CN111710534A - 一种柔性碳化硅/石墨烯/二氧化锰多孔纳米复合材料及非对称固态超级电容器的制备方法 - Google Patents

一种柔性碳化硅/石墨烯/二氧化锰多孔纳米复合材料及非对称固态超级电容器的制备方法 Download PDF

Info

Publication number
CN111710534A
CN111710534A CN202010586642.XA CN202010586642A CN111710534A CN 111710534 A CN111710534 A CN 111710534A CN 202010586642 A CN202010586642 A CN 202010586642A CN 111710534 A CN111710534 A CN 111710534A
Authority
CN
China
Prior art keywords
sic
flexible
silicon carbide
porous
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010586642.XA
Other languages
English (en)
Other versions
CN111710534B (zh
Inventor
陈友强
张新霓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University
Original Assignee
Qingdao University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University filed Critical Qingdao University
Priority to CN202010586642.XA priority Critical patent/CN111710534B/zh
Publication of CN111710534A publication Critical patent/CN111710534A/zh
Application granted granted Critical
Publication of CN111710534B publication Critical patent/CN111710534B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本发明公开了一种柔性碳化硅/石墨烯/二氧化锰多孔纳米复合材料及非对称固态超级电容器的制备方法。其中正极材料SiC/HG/h‑MnO2为具有一定有序孔径分布的多孔柔性三维网络自支撑结构,且具有优异的电子和离子导电性能。制备过程为:1、在柔性碳布或石墨烯膜上直接生长SiC及氮或铝掺杂的SiC纳米线阵列;2、通过电化学还原法在SiC纳米线阵列上直接生长多孔石墨烯,并冷冻干燥,然后采用电化学方法沉积二氧化锰多孔纳米片,实现高负载的SiC/HG/h‑MnO2的制备;3、由SiC/HG/h‑MnO2和SiC/GC正负极构成的非对称柔性固态超级电容器具有高功率和能量密度的特性,可望应用于纺织可穿戴电源。

