cu on both sides by etching; s11: etching the silicon scribe line with SF6 plasma, stopping on the adhesive layer; s12: carrying out film deposition operation; s13: etching the silicon oxide or the silicon nitride to form a side wall; s14: cleaning and etching; s15: the wafer is attached to the blue film frame; s16: removing the glass carrier plate from the wafer; s17: cleaning the adhesive layer on the wafer; the wafer is bonded with the glass carrier plate to form an ultra-thin wafer, and a glass carrier plate window is formed at the contact point of the front surface of the wafer, so that the problem of electric leakage between thick-film copper and the packaging material is solved.

Description

Process for electroplating thick copper film on two sides of window opening
Technical Field
The invention relates to the field of wafer processing, in particular to a process for electroplating thick copper films on two sides of a window.
Background
In the design and structure of high power, high voltage/current semiconductor devices, it is very important to use the thick film copper heat Sink material (cu eat Sink), otherwise the device will be overheated to cause local damage and generate serious reliability problem, and the requirement of ultra-thin wafer for low resistance and high frequency operation is very important, how to combine the ultra-thin wafer and double-sided plating thick film copper heat Sink wire plus the structure and installation method of the protection of the cut surface sidewall are the core of the present invention. Disadvantages of the prior art: 1. if the thick film copper electroplating is carried out on the back surface of the whole ultrathin wafer, the problem of Crack is generated and warped due to large difference points of stress and thermal expansion coefficients Cu and Si; 2. the front side and the back side are simultaneously electroplated with thick Cu films, if the technology of windowing without a glass substrate cannot be implemented, and if the front side is implemented first, the problem of wafer stress can cause that the back side thick Cu film electroplating cannot be implemented; 3. the thick film Cu has great difficulty in the traditional cutting and plasma cutting process on the ultrathin wafer; 4. the bonding-breaking process of the cut double-sided thick-film Cu on the glass carrier is also very difficult, and the possibility of breaking the ultrathin wafer during cutting or transferring to the Dicing Frame is very high; 5. the current dicing technology cannot protect the sidewalls of the separated dies, and the reliability Problem (leakage current) of the current leakage is difficult to avoid during high power operation of the package and the thick film wire.
Disclosure of Invention
Aiming at the defects of the prior art, the invention aims to provide a process for plating thick copper films on both sides of a window, which enables a wafer to be bonded with a glass carrier plate and form an ultrathin wafer, forms a glass carrier plate window at the contact point of the front side of the wafer, can plate Ti/Ni/Cu on both sides respectively, can simultaneously form thick film CuECP on the front side and the back side of the wafer, and solves the problem of leakage between thick film copper and a packaging material by forming a spacer on the side wall of a cutting channel by using a low-temperature plasma chemical vapor deposition technology and phase etching.
The purpose of the invention can be realized by the following technical scheme:
a technology for double-sided electroplating of thick copper films for window opening comprises the following steps:
s1: after completing Contact and W-plug on the front surface of the wafer, sequentially plating an adhesion layer, a barrier layer and a copper seed layer on the back surface of the wafer;
s2: bonding the front surface of the wafer on a glass carrier plate, wherein the middle layer is an adhesive layer and a release layer;
s3: grinding and etching the back surface of the wafer to make the thickness of the wafer 30-150 pm;
s4: processing the wafer back side element;
s5: plating an adhesion layer, a barrier layer and a copper seed layer on the back of the wafer;
s6: opening a window in an I/O PAD W-Plug area of the front surface of the wafer corresponding to the glass carrier plate;
s7: performing a yellow light process on the front surface of the wafer, and determining the position of a thick copper mold on the front surface by using the pattern;
s8: performing a yellow light process on the back surface of the wafer, and protecting the cutting path area by using thick film photoresist;
s9: removing the light resistance layer after double-sided electroplating of the thick film Cu ECP;
s10: removing Ti/Ni/Cu on both sides by etching, and stopping etching on the surface of the wafer;
s11: etching silicon scribe lines on the back wafer by using thick film copper as a Hard Mask through SF6 plasma, stopping on the adhesive layer, and cleaning residues and polymers remained on the surface of the wafer after etching by using a hydroxylamine remover;
s12: performing PECVD on the scribe line to deposit a film, etching the back surface of the wafer and the inner side wall of the scribe line to a thickness of
Figure BDA0002571393220000021
A silicon oxide or silicon nitride protective layer;
s13: using fluorine-containing gas to perform plasma treatment and providing a bias voltage potential to etch silicon oxide or silicon nitride to form a side wall;
s14: cleaning residues and polymers remained on the surface of the wafer after etching by using a hydroxylamine remover;
s15: turning over the chip to make the back of the wafer attached to the blue film frame;
s16: the viscidity of the adhesive layer release layer is dissociated through ultraviolet irradiation or heat treatment or laser mode, and the glass carrier plate is removed from the wafer;
s17: the adhesive layer on the wafer is cleaned with an organic solvent to complete the die with copper heat spreader to complete the die on the dicing frame.
In a preferred embodiment of the present invention, in step S1, the adhesion layer is a titanium layer, the titanium layer has a thickness of 1 to 2 microns, the barrier layer is a nickel layer, and the nickel layer has a thickness of 1 to 2 microns.
As a preferred embodiment of the present invention, in step S4, the process includes a photo lithography process, an Implantation process, and an Annealing process.
The invention has the beneficial effects that:
1. the invention can safely and nondestructively cut the thin wafer with the copper heat dissipation junction structure;
2. the invention uses one-time yellow light and mask pattern process (photomask) to perform Cusink thick film plating and reverse plasma crystal grain cutting.
3. The invention can be used for electroplating the copper heat sink structure on two sides simultaneously, thereby improving the productivity.
4. The invention has the advantages that the two sides are simultaneously electroplated, so that the two sides of the stress in the process are balanced, and the problems of loss such as warping, fragment and the like are avoided
5. The protection of the side wall of the invention avoids current leakage (leakageProblem) of the packaging material and the thick film wire in high-power operation.
6. The invention can be matched with a copper clamping and welding packaging structure, greatly improves the heat dissipation capability and maintains the optimal performance of the element.
Drawings
In order to more clearly illustrate the embodiments or technical solutions in the prior art of the present invention, the drawings used in the description of the embodiments or prior art will be briefly described below, and it is obvious for those skilled in the art that other drawings can be obtained based on these drawings without creative efforts.
FIG. 1 is a schematic diagram of the formation in step S1 of the present invention process;
FIG. 2 is an enlarged view of FIG. 1 at A;
FIG. 3 is a schematic diagram of the formation in step S2 of the present invention process;
FIG. 4 is a schematic diagram of the formation in step S6 of the present invention process;
FIG. 5 is a schematic diagram of the formation in step S8 of the present invention process;
FIG. 6 is a schematic diagram of the formation in step S9 of the present invention process;
FIG. 7 is a schematic diagram of the formation in step S10 of the present invention process;
FIG. 8 is a schematic view of the formation in step S11 of the present invention process;
FIG. 9 is a schematic diagram of the formation in step S14 of the present invention process;
FIG. 10 is an enlarged view of FIG. 9 at B;
FIG. 11 is a schematic view of the formation in step S16 of the process of the present invention;
FIG. 12 is a schematic view of the formation in step S17 of the present invention process.
The reference numbers in the figures illustrate:
1 wafer, 2 ILD layers, 3W-plug, 4 adhesion layers, 5 barrier layers, 6 copper seed layers, 7 glass carrier plates, 8 adhesive layers, 9 thick copper films, 10 photoresist layers, 11 silicon oxide protective layers, 12 silicon nitride film layers and 13 cutting frames
Detailed Description
The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the drawings in the embodiments of the present invention, and it is obvious that the described embodiments are only a part of the embodiments of the present invention, and not all of the embodiments. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.
As shown in the figure, the process for electroplating thick copper films on both sides of the window opening comprises the following steps:
s1: after completing Contact and W-plug on the front surface of the wafer, sequentially plating an adhesion layer, a barrier layer and a copper seed layer on the back surface of the wafer;
s2: bonding the front surface of the wafer on a glass carrier plate, wherein the middle layer is an adhesive layer and a release layer;
s3: grinding and etching the back surface of the wafer to make the thickness of the wafer 30-150 pm;
s4: processing the wafer back side element;
s5: plating an adhesion layer, a barrier layer and a copper seed layer on the back of the wafer;
s6: opening a window in an I/O PAD W-Plug area of the front surface of the wafer corresponding to the glass carrier plate;
s7: performing a yellow light process on the front surface of the wafer, and determining the position of a thick copper mold on the front surface by using the pattern;
s8: performing a yellow light process on the back surface of the wafer, and protecting the cutting path area by using thick film photoresist;
s9: removing the light resistance layer after double-sided electroplating of the thick film Cu ECP;
s10: removing Ti/Ni/Cu on both sides by etching, and stopping etching on the surface of the wafer;
s11: etching silicon scribe lines on the back wafer by using thick film copper as a Hard Mask through SF6 plasma, stopping on the adhesive layer, and cleaning residues and polymers remained on the surface of the wafer after etching by using a hydroxylamine remover;
s12: performing PECVD on the scribe line to deposit a film, etching the back surface of the wafer and the inner side wall of the scribe line to a thickness of
Figure BDA0002571393220000051
A silicon oxide or silicon nitride protective layer;
s13: using fluorine-containing gas to perform plasma treatment and providing a bias voltage potential to etch silicon oxide or silicon nitride to form a side wall;
s14: cleaning residues and polymers remained on the surface of the wafer after etching by using a hydroxylamine remover;
s15: turning over the chip to make the back of the wafer attached to the blue film frame;
s16: the viscidity of the adhesive layer release layer is dissociated through ultraviolet irradiation or heat treatment or laser mode, and the glass carrier plate is removed from the wafer;
s17: the adhesive layer on the wafer is cleaned with an organic solvent to complete the die with copper heat spreader to complete the die on the dicing frame.
In step S1, the adhesion layer is a titanium layer having a thickness of 1 to 2 microns, the barrier layer is a nickel layer having a thickness of 1 to 2 microns.
In step S4, the process includes photo lithography process, Implantation process and Annealing process.
The scheme enables a wafer to be bonded with a glass carrier plate and form an ultrathin wafer, a glass carrier plate window is formed at a contact point (PAD I/O) on the front surface of the wafer, two surfaces of the wafer can be respectively plated with Ti/Ni/Cu (barrier/seed), wafers on two surfaces (front surface/back surface) can be simultaneously plated with thick film Cu ECP (electroplating), and the problem of leakage (leak) between thick film copper and a packaging material is solved by forming a spacer on the side wall of a cutting channel by utilizing a PECVD (Plasma enhanced chemical vapor deposition) technology at a low temperature (the temperature is less than 250 ℃) and phase (anistropic) etching (Plasma etching).
In the description herein, references to the description of "one embodiment," "an example," "a specific example" or the like are intended to mean that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the invention. In this specification, the schematic representations of the terms used above do not necessarily refer to the same embodiment or example. Furthermore, the particular features, structures, materials, or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.
The foregoing shows and describes the general principles, essential features, and advantages of the invention. It will be understood by those skilled in the art that the present invention is not limited to the embodiments described above, which are described in the specification and illustrated only to illustrate the principle of the present invention, but that various changes and modifications may be made therein without departing from the spirit and scope of the present invention, which fall within the scope of the invention as claimed.

Claims (3)

1. A technology for electroplating thick copper films on two sides of a window is characterized by comprising the following steps:
s1: after completing Contact and W-plug on the front surface of the wafer, sequentially plating an adhesion layer, a barrier layer and a copper seed layer on the back surface of the wafer;
s2: bonding the front surface of the wafer on a glass carrier plate, wherein the middle layer is an adhesive layer and a release layer;
s3: grinding and etching the back surface of the wafer to make the thickness of the wafer 30-150 pm;
s4: processing the wafer back side element;
s5: plating an adhesion layer, a barrier layer and a copper seed layer on the back of the wafer;
s6: opening a window in an I/O PAD W-Plug area of the front surface of the wafer corresponding to the glass carrier plate;
s7: performing a yellow light process on the front surface of the wafer, and determining the position of a thick copper mold on the front surface by using the pattern;
s8: performing a yellow light process on the back surface of the wafer, and protecting the cutting path area by using thick film photoresist;
s9: removing the light resistance layer after double-sided electroplating of the thick film Cu ECP;
s10: removing Ti/Ni/Cu on both sides by etching, and stopping etching on the surface of the wafer;
s11: etching silicon scribe lines on the back wafer by using thick film copper as a Hard Mask through SF6 plasma, stopping on the adhesive layer, and cleaning residues and polymers remained on the surface of the wafer after etching by using a hydroxylamine remover;
s12: performing PECVD on the scribe line to deposit a film, etching the back surface of the wafer and the inner side wall of the scribe line to a thickness of
Figure FDA0002571393210000011
A silicon oxide or silicon nitride protective layer;
s13: using fluorine-containing gas to perform plasma treatment and providing a bias voltage potential to etch silicon oxide or silicon nitride to form a side wall;
s14: cleaning residues and polymers remained on the surface of the wafer after etching by using a hydroxylamine remover;
s15: turning over the chip to make the back of the wafer attached to the blue film frame;
s16: the viscidity of the adhesive layer release layer is dissociated through ultraviolet irradiation or heat treatment or laser mode, and the glass carrier plate is removed from the wafer;
s17: the adhesive layer on the wafer is cleaned with an organic solvent to complete the die with copper heat spreader to complete the die on the dicing frame.
2. The process of claim 1, wherein the thick copper film is electroplated on both sides of the window opening: in step S1, the adhesion layer is a titanium layer having a thickness of 1 to 2 microns, the barrier layer is a nickel layer having a thickness of 1 to 2 microns.
3. The process of claim 1, wherein the thick copper film is electroplated on both sides of the window opening: in step S4, the process includes photo lithography process, Implantation process and Annealing process.
CN202010641706.1A 2020-07-06 2020-07-06 Process for electroplating thick copper film on two sides of window opening Active CN111710647B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010641706.1A CN111710647B (en) 2020-07-06 2020-07-06 Process for electroplating thick copper film on two sides of window opening

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010641706.1A CN111710647B (en) 2020-07-06 2020-07-06 Process for electroplating thick copper film on two sides of window opening

Publications (2)

Publication Number Publication Date
CN111710647A true CN111710647A (en) 2020-09-25
CN111710647B CN111710647B (en) 2022-03-15

Family

ID=72545256

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010641706.1A Active CN111710647B (en) 2020-07-06 2020-07-06 Process for electroplating thick copper film on two sides of window opening

Country Status (1)

Country Link
CN (1) CN111710647B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112234018A (en) * 2020-10-19 2021-01-15 绍兴同芯成集成电路有限公司 Ultrathin large-area tin ball printing process adopting polyimide

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049244A (en) * 1989-01-20 1991-09-17 Casio Computer Co., Ltd. Method of manufacturing double-sided wiring substrate
JP2000082695A (en) * 1998-05-14 2000-03-21 Sony Corp Plasma etching method and semiconductor device
US20050067188A1 (en) * 2003-09-25 2005-03-31 Tong Hsing Electric Industries Ltd. Thin film circuit integrating thick film resistors thereon and method of fabricating the same
CN102065648A (en) * 2009-11-17 2011-05-18 张�林 Double-sided circuit board and interconnection conduction method thereof
US20130149836A1 (en) * 2011-12-12 2013-06-13 Shanghai Hua Hong Nec Electronics Co., Ltd. Method of double-sided patterning

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049244A (en) * 1989-01-20 1991-09-17 Casio Computer Co., Ltd. Method of manufacturing double-sided wiring substrate
JP2000082695A (en) * 1998-05-14 2000-03-21 Sony Corp Plasma etching method and semiconductor device
US20050067188A1 (en) * 2003-09-25 2005-03-31 Tong Hsing Electric Industries Ltd. Thin film circuit integrating thick film resistors thereon and method of fabricating the same
CN102065648A (en) * 2009-11-17 2011-05-18 张�林 Double-sided circuit board and interconnection conduction method thereof
US20130149836A1 (en) * 2011-12-12 2013-06-13 Shanghai Hua Hong Nec Electronics Co., Ltd. Method of double-sided patterning

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112234018A (en) * 2020-10-19 2021-01-15 绍兴同芯成集成电路有限公司 Ultrathin large-area tin ball printing process adopting polyimide
CN112234018B (en) * 2020-10-19 2022-03-15 绍兴同芯成集成电路有限公司 Ultrathin large-area tin ball printing process adopting polyimide

Also Published As

Publication number Publication date
CN111710647B (en) 2022-03-15

Similar Documents

Publication Publication Date Title
US8969177B2 (en) Laser and plasma etch wafer dicing with a double sided UV-curable adhesive film
KR101192598B1 (en) Method for fabricating and separating semiconductor devices
CN111599754B (en) Ultrathin wafer processing technology
KR101766907B1 (en) Semiconductor-on-insulator with back side support layer
US9530930B2 (en) Method of fabricating semiconductor devices
JP2011258833A (en) Semiconductor device and method of manufacturing the same
WO2018173275A1 (en) Semiconductor device manufacturing method and semiconductor device
US10032670B2 (en) Plasma dicing of silicon carbide
CN111710647B (en) Process for electroplating thick copper film on two sides of window opening
CN111739854B (en) Thick copper film of two-sided electroplating of windowing
US6548386B1 (en) Method for forming and patterning film
CN111599753A (en) Thin wafer heat sink and manufacturing process thereof
WO2013011548A1 (en) Method for manufacturing semiconductor device
JP6028325B2 (en) Manufacturing method of semiconductor device
US20160211136A1 (en) Methods and structures for forming microstrip transmission lines on thin silicon carbide on insulator (sicoi) wafers
CN109065510B (en) Chip packaging structure and preparation method thereof
Mackenzie et al. Plasma-based die singulation processing technology
JP2002134451A (en) Manufacturing method of semiconductor device
JP2007266347A (en) Method of manufacturing semiconductor device
JPH0774328A (en) Soi substrate
EP4138116B1 (en) Method for manufacturing semiconductor element
KR102261836B1 (en) Method for manufacturing semiconductor device
KR100883864B1 (en) Method for fabricating of semiconductor device
WO2015040802A1 (en) Semiconductor device and method for manufacturing same
JP2008244056A (en) Manufacturing method of silicon carbide semiconductor device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant