CN111707594B - 一种基于激光扫描共聚焦显微镜的纸页孔隙率检测方法 - Google Patents

一种基于激光扫描共聚焦显微镜的纸页孔隙率检测方法 Download PDF

Info

Publication number
CN111707594B
CN111707594B CN202010521250.5A CN202010521250A CN111707594B CN 111707594 B CN111707594 B CN 111707594B CN 202010521250 A CN202010521250 A CN 202010521250A CN 111707594 B CN111707594 B CN 111707594B
Authority
CN
China
Prior art keywords
paper
paper sheet
porosity
pulp
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010521250.5A
Other languages
English (en)
Other versions
CN111707594A (zh
Inventor
沈文浩
李嘉庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202010521250.5A priority Critical patent/CN111707594B/zh
Publication of CN111707594A publication Critical patent/CN111707594A/zh
Application granted granted Critical
Publication of CN111707594B publication Critical patent/CN111707594B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/088Investigating volume, surface area, size or distribution of pores; Porosimetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6402Atomic fluorescence; Laser induced fluorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N21/643Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/10Constructive solid geometry [CSG] using solid primitives, e.g. cylinders, cubes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration
    • G06T5/70Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/136Segmentation; Edge detection involving thresholding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/90Determination of colour characteristics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6439Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" with indicators, stains, dyes, tags, labels, marks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • G06T2207/10061Microscopic image from scanning electron microscope
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20024Filtering details
    • G06T2207/20032Median filtering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30124Fabrics; Textile; Paper

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Pathology (AREA)
  • Geometry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Quality & Reliability (AREA)
  • Dispersion Chemistry (AREA)
  • Computer Graphics (AREA)
  • Software Systems (AREA)
  • Paper (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种基于激光扫描共聚焦显微镜的纸页孔隙率检测方法,涉及制浆造纸技术领域。该检测方法利用番红‑O对纸浆纤维染色抄造成纸页,采用激光扫描共聚焦显微镜扫描纸页,当X射线激发纤维表面荧光染色剂时产生能量,达到纸页纤维和孔隙分割的目的。通过激光扫描共聚焦显微镜断层扫描获取纸页Z‑向截面序列图,利用计算机软件Avizo处理图像,构建纸页三维结构,统计纸页三维结构孔隙体素数量,计算纸页整体的孔隙率。本方法避免使用汞和苯等毒性物质,并且可以检测到纸页中的密闭孔,检测结果更为准确,可推广应用于纸页的孔隙率检测。