Description

一种柔性碳化硅/石墨烯/二氧化锰多孔纳米复合材料及非对 称固态超级电容器的制备方法
技术领域
本发明涉及一种高负载柔性三维碳化硅纳米线阵列/多孔石墨烯/多孔二氧化锰纳米片复合电极材料的制备方法及非对称柔性全固态超级电容器的组装,属于新材料制备技术领域。
技术背景
随着电子元器件的微型化、集成化、柔性化和系统化的迅猛发展,柔性电子在各种移动产品、便携式产品以及航空航天、军工、医疗等领域展示出愈来愈广阔的应用前景。例如,在2019年,华为和三星公司先后宣布已经成功量产可弯曲的手机,由此可见柔性电子产品的时代距我们的生活越来越近。在2013年8月份,柔性技术已被外媒评选为2013年全球十大科技进展之一。作为便携式电子产品的核心部件,能否开发出具有较大的能量和功率密度并兼具优良柔韧性的能源供应系统,成为柔性电子产品广泛应用的最为关键因素之一。
柔性电子器件的迅猛发展对与之相匹配的能源存储系统的设计与制造提出了前所未有的挑战。超级电容器作为一种新颖的电化学存储器件,具有高能量密度、长循环寿命、充放电快速、可靠性高、工作温度范围宽等突出优点,主要是利用双电层和氧化还原赝电容存储电能,在消费类电子、汽车等领域有望得到大规模应用,从而可以有效实现电子器件在可穿戴化便携式电子产品领域中的应用。目前为止,多种可实现柔性化的储能器件都得到了较好的研究开发,但这些基本上都是基于平面状,无序的复合结构,负载量较小,不符合集成器件微型化、柔性化、高性能的发展趋势。相比较而言,基于阵列结构的三维纳米多孔有序互通网络结构,具有高负载量、高导电性、弯曲性能优越、高能量高功率性能等优点,发展基于三维纳米多孔有序的高负载的柔性器件对电子产品柔性、及后续的集成的市场化应用有很重要的意义。
为开发出性能优良的超级电容器,至关重要的就是开发适合超级电容器应用的具有较高比容量的电极材料,即所选电极材料必须容易在电极/电解质界面上形成较高的双电层电容或法拉第赝电容,并具有适当的力学稳定性,以及良好的电子、离子导电性能。
SiC具有耐化学腐蚀性好、强度高、硬度高、耐高温及独特的优异电学和光学等性能,是研究微电子器件和光电子器件理想的新型半导体材料。石墨烯是零带隙半导体,具有优异的导电性,是目前已知的导电性能最出色的材料,多孔石墨烯在保持优异的导电子的同时加强了其导离子特性,同时,多孔石墨烯具有高比表面积及独特的载荷子特性,使其可成为电容器电极材料。二氧化锰来源丰富,价格低廉、安全无毒、理论比容量达到1370F/g,有望成为具有工业化应用前景的赝电容电极材料。然而,二氧化锰作为一种金属氧化物,由于其导电性差,会引起以下问题:1电子和离子无法快速的扩散,接触到材料的表面;2即使接触到表面,向体相扩散渗透的深度也有限,法拉第电容电荷无法快速充放形成有效电容,实际比容量只有理论值的10~20%,所以实际应用的二氧化锰电极负载量小(小于毫克级),且需要和其他导电物质及粘结剂一起混合,这种混合情况直接影响了超级电容器的电化学性能和结构稳定性,严重阻碍了其实际应用。
发明内容
针对现有技术中存在的不足,本发明的目的在于为了克服二氧化锰比表面积较低及电子和离子电导性能较差等问题,提供了一种基于柔性碳化硅纳米线阵列/多孔石墨烯/多孔二氧化锰纳米片(SiC/HG/h-MnO2)高负载复合电极材料的制备方法。本发明技术利用碳化硅纳米线阵列和多孔石墨烯所特有的良好电子和离子电导性、超大比表面积、化学稳定性等的特点,将其与有孔二氧化锰纳米片(h-MnO2)复合,从而提高了其电子电导性能。同时由于碳化硅纳米线阵列具有一定的有序孔道及多孔石墨烯/多孔二氧化锰纳米片复合材料都具有多孔结构,所以所得到的三维体系具有一定的有序孔道结构,使其离子导电性也得到极大地提高。另外由于在电极制备过程中没有添加任何粘结剂,可以极大减小电极材料间及与导电基底的接触电阻,使该自支撑三维网状纳米复合结构非常有利于电子和离子在材料内部发生快速的传送及快速的氧化还原反应,产生较高的赝电容,从而最终获得具有较高电容量,较高功率和能量密度且倍率性能优异的纳米电极复合材料。
本发明的另一个目的在于将柔性碳化硅纳米线阵列/多孔石墨烯/多孔二氧化锰纳米片高负载复合电极材料应用于非对称超级电容器的制备。非对称电容器解决了对称超级电容器工作电压范围较低的问题,从而可制备出高电容量、高功率和能量密度及倍率性能良好的超级电容器。
上述发明技术分别采用柔性碳化硅纳米线阵列/多孔石墨烯/多孔二氧化锰纳米片SiC/HG/h-MnO2为正极,柔性碳化硅纳米线阵列/石墨碳(SiC/GC)为负极,组装非对称柔性全固态超级电容器(柔性碳化硅纳米线阵列/多孔石墨烯/多孔二氧化锰纳米片//柔性碳化硅纳米线阵列/石墨碳(SiC/HG/h-MnO2//SiC/GC)),具体包括以下具体步骤:
(1)在柔性碳布、石墨烯膜上生长碳化硅纳米线阵列或氮掺杂的或铝掺杂的碳化硅纳米线阵列并裁剪成合适的大小;
(2)碳化硅/多孔石墨烯纳米复合材料(SiC/HG)是通过电化学沉积方法将高质量的多孔氧化石墨烯(HGO)直接生长到SiC纳米阵列上而制备的,具体步骤:首先将一定体积20%~40%H2O2水溶液与一定体积的1~5mg/mL氧化石墨烯(GO)水性分散液混合,并在搅拌下于100℃加热0.2~2小时,离心分离所获产物HGO然后进行离子水洗涤纯化,然后取适量的HGO或GO溶解分散在0.05~0.5M LiClO4水溶液中,配制浓度为0.5~2mg/mL的分数液,在N2气氛中,分别以SiC阵列和Pt箔作为工作电极和对电极,并施加-3.0~-6V的直流恒电势100~500分钟,对其进行电化学沉积,从而获得SiC/HG或SiC/ErGO(电还原氧化石墨烯),最后将获得的样品用去离子水洗涤并冷冻干燥以待下一步使用;
(3)h-MnO2的电化学沉积:首先将SiC/HG复合材料浸入0.05~0.5M M Mn(CH3COO)2和0.05~0.5M Na2SO4与0.01~0.05M四丁基氯化铵(C16H36ClN)的混合溶液中,并以SiC/HG和Pt箔作为工作电极和对电极,然后在0.3~0.8mA的恒定电流下分别进行10~180分钟电化学沉积,从而获得可用于组装柔性电容器件的正极材料SiC/HG/h-MnO2
(4)SiC/GC纳米复合负极材料的制备:将SiC纳米阵列浸入0.05~0.2M葡萄糖水溶液中,然后分别在150~200℃条件下反应5~9小时,氩气气氛下700~900℃下加热样品1小时,实现SiC纳米线上石墨碳层的生长,从而获得可用于电容器组装的SiC/GC柔性同轴纳米复合负极材料;
(5)基于碳纤维的非对称柔性全固态超级电容器(TASC)的组装:将聚乙烯醇、氯化锂和水混合,在90℃条件下搅拌直到聚乙烯醇(PVA)完全溶解,从而得到PVA-LiCl电解质凝胶,然后将该凝胶均匀滴加在步骤3、4制备的正、负电极表面上,在空气环境中自然晾干,然后在两电极间放入离子隔膜,叠压在一起,静置干燥24小时,即可获得具有三明治几何结构的柔性自支撑三维全固态非对称超级电容器TASC,SiC/HG/h-MnO2//SiC/GC。
与现有技术相比,本发明的优点在于:
1无需任何额外的粘合剂或导电材料,即可获得基于SiC纳米阵列和多孔石墨烯的柔性自支撑多级多孔网络结构,从而实现具有优异电子导电性能的柔性纳米复合电极材料的制备,其中SiC/HG可以直接被用作电容器电极和集流体;这种单层膜结构的多功能性,简化了电极材料的制造过程,使其重量更轻,价格更为经济;2将SiC/GC与SiC/HG/h-MnO2进行正负电极配对,可以很容易地所述体系将工作电压扩展至1.8V,从而制备出高效且环保的水性非对称超级电容器,从而免去了任何有害的有机电解质的使用,并有效解决了对称超级电容器普遍工作电压较低,从而导致电容器件能量密度较低这一关键技术难题;3利用SiC结构和石墨烯的优异导电性能,极大提高了MnO2纳米复合电极的电导率,尤其是在高负载活性物质条件时,其导电性仍较为优良,从而有效解决了绝缘MnO2的导电性能较差这一难题,同时利用SiC/HG/h-MnO2三元组分的多级孔径结构(大孔及微纳孔径)解决了MnO2等赝电容材料纳米复合结构普遍存在的离子导电性能较差的这一关键难题,从而突出了所述电极材料在出色电容器件应用中的优势,4采用所述SiC/HG/h-MnO2多级多孔网络结构可以实现大面积、高负载量MnO2活性物质的高效负载,从而制备出高电容量、高响应的电极材料,进而实现高功率和能量密度且倍率性能良好的超级电容器的制备,解决了一般超级电容器活性MnO2负载量低(小于毫克级),功率和能量密度较小这一关键技术难题。
附图说明
图1为本发明实施例一所制备的非对称柔性全固态超级电容器的正极材料的扫描电镜(SEM)和透射电镜(TEM)图,(a)(c)为SiC/HG/h-MnO2的SEM和TEM图,(b)(d)为多孔石墨烯HG的SEM放大图及多孔二氧化锰片h-MnO2的TEM放大图,其中箭头指向孔洞;
图2为本发明实施例一所制备的SiC/HG/h-MnO2//SiC/GC在不同扫描电压下,扫描速率为100mVs–1的循环伏安曲线;
图3为本发明实施例一所制备的超级电容器在不同扫描速率下的面积电容;
图4为本发明实施例一所制得的超级电容器在不弯折和弯折半径为7毫米,5毫米,2毫米条件下的循环伏安曲线对比图;
图5为本发明实施例二所制得的系列超级电容器在不同扫描速率下的面积电容。
具体实施方式
以下结合附图及具体实施例对本发明作进一步的详细描述。
实施例一:
(1)首先采用化学气相沉积法在碳布上生长氮掺杂的碳化硅纳米线阵列,并裁剪成合适的大小,作为正、负极的基底材料;(2)将0.5mL的30%H2O2水溶液与50mL的2mg/mL GO水性分散液混合,并在100℃下搅拌加热0.5小时。然后通过多次离心分离和洗涤,纯化所制备的HGO。然后将一定浓度的HGO或GO(1mg/mL)溶解分散在0.1M LiClO4水溶液中,在N2气氛中,分别以SiC阵列和Pt箔作为工作电极和对电极,并施加-5.0V的直流恒电势180分钟,对其进行电化学沉积,再经去离子水洗涤和冷冻干燥,从而获得SiC/HG或SiC/ErGO(电还原氧化石墨烯)。为了制备SiC/HG/h-MnO2纳米复合电极,首先将SiC/HG浸入0.2M Mn(CH3COO)2和0.2M Na2SO4与0.02M氯化四丁铵的混合溶液中,并以其作为工作电极,在0.5mA的恒定电流下进行60分钟的电化学沉积,即获得可用于组装柔性电容器件的正极材料SiC/HG/h-MnO2。反应60分钟的样品的MnO2负载质量约为6.5mg/cm2;(3)SiC/GC纳米复合负极材料的制备过程是首先将SiC纳米阵列浸入0.15M葡萄糖水溶液中,然后分别在180℃下反应7小时,氩气气氛下800℃下加热1小时,实现碳层水热生长,即可获得可用于电容器组装的SiC/GC柔性同轴纳米复合负极材料。(4)基于碳纤维的非对称柔性全固态超级电容器的组装过程是首先将聚乙烯醇、氯化锂和水混合,在90℃条件下搅拌直到聚乙烯醇完全溶解,从而得到PVA-LiCl电解质凝胶,然后将该凝胶均匀滴加在步骤2、3制备的正、负电极表面上,在空气环境中自然晾干,然后在两电极间放入离子隔膜,叠压在一起,静置干燥24小时,即可获得具有三明治几何结构的柔性自支撑三维全固态非对称超级电容器SiC/HG/h-MnO2//SiC/GC。图1为所制备的SiC/HG/h-MnO2的SEM及TEM图片。从图中可以明显看见其具有三维自支撑网络结构。SEM及TEM放大图进一步揭示复合电极中的HG和h-MnO2为多孔石墨烯和多孔二氧化锰片纳米结构。图2为所述非对称固态超级电容器在不同扫描电压下,扫描速率为100mVs–1的循环伏安曲线,可以发现其在不同工作电压均具有优异的电容特性,尤其是具有较宽的工作电压窗口,最高至1.8V。图3为不同扫描速率下,超级电容器的面积电容,可以发现在扫描速率为10mVs–1时,的电容器面积容量高达0.65F/cm2,能量密度为0.32mWh/cm2,功率密度为280mW/cm2。而且如图4所示,该器件在不弯折和弯折半径为7毫米,5毫米,2毫米情况下,其电化学性能没有明显变化,显示所制备的超级电容器具有优异的耐弯折和扭曲的机械柔性。
实施例二:
(1)采用与实施例一类似的方法,在碳布上直接电化学沉积二氧化锰纳米片,制成柔性电极1,(2)采用与实施例一类似的方法,在碳布上直接生长碳化硅纳米线阵列后,再电化学沉积多孔石墨烯,制成柔性电极2,(3)采用与实施例一类似的方法,在碳布上直接生长碳化硅纳米线阵列后,再电化学沉积二氧化锰纳米片,制成柔性电极3,(3)采用与实施例一类似的方法,在碳布上直接生长碳化硅纳米线阵列后,再电化学还原沉积石墨烯,再电化学沉积二氧化锰纳米片,制成柔性电极4,如图5所示,将上述柔性电极1,2,3,4进行电化学测试,并与实施例1所述的正极材料,在不同扫描速率下的面积容量进行对比,可发现:采用实施例1方法所制备的SiC/HG/h-MnO2电极的面积电容量最大,电化学响应速率最快,倍率特性能最佳。
显然,本发明的上述实施例仅为清楚地说明本发明而做的说明举例,而并非是对本发明的实施方式的限定,因为这里无法对所有的实施方式予以穷举。因此凡是属于本发明的技术方案所引伸出的本领域的技术人员可以引伸出的变化或变动仍处于本发明的保护范围之列。

Claims (6)

1.一种柔性碳化硅/石墨烯/二氧化锰多孔纳米复合材料及非对称固态超级电容器的制备方法,其特征在于:
(1)该超级电容器的正极材料为柔性碳化硅纳米线阵列/多孔石墨烯/多孔二氧化锰纳米片SiC/HG/h-MnO2,是一种具有柔性、高电子和离子导电性且高负载的自支撑多级多孔网络结构;
(2)该超级电容器的负极材料为一种具有柔性、高电子和离子导电性的碳化硅纳米线阵列/石墨碳SiC/GC;
(3)所述超级电容器组装过程是将固态凝胶电解质分别涂敷在柔性正、负电极表面,并在空气环境中晾干成型,在柔性两片正、负电极间放入离子隔膜,叠压在一起,然后静置干燥,即可得到柔性全固态超级电容器。
2.根据权利要求1所述的超级电容器的制备方法,其特征在于:所述SiC/HG/h-MnO2正极材料的制备方法包括以下具体步骤:
(1)在柔性碳布、石墨烯膜上直接生长碳化硅或氮或铝掺杂的碳化硅纳米线阵列并裁剪成合适的大小待用;
(2)所述碳化硅/多孔石墨烯纳米复合材料(SiC/HG)是通过电化学沉积方法将高质量的多孔氧化石墨烯(HGO)直接生长到SiC纳米阵列上而制备的。具体步骤:首先将一定体积的20%~40%H2O2水溶液与一定体积的1~5mg/mL氧化石墨烯(GO)水性分散液混合,并在搅拌下于100℃加热0.2~2小时,离心分离所获产物HGO然后进行离子水洗涤纯化;然后取适量的HGO或GO溶解在LiClO4水溶液中,配制浓度为0.5~2mg/mL的HGO或GO稳定液,在N2气氛中,分别以SiC阵列和Pt箔作为工作电极和对电极,并施加-3.0~-6V的直流恒电势100~500分钟,对其进行电化学沉积,从而获得SiC/HG或SiC/ErGO(电还原氧化石墨烯)。最后将获得的样品用去离子水洗涤并冷冻干燥待用;
(3)h-MnO2正极材料的电化学沉积制备是首先将SiC/HG复合材料浸入Mn(CH3COO)2、Na2SO4和氯化四丁铵的混合溶液中,并以SiC/HG和Pt箔作为工作电极和对电极,然后在0.3~0.8mA的恒定电流下分别进行10~180分钟电化学沉积,从而获得可用于组装柔性电容器件的正极材料SiC/HG/h-MnO2
3.根据权利要求1所述超级电容器的制备方法,其特征在于:所述SiC/GC负极材料的制备方法包括以下具体步骤:
(1)在柔性碳布、石墨烯膜上直接生长碳化硅以及氮或铝掺杂的碳化硅纳米线阵列并裁剪成合适的大小;
(2)将SiC纳米阵列浸入浓度为0.05~0.2M的葡萄糖溶液中,然后分别在150~200℃反应5~9小时,然后在氩气气氛下将样品在700~900℃下加热2~5小时,进行石墨纳米碳层的生长,从而实现SiC/GC柔性同轴纳米复合负极材料的制备。
4.根据权利要求1所述的高负载柔性三维碳化硅纳米线阵列/多孔石墨烯/多孔二氧化锰纳米片复合电极材料及非对称柔性固态超级电容器的制备方法,其特征在于:所述步骤(3)中使用的固态电解质为PVA-LiCl,将聚乙烯醇、氯化锂和水混合,在90℃条件下搅拌直到PVA完全溶解,从而得到PVA-LiCl电解质凝胶,然后将该凝聚均匀滴加在权力要求2、3制备的正、负电极表面上,在空气环境中自然晾干,然后在两电极间放入离子隔膜,叠压在一起,静置干燥24小时,即可获得具有三明治几何结构的柔性自支撑三维全固态非对称超级电容器TASC,SiC/HG/h-MnO2//SiC/GC。
5.根据权利要求1所述超级电容器的制备方法,其特征在于:所述SiC/HG中的HG是通过电化学还原法直接将多孔氧化石墨烯生长还原在柔性碳化硅纳米线阵列上制备的,同时样品经冷冻抽干处理后,所获SiC/HG是一种具有一定有序孔径结构分布的三维多孔网络纳米复合电极材料。
6.根据权利要求1所述的柔性全固态超级电容器的制备方法,其特征在于:所述的柔性是指整个器件在0~180度弯折及0~360度扭曲范围内,不发生明显的电化学及机械性能变化。
CN202010586642.XA 2020-06-24 2020-06-24 一种基于柔性碳化硅/多孔石墨烯/二氧化锰多孔纳米复合材料的非对称固态超级电容器的制备方法 Expired - Fee Related CN111710534B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010586642.XA CN111710534B (zh) 2020-06-24 2020-06-24 一种基于柔性碳化硅/多孔石墨烯/二氧化锰多孔纳米复合材料的非对称固态超级电容器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010586642.XA CN111710534B (zh) 2020-06-24 2020-06-24 一种基于柔性碳化硅/多孔石墨烯/二氧化锰多孔纳米复合材料的非对称固态超级电容器的制备方法

Publications (2)

Publication Number Publication Date
CN111710534A true CN111710534A (zh) 2020-09-25
CN111710534B CN111710534B (zh) 2021-12-21

Family

ID=72542448

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010586642.XA Expired - Fee Related CN111710534B (zh) 2020-06-24 2020-06-24 一种基于柔性碳化硅/多孔石墨烯/二氧化锰多孔纳米复合材料的非对称固态超级电容器的制备方法

Country Status (1)

Country Link
CN (1) CN111710534B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112226211A (zh) * 2020-11-09 2021-01-15 安徽宇航派蒙健康科技股份有限公司 一种高导热复合定形相变材料的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105826086A (zh) * 2015-08-20 2016-08-03 青岛大学 基于SiC纳米阵列的柔性全固态超级电容器及制备方法
CN110648855A (zh) * 2019-09-26 2020-01-03 武汉理工大学 一种碳化硅/石墨烯复合纳米森林薄膜材料及其制备方法与应用
CN110648857A (zh) * 2019-08-29 2020-01-03 宁波工程学院 一种高度石墨化超薄碳膜包覆SiC纳米线的制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105826086A (zh) * 2015-08-20 2016-08-03 青岛大学 基于SiC纳米阵列的柔性全固态超级电容器及制备方法
CN110648857A (zh) * 2019-08-29 2020-01-03 宁波工程学院 一种高度石墨化超薄碳膜包覆SiC纳米线的制备方法
CN110648855A (zh) * 2019-09-26 2020-01-03 武汉理工大学 一种碳化硅/石墨烯复合纳米森林薄膜材料及其制备方法与应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
YUJIEZHANG等: "Characterization of modified SiC@SiO2 nanocables/MnO2 and their potential application as hybrid electrodes for supercapacitors", 《DALTON TRANSACTIONS》 *
向宇: "TiC/C纳米纤维与金属氧化物复合材料电容性能的研究", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112226211A (zh) * 2020-11-09 2021-01-15 安徽宇航派蒙健康科技股份有限公司 一种高导热复合定形相变材料的制备方法
CN112226211B (zh) * 2020-11-09 2022-03-22 安徽宇航派蒙健康科技股份有限公司 一种高导热复合定形相变材料的制备方法

Also Published As

Publication number Publication date
CN111710534B (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
Tao et al. Hierarchical nanostructures of polypyrrole@ MnO 2 composite electrodes for high performance solid-state asymmetric supercapacitors
Li et al. High-performance asymmetric supercapacitors based on monodisperse MnO nanocrystals with high energy densities
CN111384381B (zh) 一种锂离子电池用硅@碳/MXene三元复合材料及其制备方法
Gao et al. High-performance energy-storage devices based on WO 3 nanowire arrays/carbon cloth integrated electrodes
Yuan et al. Large-scale Co3O4 nanoparticles growing on nickel sheets via a one-step strategy and their ultra-highly reversible redox reaction toward supercapacitors
Yang et al. Facile template-free synthesis of vertically aligned polypyrrole nanosheets on nickel foams for flexible all-solid-state asymmetric supercapacitors
Liang et al. Facile synthesis of hierarchical fern leaf-like Sb and its application as an additive-free anode for fast reversible Na-ion storage
US20140045065A1 (en) Li-ion battery electrodes having nanoparticles in a conductive polymer matrix
Simotwo et al. Polyaniline-based electrodes: recent application in supercapacitors and next generation rechargeable batteries
AU2014336895B2 (en) Tungsten-based material super battery and supercapacitor
Mohamed et al. Efficient energy storage capabilities promoted by hierarchical MnCo 2 O 4 nanowire-based architectures
Liang et al. Hierarchical Sb-Ni nanoarrays as robust binder-free anodes for high-performance sodium-ion half and full cells
Yoo et al. Nano-sized split V2O5 with H2O-intercalated interfaces as a stable cathode for zinc ion batteries without an aging process
Liang et al. A high-power lithium-ion hybrid capacitor based on a hollow N-doped carbon nanobox anode and its porous analogue cathode
US20130037756A1 (en) Electrodes for electrochemical capacitor and electrochemical capacitor including the same
Wu et al. Spatially confining and chemically bonding amorphous red phosphorus in the nitrogen doped porous carbon tubes leading to superior sodium storage performance
Hou et al. SnO 2 nanoparticles embedded in 3D nanoporous/solid copper current collectors for high-performance reversible lithium storage
CN111244463A (zh) Peg插层双层五氧化二钒电极材料的制备方法及其应用
KR20160085998A (ko) 이차전지 음극물질로 유용한 Si/C/CNT 복합소재의 제조방법
Geng et al. Modulating the kinetics of CoSe 2 yolk–shell spheres via nitrogen doping with high pseudocapacitance toward ultra-high-rate capability and high-energy density sodium-ion half/full batteries
CN106450423A (zh) 一种高比能柔性一体化电极及其制备方法
Fu et al. Exploiting the synergistic effect of multiphase MnO 2 stabilized by an integrated conducting network for aqueous zinc-ion batteries
Fu et al. High reversible silicon/graphene nanocomposite anode for lithium-ion batteries
CN111710534B (zh) 一种基于柔性碳化硅/多孔石墨烯/二氧化锰多孔纳米复合材料的非对称固态超级电容器的制备方法
Qian et al. Electrochemical synthesis of Na 0.25 MnO 2@ ACC cathode and Zn@ K-ACC anode for flexible quasi-solid-state zinc-ion battery with superior performance

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20211221

CF01 Termination of patent right due to non-payment of annual fee