Description

一种基于激光扫描共聚焦显微镜的纸页孔隙率检测方法
技术领域
本发明涉及纸浆造纸技术领域,具体涉及一种基于激光扫描共聚焦显微镜的纸页孔隙率检测方法。
背景技术
纸页是由纤维交织形成的多孔介质,其微观孔隙结构不仅直接影响纸页物理性能,如抗张强度、撕裂强度以及耐破强度等,而且影响其传输性能,如纸页的渗透率和透气度等,准确定量表征纸页的孔隙率一直是人们研究的热点。孔隙率是指材料中孔隙体积与材料在自然状态下总体积的百分比,纸页的孔隙率为纸页中孔隙体积占纤维和孔隙总体积的百分比。目前,国标中还没有一种明确规定的测定纸页孔隙结构的完整方法。在纸页的孔隙率及涂层微孔测量中以汞压入法和苯饱和溶液浸入法最具有代表性,汞压入法是将汞在一定压力下压入多孔体中,根据汞的压入量计算纸页的孔隙率,但汞压入法由于在检测过程中会接触到汞(剧毒),尤其汞具有很强的挥发性,操作不当会对人体造成伤害。苯饱和溶液浸入法测量纸页的孔隙率,无需使用精密检测仪器,成本低廉,在纸页浸入高纯度的饱和溶液后需要使用滤纸将过多溶液吸收,无法检测密闭孔,人为误差较大。中国发明专利(CN201810223085.8,一种基于数字图像处理的纸张孔隙率测量与孔径分析方法)提出了一种基于数字图像处理的纸页孔隙率测量方法,该方法采用纸页表面的电镜扫描图,通过图像处理计算孔隙和纤维的像素面积,计算纸页的孔隙率。但是,该方法仅能检测纸页表面的孔隙率,而纸页纵向截面的孔隙率却不同,因此该方法的检测结果无法代表纸页整体的孔隙率。
发明内容
本发明的目的是为了解决现有技术中的上述缺陷,提供一种基于激光扫描共聚焦显微镜的纸页孔隙率检测方法。该方法首先需要对造纸纤维进行荧光染色,将染色后的纤维采用实验室标准抄纸流程抄造成纸样,然后采用激光扫描共聚焦显微镜对纸样进行Z-向扫描,获取纸样的Z-向截面序列图,将Z-向截面序列图进行灰度化、中值滤波、二值化以及等值面化处理,构建纸样的三维结构,最后统计纸样三维结构中孔隙和纤维的体素,将孔隙的体素数量与孔隙和纤维的总体素数量相比,获得纸页的孔隙率。利用番红-O荧光染色剂对纤维特异性染色,在激光扫描共聚焦显微镜下,X射线激发纤维表面荧光染色剂时产生能量,纤维部分为红色,孔隙部分为黑色,能够有效区分图像中的纤维和孔隙区域,而采用扫描电镜获取的纸页图像,孔隙和纤维的灰度值会有部分重叠,孔隙和纤维区域的二值化分割存在较大误差;同时,利用激光扫描共聚焦显微镜的三维断层扫描,能够获取纸页Z-向上不同位置的纸页截面图,构建纸页的三维结构,计算纸页的整体孔隙率,解决了基于电镜扫描图只能计算纸页表面或者二维结构孔隙率的局限性。使用该方法能够有效计算纸页中连通孔和密闭孔的体积,避免使用有毒物质,安全环保,检测结果更为准确。
本发明的目的可以通过采取如下技术方案达到:
一种基于激光扫描共聚焦显微镜的纸页孔隙率检测方法,将纸浆浆板做打浆处理,加入到番红-O荧光染色剂中,避光密封保存;染色后的纸浆采用TAPPI手工抄片器抄造成纸样,将纸样裁剪放在载玻片的凹槽中,使用盖玻片保护样品;将载有样品的载玻片倒置于激光扫描共聚焦显微镜的载物台,通过激光扫描获取纸样的Z-向截面序列图;将纸样的若干Z-向截面序列图进行灰度化、中值滤波、二值化以及等值面化处理,构建纸页三维结构;统计纸样三维结构中孔隙和纤维的体素,将孔隙的体素数量与孔隙和纤维的总体素数量相比,计算获得纸页的孔隙率。
进一步地,制备纸样的具体过程如下:
按照国家标准(GBT 24325-2009),采用Valley槽式打浆机,对浆板进行疏解和打浆,获得打浆度均为30-60°SR的纸浆,将获得的纸浆密封保存;
称量0.001-0.1g番红-O加入到10-100mL蒸馏水中,搅拌均匀后,将配制好的荧光染色剂放在棕色试剂瓶中避光密封保存;
称量0.01-0.5g纸浆加入到10-50mL番红-O溶液中,搅拌均匀后,放在棕色试剂瓶中避光密封保存,保存时间为2-24h;
染色完成后,将染色纤维使用(200×200)-(400×400)目对浆袋进行洗涤,待浮色脱去后,使用纤维疏解机(6000-10000转)疏解纤维,按照纸页实验室抄造纸页的国家标准(QBT 3703-1999),使用TAPPI手工抄片器抄造纸样,采用平板纸页干燥器烘干后,储存于恒温恒湿室,纸页定量为30-90g/m2
将经上述处理的纸样裁剪成(0.1cm×0.1cm)-(0.5cm×0.5cm)大小的正方形,将其放在载玻片的凹槽中,在盖玻片的四周滴加甘油进行固定,甘油不能进入凹槽防止污染样品。
进一步地,处理纸样图像中采用激光扫描共聚焦显微镜对纸样进行断层扫描,获得纸页Z-向截面序列图,具体过程如下:
将载有纸样的载玻片(盖玻片在下,载玻片在上)放置于激光扫描共聚焦显微镜的载物台,打开明场光源,选择10-40倍物镜,使用目镜观察纸样获得清晰图像;选取He-Ne543nm作为激光光源,接收光谱范围设定为553-629nm,激光器强度设定为10-50%;分辨率设置为(512×512)-(1024×1024)分辨率,频率设置为50-100HZ,Gain值(增益值)设置为600-800,Gain Offset值设置为(-10)-(10);打开激光光源,选择XYZ三维扫描(Z-Stack)模式,通过调焦旋钮和遥控手轮的调焦旋钮观察不同位置Z-向界面,通过旋钮调节找到最上方无荧光信号的位置设置为起始点,最下方无荧光信号的位置设置为终止点,Z-向步长设置为0.01-0.30μm;点击“Start”进行XYZ图像的采集,将获得图片进行保存,保存的格式为标签图像文件格式(TIFF)。
进一步地,处理纸样图像中,将纸样的Z-向截面序列图导入到计算机软件AVIZO,首先灰度化处理,将纸页的荧光图转换为灰度图,采用中值滤波处理使图像平滑,统计灰度图获得灰度分布直方图,采用最大类间法获得阈值,根据阈值进行二值化处理,获得纸样的二值图,值为1的像素为孔隙,值为0的像素为纤维,基于纸样的Z-向截面序列二值图采用等值面算法构建纸页三维结构图。
进一步地,纸页三维结构图,值为1的体素为孔隙,值为0的体素为纤维。分别统计纸页三维结构中纤维和孔隙的体素数量,令纸页的孔隙率为P,计算公式为:P=N/N+M
其中,M和N分别为纤维和孔隙的体素数量。
本发明相对于现有技术具有如下的优点及效果:
1、本发明利用激光扫描共聚焦显微镜获取纸页的Z-向截面序列图,采用图像处理技术获得纸页三维结构,采用统计孔隙体素的方法计算纸页整体的孔隙率,解决了汞压入法和饱和溶液浸入法无法检测密闭孔的问题,提高了检测的准确性。
2、本发明不需要溶液浸入,不破化纸页的内部结构,实现绿色快捷检测。
3、本发明采用计算机图像处理技术,可以实现纸页三维结构的可视化。
附图说明
图1是本发明实施例中纸页Z-向截面序列图;
图2是本发明实施例中构建的桉木浆纸页三维结构图;
图3是本发明实施例中构建的蔗渣浆纸页三维结构图;
图4是本发明实施例中构建的棉浆纸页三维结构图;
图5是本发明实施例中构建的马尾松浆纸页三维结构图;
图6是本发明实施例中构建的竹浆纸页三维结构图;
图7是本发明实施例中公开的一种基于激光扫描共聚焦显微镜的纸页孔隙率检测方法的流程图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例
激光扫描共聚焦显微镜是在光学显微镜的基础上,利用激光、图像处理以及电子摄像等近代高新技术开发出的一种新型分析设备,其分辨率可达到亚微米级,纵向最小的光学切片可达到0.001μm,垂直深度可达到500μm,横向分辨率可达到0.1μm,为获取纸页的三维结构提供了重要测量手段。
本实施例公开了一种基于激光扫描共聚焦显微镜的纸页孔隙率检测方法,该方法采用荧光染色剂对造纸纤维染色,将染色后的纤维抄造成纸页,利用激光扫描共聚焦显微镜获取纸页Z-向截面序列图,利用图像处理技术分别对其进行灰度化、中值滤波、二值化以及等值面化处理,构建纸页三维结构,通过体素统计的方法计算纸页整体的孔隙率。该方法可获得纸页的三维结构,计算纸页整体的孔隙率,避免使用汞和苯等毒性物质,并且可以检测到纸页中的密闭孔,检测结果更为准确,可推广应用于纸页的孔隙率检测。
如图7所示,该检测方法具体包括以下步骤:
S1、制备纸浆:按照国家标准(GBT 24325-2009),采用Valley槽式打浆机,分别对棉浆、马尾松浆、竹浆、桉木浆、蔗渣浆板进行疏解和打浆,获得打浆度均为30(±2)°SR的纸浆,将获得的纸浆密封保存,待水分平衡后使用水分测定仪测定纸浆水分为10%。
S2、配置染色剂:称取0.1g番红-O颗粒(需冷藏密封保存),采用陶瓷研磨钵研磨成均匀粉末,将粉末溶解加入到100mL容量瓶中,配制成浓度为0.1%的番红-O溶液,避光密封保存。
S3、制备染色纸浆:称取1.2g绝干浆,加入到50mL密封瓶中,取30mL浓度为0.1%的番红-O溶液加入到密封瓶中,在室温下密封避光保存24h。
S4、制备纸样:按照纸页实验室抄造纸页的国家标准(QBT 3703-1999),将染色纸浆使用TAPPI手工抄片器抄造成纸样,采用平板纸页干燥器烘干后储存于恒温恒湿室,纸页定量为60±2g/m2。将纸样裁剪成(0.5cm×0.5cm)大小的正方形,将其放在载玻片的凹槽中,在盖玻片的四周滴加少量甘油进行固定,甘油不能进入凹槽防止污染样品。
S5、扫描纸样:将载有纸样的载玻片(盖玻片在下,载玻片在上)放置于激光扫描共聚焦显微镜,打开明场光源,选择10倍物镜,使用目镜观察纸样获得清晰图像;选取He-Ne543nm作为激光光源,接收光谱范围设定为553-629nm,激光器强度设定为10%;分辨率设置为(1024×1024)分辨率,频率设置为100HZ,Gain值设置为800,Gain Offset值设置为0;打开激光光源,选择XYZ三维扫描(Z-Stack)模式,通过调焦旋钮和遥控手轮的调焦旋钮观察不同位置Z-向界面,通过旋钮调节找到最上方无荧光信号的位置设为CLSM断层扫描起始点(纸页上表面),最下方无荧光信号的位置设为CLSM断层扫描终止点(纸页下表面),Z-向步长设置为0.12μm;点击“Start”进行XYZ图像的采集,将获得图片进行保存,保存的格式为标签图像文件格式(TIFF),获得纸页Z-向不同位置截面图,如图1所示,用于构建纸页三维结构。
S6、纸样图像处理:将纸样的Z-向截面序列图导入到计算机软件AVIZO中,首先灰度化处理,将纸页的荧光图转换为灰度图,采用中值滤波处理使图像平滑,统计灰度图获得灰度分布直方图,采用最大类间法获得阈值,根据阈值进行二值化处理,获得纸样的二值图,值为1的像素为孔隙,值为0的像素为纤维,基于纸样的Z-向截面序列二值图,采用等值面算法构建纸页三维结构图。如图2-图6所示,分别为采用纸样的Z-向截面序列二值图构建的桉木浆、蔗渣浆、棉浆、马尾松浆以及竹浆纸页的三维结构,实现纸页三维结构的可视化。
S7、统计孔隙率:基于图2-图6所示的纸页三维结构,采用体数统计的方法,分别统计纸页三维结构中纤维和孔隙的体素数量,计算纸页的统计孔隙率。
S8、实验孔隙率:将纸页裁切成(0.5cm×0.5cm)的正方形,放入烘箱中,在100℃下烘干4h后,取出置于干燥器内冷却。在恒温恒湿室(温度23℃,相对湿度50%)将处理的纸页浸入高纯度的苯中4h,纸页两面使用滤纸将过多苯吸收,称重为W1,之后将纸样置于105℃烘箱中烘干至绝干,测量为W2,纸页的体积为纸页的横截面积(抄造纸页横截面积均为0.02m2)与浸入苯之前纸页厚度的乘积。
孔隙率计算公式为:
Figure BDA0002532183420000071
式中:V-纸页的体积,d-苯的密度为0.88g·mL-1
S9、验证方法:基于激光扫描共聚焦显微镜测量的纸页孔隙率统计值以及饱和苯溶液实验法得到的孔隙率测量值,两种方法得到的棉浆、马尾松浆、竹浆、桉木浆、蔗渣浆纸页的孔隙率如表1所示。纸页孔隙率的实验值和计算值之间的相对误差不超过8%,表明该方法的准确性。
表1.不同浆种纸页孔隙率的测量值与统计值的比较表
Figure BDA0002532183420000072
Figure BDA0002532183420000081
综上所述,本实施例公开的一种基于激光扫描共聚焦显微镜的纸页孔隙率检测方法可获得纸页的三维结构,计算纸页整体的孔隙率,避免使用汞和苯等毒性物质,并且可以检测到纸页中的密闭孔,检测结果更为准确,可推广应用于纸页的孔隙率检测。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (4)

1.一种基于激光扫描共聚焦显微镜的纸页孔隙率检测方法,其特征在于,所述的纸页孔隙率检测方法包括:
制备纸样步骤,将桉木浆、蔗渣浆、棉浆、马尾松浆以及竹浆5种纸浆加入到番红-O溶液中,搅拌均匀后,在棕色试剂瓶中避光密封保存,染色完成后,将染色纤维使用浆袋洗涤,待浮色脱去后,使用TAPPI手工抄片器抄造纸样,采用平板纸页干燥器烘干后,储存于恒温恒湿室;
其中,所述的制备纸样步骤中,称量0.001-0.1g番红-O加入到10-100mL蒸馏水中,搅拌均匀后,将配制好的荧光染色剂放在棕色试剂瓶中避光密封保存;
称量0.01-0.5g纸浆加入到10-50mL番红-O溶液中,搅拌均匀后,放在棕色试剂瓶中避光密封保存,保存时间为2-24h;
扫描纸样步骤,经纸样裁剪成(0.1cm×0.1cm)-(0.5cm×0.5cm)大小的正方形,将其放在载玻片的凹槽中,在盖玻片的四周滴加甘油进行固定,将载有纸样的载玻片放置于激光扫描共聚焦显微镜,设置Z-向步长为0.01-0.30μm范围扫描纸样,其中,所述的载玻片为盖玻片在下,载玻片在上;
处理纸样图像步骤,将纸样的Z-向截面序列图导入到计算机软件AVIZO中,首先灰度化处理,将纸页的荧光图转换为灰度图,采用中值滤波处理使图像平滑,统计灰度图获得灰度分布直方图,采用最大类间法获得阈值,根据阈值进行二值化处理,获得纸样的二值图,基于纸样的Z-向截面序列二值图,采用等值面算法构建纸页三维结构图;
计算纸页孔隙率步骤,分别统计纸页三维结构中纤维和孔隙的体素数量,计算纸页的统计孔隙率。
2.根据权利要求1所述的一种基于激光扫描共聚焦显微镜的纸页孔隙率检测方法,其特征在于,所述的扫描纸样步骤的过程如下:
打开明场光源,选择10-40倍物镜,使用目镜观察纸样获得清晰图像;选取He-Ne 543nm作为激光光源,接收光谱范围设定为553-629nm,激光器强度设定为10-50%;分辨率设置为(512×512)-(1024×1024)分辨率,频率设置为50-100HZ,Gain值设置为600-800,GainOffset值设置为-10-10;打开激光光源,选择XYZ三维扫描Z-Stack模式,通过调焦旋钮和遥控手轮的调焦旋钮观察不同位置Z-向界面,通过旋钮调节找到最上方无荧光信号的位置设为CLSM断层扫描起始点,最下方无荧光信号的位置设为CLSM断层扫描终止点,Z-向步长设置为0.01-0.30μm;点击“Start”进行XYZ图像的采集,将获得图片进行保存,保存的格式为标签图像文件格式。
3.根据权利要求1所述的一种基于激光扫描共聚焦显微镜的纸页孔隙率检测方法,其特征在于,所述的纸页三维结构图,值为1的体素为孔隙,值为0的体素为纤维。
4.根据权利要求1所述的一种基于激光扫描共聚焦显微镜的纸页孔隙率检测方法,其特征在于,所述的计算纸页孔隙率步骤中,分别统计纸页三维结构中纤维和孔隙的体素数量,令纸页的孔隙率为P,计算公式如下:P=N/N+M
其中,M和N分别为纤维和孔隙的体素数量。
CN202010521250.5A 2020-06-10 2020-06-10 一种基于激光扫描共聚焦显微镜的纸页孔隙率检测方法 Active CN111707594B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010521250.5A CN111707594B (zh) 2020-06-10 2020-06-10 一种基于激光扫描共聚焦显微镜的纸页孔隙率检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010521250.5A CN111707594B (zh) 2020-06-10 2020-06-10 一种基于激光扫描共聚焦显微镜的纸页孔隙率检测方法

Publications (2)

Publication Number Publication Date
CN111707594A CN111707594A (zh) 2020-09-25
CN111707594B true CN111707594B (zh) 2022-03-25

Family

ID=72539080

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010521250.5A Active CN111707594B (zh) 2020-06-10 2020-06-10 一种基于激光扫描共聚焦显微镜的纸页孔隙率检测方法

Country Status (1)

Country Link
CN (1) CN111707594B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113392570B (zh) * 2021-06-08 2022-10-18 哈尔滨工业大学 一种水泥基材料颗粒堆积体系孔隙结构均质度的评估方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1958933A (zh) * 2006-11-24 2007-05-09 东华大学 一种非织造布孔隙率测量方法及系统
CN106353234A (zh) * 2016-08-13 2017-01-25 王凯军 一种基于激光共聚焦扫描的膜孔结构及孔隙率测试方法
CN106940304A (zh) * 2016-01-04 2017-07-11 天津科技大学 一种利用clsm评价高得率浆纤维间结合面积的方法
WO2018041884A2 (en) * 2016-08-30 2018-03-08 Nestec Sa Composition, process and use
CN109884019A (zh) * 2019-03-25 2019-06-14 大连大学 一种生物膜适用的三维曲面重构方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108519314A (zh) * 2018-03-19 2018-09-11 华南理工大学 一种基于数字图像处理的纸张孔隙率测量与孔径分析方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1958933A (zh) * 2006-11-24 2007-05-09 东华大学 一种非织造布孔隙率测量方法及系统
CN106940304A (zh) * 2016-01-04 2017-07-11 天津科技大学 一种利用clsm评价高得率浆纤维间结合面积的方法
CN106353234A (zh) * 2016-08-13 2017-01-25 王凯军 一种基于激光共聚焦扫描的膜孔结构及孔隙率测试方法
WO2018041884A2 (en) * 2016-08-30 2018-03-08 Nestec Sa Composition, process and use
CN109884019A (zh) * 2019-03-25 2019-06-14 大连大学 一种生物膜适用的三维曲面重构方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
混凝-超滤滤饼层孔隙率离子探针法;王旭佳;《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》;20190715(第7期);第19-27页 *
高得率浆纤维结合面积评价方法的构建;李海龙;《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》;20170215(第2期);第5-20页 *

Also Published As

Publication number Publication date
CN111707594A (zh) 2020-09-25

Similar Documents

Publication Publication Date Title
AU2006221130B2 (en) A method, device and system for volumetric enumeration of white blood cells.
Trtik et al. 3D imaging of microstructure of spruce wood
Scott et al. The application of ultraviolet microscopy to the distribution of lignin in wood description and validity of the technique
CN107782640B (zh) 一种进行岩石试件含水均匀性检测和扩散系数计算的方法
US20110177548A1 (en) Fluorescent microscope slide
CN111707594B (zh) 一种基于激光扫描共聚焦显微镜的纸页孔隙率检测方法
Almog et al. Fingerprint's third dimension: The depth and shape of fingerprints penetration into Paper—Cross section examination by fluorescence microscopy
Donaldson et al. Comparison of conventional transmitted light and confocal microscopy for measuring wood cell dimensions by image analysis
CN106092985B (zh) 一种低“咖啡环效应”的荧光试纸及其制备方法和应用
CN108083257A (zh) 一种以叶绿体为碳源制备荧光碳点的方法
CN103063835B (zh) 一种免疫层析试条定量检测仪的校准试条及其制作方法
US8093015B2 (en) Method for determining the viability of cells in cell cultures
CN110441142A (zh) 一种数字图像技术测量砂砾料三轴试样表面膜嵌入量的方法
CN101963491B (zh) 造纸纤维图像测量方法
CN116953012B (zh) 一种标定碳酸盐岩轻质油藏裂缝二维核磁分布的方法
CN109959577B (zh) 木材微观含水率的检测方法
Phenix The swelling of artists' paints in organic solvents. Part 1, A simple method for measuring the in-plane swelling of unsupported paint films
Han et al. Traditional papermaking techniques revealed by fibre orientation in historical papers
Lipponen et al. Novel method for quantitative starch penetration analysis through iodine staining and image analysis of cross-sections of uncoated fine paper
CN109781605A (zh) 一种基于透明土非饱和流动可视化实验方法
CA2354202A1 (en) Stone cell determination using fluorescence
Cresson The sensing, analysis and simulation of paper formation
CN208818588U (zh) 一种ct-固结仪
CN114486977A (zh) 一种不同成因孔隙空间特征的定量化评价方法及装置
CN111982761A (zh) 钛白粉在水性色浆中的分散性检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant