CN111704448B - 一种高强度耐火材料砖及其制备方法 - Google Patents

一种高强度耐火材料砖及其制备方法 Download PDF

Info

Publication number
CN111704448B
CN111704448B CN202010696759.3A CN202010696759A CN111704448B CN 111704448 B CN111704448 B CN 111704448B CN 202010696759 A CN202010696759 A CN 202010696759A CN 111704448 B CN111704448 B CN 111704448B
Authority
CN
China
Prior art keywords
particle
parts
nano
refractory brick
grinding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010696759.3A
Other languages
English (en)
Other versions
CN111704448A (zh
Inventor
贺延奎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao multivariate New Material Co.,Ltd.
Original Assignee
Qingdao Multivariate New Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao Multivariate New Material Co ltd filed Critical Qingdao Multivariate New Material Co ltd
Priority to CN202010696759.3A priority Critical patent/CN111704448B/zh
Publication of CN111704448A publication Critical patent/CN111704448A/zh
Application granted granted Critical
Publication of CN111704448B publication Critical patent/CN111704448B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/14Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/006Pressing by atmospheric pressure, as a result of vacuum generation or by gas or liquid pressure acting directly upon the material, e.g. jets of compressed air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • C04B35/6316Binders based on silicon compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63448Polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63488Polyethers, e.g. alkylphenol polyglycolether, polyethylene glycol [PEG], polyethylene oxide [PEO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/636Polysaccharides or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3239Vanadium oxides, vanadates or oxide forming salts thereof, e.g. magnesium vanadate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • C04B2235/425Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9669Resistance against chemicals, e.g. against molten glass or molten salts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种耐火材料砖,由以下重量份的原料制成:大颗粒红柱石、小颗粒红柱石、大颗粒熔融石英、中颗粒熔融石英、小颗粒熔融石英、石墨烯片改性纳米氧化铝、负载镍的多壁碳纳米管、纳米氧化镁、纳米氧化钛、纳米氧化钒、结合剂。本发明通过分级混料,使得物料颗粒充分活化,同时采用分层铺料,使物料层之间形成了有序的功能结构,使得耐火材料砖具有良好的抗腐蚀性能、抗渣性能和抗水化性能,由外层向内层颗粒粒度逐层增大,经真空压制及烧结后形成抗裂纹能力逐步增强的骨架结构,使得耐火材料砖具有高的耐压强度和韧性。

Description

一种高强度耐火材料砖及其制备方法
技术领域
本发明涉及耐火材料技术领域,具体涉及一种高强度耐火材料砖及其制备方法。
背景技术
耐火材料一般是指耐火度不低于1580℃的无机非金属材料或者制品,主要用于炼铁工业的高炉、转炉、焦炉,炼钢行业的转炉、二次精炼炉、连铸等,还用于水泥窑以及玻璃、有色金属的窑炉等。
随着行业技术的不断革新,各行各业对于使用的耐火材料的综合性能要求也随之提高。选用中小粒度的物料能够降低显气孔率,提高耐火材料的抗腐蚀性及抗水性,但由于中小颗粒对裂纹的阻挡能力较弱,会造成耐压强度及韧性的明显下降,导致耐火材料使用寿命缩短。因此,研发低显气孔率同时又具有高强度、高韧性、良好的抗水化性和抗腐蚀性,且使用周期长的耐火材料产品具有重要意义。
发明内容
针对现有耐火材料的不足,本发明提供了一种高强度、高韧性、抗腐蚀性强、使用周期长的耐火材料砖。本发明还提供了该耐火材料砖的制备方法。
本发明的目的通过如下技术方案实现:
一种高强度耐火材料砖,由以下重量份的原料制成:大颗粒红柱石6~12份、小颗粒红柱石9~18份、大颗粒熔融石英15~30份、中颗粒熔融石英5~10份、小颗粒熔融石英10~20份、石墨烯片改性纳米氧化铝5~9份、负载镍的多壁碳纳米管9~14份、纳米氧化镁6~14份、纳米氧化钛3~5份、纳米氧化钒2~3份、结合剂5~9份。
进一步地,所述大颗粒红柱石粒径为1~3mm,小颗粒红柱石粒径为0.1~1mm。
进一步地,所述大颗粒熔融石英粒径为1~3mm,中颗粒熔融石英粒径为0.1~1mm,小颗粒熔融石英粒径为400目。
进一步地,所述石墨烯片改性纳米氧化铝的制备方法为:在纳米氧化铝粉中加入0.25-3.0wt%的石墨烯片,放入高频感应加热机中,1500℃下热处理1~2h。
进一步地,所述负载镍的多壁碳纳米管的制备方法为:S1、取多壁碳纳米管和硫酸镍置于聚四氟乙烯内胆中,加入80wt%水合肼作为还原剂,再加适量重蒸水稀释溶液,盖上内胆盖子装入不锈钢反应釜,放入反应炉中,反应温度控制在120℃±2℃,反应8~12h后取出,抽滤、依次用重蒸水、乙醇反复清洗,烘干后备用。
进一步地,所述纳米氧化镁、纳米氧化钛、纳米氧化钒的粒径均为200~500nm。
进一步地,所述结合剂包括结合剂A和结合剂B;结合剂A为聚合氯化铝、糊精、聚乙二醇中的一种或几种;结合剂B为碱性纳米硅溶胶。
一种耐火材料砖的制备方法,包括以下步骤:
(1)配料:将大颗粒红柱石、大颗粒熔融石英混合均匀,采用震击式球磨仪研磨后烘干,然后将3~5份结合剂A加入烘干的物料中,搅拌使物料表面湿润,得物料1;
将小颗粒红柱石、中颗粒熔融石英混合均匀,采用震击式球磨仪研磨后烘干,得物料2;
将小颗粒熔融石英、石墨烯片改性纳米氧化铝、负载镍的多壁碳纳米管混合均匀,采用震击式球磨仪研磨后烘干,得物料3;
将纳米氧化镁、纳米氧化钛、纳米氧化钒混合均匀,采用纳米研磨机研磨后烘干,然后将2~4份结合剂B加入烘干的物料中,搅拌使物料表面湿润,得物料4;
(2)铺料:将物料4在模具底部平铺一层,之后再平铺一层物料3,再平铺一层物料2,最后平铺一层物料1,接着平铺一层物料2,再平铺一层物料3,最上层平铺一层物料4;
(3)制坯:真空压制成型,制得耐火材料砖坯体;
(4)烧结:将耐火材料砖坯体在110~130℃烘烤4~12h,再转入高温炉1200~1500℃下烧结3~5h,烧结完成后自然冷却、切割,即得耐火材料砖。
进一步地,步骤(1)中采用震击式球磨仪研磨的具体操作为:加入物料重量2倍的助磨剂,物料重量一半的研磨球,采用震击式球磨仪研磨,将研磨后的物料在60~80℃下烘干。
进一步地,步骤(1)中采用震击式球磨仪研磨所用的助磨剂为无水乙醇,研磨时间0.5~2h。
进一步地,步骤(1)中采用纳米研磨机研磨所用的助磨剂为质量分数为40%~60%的油酸溶液,研磨时间2~4h。
进一步地,步骤(1)中研磨后物料的烘干温度为60~80℃。
进一步地,步骤(3)中真空压制的真空度为0~0.01MPa。
进一步地,步骤(3)中压制的强度为60~130MPa。
本发明采用分级混合、研磨的方法,将粒径接近的组分混合均匀后研磨,物料颗粒能够充分与研磨球接触,不会发生沉底、成团现象,随着研磨时间的增加,物料颗粒表面会存在一些机械性损伤的磨蚀创伤面,进而产生新的活化点,同时颗粒内部产生缺陷和裂纹,有利于烧结过程中晶格活化,形成莫来石。
本发明采用分层铺料的方法,打破常规碾混使各物料的粒径及分布尽可能均匀的方法,由于分层采用纳米颗粒层--小颗粒层--中颗粒层--大颗粒层--中颗粒--小颗粒层—纳米颗粒层的顺序自下而上铺料,物料1即表面浸润有结合剂的大颗粒层和物料2即中颗粒层位于耐火材料砖的中间,中颗粒通过结合剂的作用与大颗粒结合成为一体,作为耐火材料的骨架,保证耐火材料砖的机械强度,物料3小颗粒层含有石墨烯片改性纳米氧化铝和负载镍的多壁碳纳米管在煅烧过程中能够将大颗粒层与中颗粒层结合在一起,通过起到增韧功效,物料4纳米颗粒层经油酸改性的氧化钛能提升耐火材料的抗水化性能,同时经硅溶胶润湿后的纳米颗粒层经压制和烧结后结构致密,还能减少杂质的引入,使得耐火材料砖具有良好的抗水化和抗腐蚀性能。
本发明所用红柱石在耐火材料砖坯体烧结过程中会发生不可逆的晶体转化,从而形成具有莫来石网络的莫来石,本发明分层铺料的过程中大颗粒层和中颗粒层分别含有粒径为1~3mm的红柱石大颗粒和粒径为0.1~1mm红柱石小颗粒,烧结过程中红柱石转化成的莫来石网络贯穿大颗粒层与两侧的中颗粒层使其成为一体整体,制备得到的耐火材料砖具有1800℃以上的耐火性能,且机械强度大、抗热冲击力和抗渣性强、耐骤冷骤热、荷重转化点高,还具有优异的化学稳定性和抗化学腐蚀性。
本发明所用熔融石英按粒径分为三级,大颗粒熔融石英与大颗粒红柱石混合研磨后用结合剂润湿作为物料1,其能够大大降低耐火材料砖骨架的热膨胀率和化学稳定性,提高耐火材料砖的综合性能;熔融石英在高温时液相的粘度很大,因此高温时耐侵蚀冲刷性能很好,中颗粒熔融石英和小颗粒熔融石英分层分布,且小颗粒熔融石英分布在靠外侧,与纳米颗粒层烧结后,能够大大提高耐火材料砖的抗腐蚀性和高温耐侵蚀性能。
本发明所用石墨烯片改性纳米氧化铝,通过高倍透射电子显微镜观察发现石墨烯的增强增韧方式主要有颗粒钉扎、石墨烯拔出和裂纹桥接,此外石墨烯引入还能抑制纳米氧化铝晶粒生长。负载镍的多壁碳纳米管作为小颗粒层的物料,与表层紧密结合,负载镍的多壁碳纳米管在高温下仍具有优异的强度和韧性,可以通过桥接和裂纹偏转机理吸收或释放裂纹尖端处的应力,从而提高耐火材料的力学性能、抗断裂韧性以及抗热震性;而镍在高温下与坯体中极少量的氧结合生成氧化镍,能够防止石墨烯片被氧化,镍氧化过程中还能够与氧化镁、氧化钛、氧化钒及小颗粒红柱石中的杂质氧化镁形成固溶体,使氧化镁晶粒更加坚固,防止耐火材料被酸碱溶液所侵蚀。
硅溶胶的结合机理是溶胶中SiO2粒子通过表面的极性硅氧基(-Si-O-)发生脱水缩合反应,将硅溶胶中SiO2粒子连接在一起形成稳定的三维网络结构,进而将小颗粒层和纳米颗粒层粘结成整体,提供耐火材料砖的初期强度。碱性纳米硅溶胶作为结合剂能克服其他结合剂对温度过于敏感的缺点,改善材料的中温强度;另外碱性纳米硅溶胶作为结合剂,能减少杂质的引入,提高材料的高温性能和抗腐蚀性能。
氧化钒(V2O5)对莫来石晶须的生长有促进作用,主要体现在两个方面:一是氧化钒在高温下挥发,促进莫来石气-固生长机制;二是氧化钒具有活化作用,能增加氧化铝的晶格缺陷,活化晶格,促进莫来石的形成。研究表明,适量的氧化钒加入有利于莫来石的形成,过量则会促使鳞片状(块状)莫来石含量增加,而导致材料的强度降低。通过添加氧化钛可以与炉渣中的钙反应生成钙钛矿,在耐火材料表面形成膜状,从而抑制之后炉渣的浸透。
本发明与现有技术相比具有以下有益效果:
(1)本发明提供的耐火材料砖制备方法通过分级混料,使得物料颗粒充分活化,同时采用分层铺料,使物料层之间形成了有序的功能结构,大颗粒及中颗粒层作为耐火材料砖的骨架,保证耐火材料砖的机械强度;小颗粒层含有增韧材料石墨烯片改性纳米氧化铝提升耐火材料砖的韧性,负载镍的多壁碳纳米管提高材料的力学性能、抗氧化和抗腐蚀性能;纳米颗粒层物料粒径小,且经油酸改性,经压制和烧结后结构致密、性质稳定,具有良好的抗渣、抗腐蚀及抗水性能。
(2)本发明提供的耐火材料砖由于特殊的分层铺料工艺,熔融石英高温烧结时包覆在红柱石晶化生成的莫来石颗粒表面,高温条件下内部晶粒发育良好,采用真空压制,提高了材料的致密度,制得的耐火材料砖表层纳米颗粒层致密,在碱性纳米硅溶胶的作用下压制和烧结过程中形成致密的陶瓷结构,因而具有良好的抗腐蚀性能、抗渣性能和抗水化性能,由外层向内层颗粒粒度逐层增大,经压制及烧结后形成抗裂纹能力逐步增强的骨架结构,使得耐火材料砖具有高的耐压强度和韧性。
附图说明
图1为本发明分层铺料示意图。
具体实施方式
为更进一步阐述本发明所采取的技术手段及其效果,以下结合附图及具体实施例进行详细描述。
实施例1
一种高强度耐火材料砖的制备方法,包括以下步骤:
(1)配料:以下份数均为重量份数,将大颗粒红柱石6份、大颗粒熔融石英15份混合均匀,加入42份的无水乙醇,10.5份的研磨球,采用震击式球磨仪研磨,研磨时间0.5h,将研磨后的物料在60℃下烘干,然后将3份聚合氯化铝加入烘干的物料中,搅拌使物料表面湿润,得物料1;
将小颗粒红柱石9份、中颗粒熔融石英5份混合均匀,加入28份的无水乙醇,7份的研磨球,采用震击式球磨仪研磨,研磨时间0.5h,将研磨后的物料在60℃下烘干,得物料2;
将小颗粒熔融石英10份、石墨烯片改性纳米氧化铝5份、负载镍的多壁碳纳米管9份混合均匀,加入44份的无水乙醇,12份的研磨球,采用震击式球磨仪研磨,研磨时间0.5h,将研磨后的物料在60℃下烘干,得物料3;
将纳米氧化镁6份、纳米氧化钛3份、纳米氧化钒2份混合均匀后,加入22份的质量分数为40%的油酸溶液,采用纳米研磨机研磨2h,将研磨后的物料在60℃下烘干,然后将2份碱性纳米硅溶胶加入烘干的物料中,搅拌使物料表面湿润,得物料4;
(2)铺料:将物料4在模具底部平铺一层,之后再平铺一层物料3,再平铺一层物料2,最后平铺一层物料1,接着平铺一层物料2,再平铺一层物料3,最上层平铺一层物料4(如图1所示);
(3)制坯:在真空度为0.1MPa,压强60MPa下压制成型,制得耐火材料砖坯体;
(4)烧结:将耐火材料砖坯体在110℃烘烤4h,再转入高温炉1200℃下烧结3h,烧结完成后自然冷却、切割,即得耐火材料砖。
进一步地,所述大颗粒红柱石粒径为1~3mm,小颗粒红柱石粒径为0.1~1mm。
进一步地,所述大颗粒熔融石英粒径为1~3mm,中颗粒熔融石英粒径为0.1~1mm,小颗粒熔融石英粒径为400目。
进一步地,所述石墨烯片改性纳米氧化铝的制备方法为:在纳米氧化铝粉中加入0.25-3.0wt%的石墨烯片,放入高频感应加热机中,1500℃下热处理1~2h。
进一步地,所述负载镍的多壁碳纳米管的制备方法为:S1、取多壁碳纳米管和硫酸镍置于聚四氟乙烯内胆中,加入80wt%水合肼作为还原剂,再加适量重蒸水稀释溶液,盖上内胆盖子装入不锈钢反应釜,放入反应炉中,反应温度控制在120℃±2℃,反应8~12h后取出,抽滤、依次用重蒸水、乙醇反复清洗,烘干后备用。
进一步地,所述纳米氧化镁、纳米氧化钛、纳米氧化钒的粒径均为200~500nm。
实施例2
一种高强度耐火材料砖的制备方法,包括以下步骤:
(1)配料:以下份数均为重量份数,将大颗粒红柱石9份、大颗粒熔融石英21份混合均匀,加入60份的无水乙醇,15份的研磨球,采用震击式球磨仪研磨,研磨时间1h,将研磨后的物料在70℃下烘干,然后将4份糊精加入烘干的物料中,搅拌使物料表面湿润,得物料1;
将小颗粒红柱石12份、中颗粒熔融石英8份混合均匀,加入40份的无水乙醇,10份的研磨球,采用震击式球磨仪研磨,研磨时间1h,将研磨后的物料在70℃下烘干,得物料2;
将小颗粒熔融石英15份、石墨烯片改性纳米氧化铝7份、负载镍的多壁碳纳米管12份混合均匀,加入64份的无水乙醇,17份的研磨球,采用震击式球磨仪研磨,研磨时间1h,将研磨后的物料在70℃下烘干,得物料3;
将纳米氧化镁10份、纳米氧化钛4份、纳米氧化钒2份混合均匀后,加入32份的质量分数为50%的油酸溶液,采用纳米研磨机研磨3h,将研磨后的物料在70℃下烘干,然后将3份碱性纳米硅溶胶加入烘干的物料中,搅拌使物料表面湿润,得物料4;
(2)铺料:将物料4在模具底部平铺一层,之后再平铺一层物料3,再平铺一层物料2,最后平铺一层物料1,接着平铺一层物料2,再平铺一层物料3,最上层平铺一层物料4(如图1所示);
(3)制坯:在真空度为0.1MPa,压强100MPa下压制成型,制得耐火材料砖坯体;
(4)烧结:将耐火材料砖坯体在120℃烘烤8h,再转入高温炉1400℃下烧结4h,烧结完成后自然冷却、切割,即得耐火材料砖。
进一步地,所述大颗粒红柱石粒径为1~3mm,小颗粒红柱石粒径为0.1~1mm。
进一步地,所述大颗粒熔融石英粒径为1~3mm,中颗粒熔融石英粒径为0.1~1mm,小颗粒熔融石英粒径为400目。
进一步地,所述石墨烯片改性纳米氧化铝的制备方法为:在纳米氧化铝粉中加入0.25-3.0wt%的石墨烯片,放入高频感应加热机中,1500℃下热处理1~2h。
进一步地,所述负载镍的多壁碳纳米管的制备方法为:S1、取多壁碳纳米管和硫酸镍置于聚四氟乙烯内胆中,加入80wt%水合肼作为还原剂,再加适量重蒸水稀释溶液,盖上内胆盖子装入不锈钢反应釜,放入反应炉中,反应温度控制在120℃±2℃,反应8~12h后取出,抽滤、依次用重蒸水、乙醇反复清洗,烘干后备用。
进一步地,所述纳米氧化镁、纳米氧化钛、纳米氧化钒的粒径均为200~500nm。
实施例3
一种高强度耐火材料砖的制备方法,包括以下步骤:
(1)配料:以下份数均为重量份数,将大颗粒红柱石12份、大颗粒熔融石英30份混合均匀,加入64份的无水乙醇,16份的研磨球,采用震击式球磨仪研磨,研磨时间2h,将研磨后的物料在80℃下烘干,然后将5份聚乙二醇加入烘干的物料中,搅拌使物料表面湿润,得物料1;
将小颗粒红柱石18份、中颗粒熔融石英10份混合均匀,加入56份的无水乙醇,14份的研磨球,采用震击式球磨仪研磨,研磨时间2h,将研磨后的物料在80℃下烘干,得物料2;
将小颗粒熔融石英20份、石墨烯片改性纳米氧化铝9份、负载镍的多壁碳纳米管14份混合均匀,加入82份的无水乙醇,21.5份的研磨球,采用震击式球磨仪研磨,研磨时间2h,将研磨后的物料在80℃下烘干,得物料3;
将纳米氧化镁14份、纳米氧化钛5份、纳米氧化钒3份混合均匀后,加入44份的质量分数为60%的油酸溶液,采用纳米研磨机研磨4h,将研磨后的物料在80℃下烘干,然后将4份碱性纳米硅溶胶加入烘干的物料中,搅拌使物料表面湿润,得物料4;
(2)铺料:将物料4在模具底部平铺一层,之后再平铺一层物料3,再平铺一层物料2,最后平铺一层物料1,接着平铺一层物料2,再平铺一层物料3,最上层平铺一层物料4(如图1所示);
(3)制坯:在真空度为0.1MPa,压强130MPa下压制成型,制得耐火材料砖坯体;
(4)烧结:将耐火材料砖坯体在130℃烘烤12h,再转入高温炉1500℃下烧结3~5h,烧结完成后自然冷却、切割,即得耐火材料砖。
进一步地,步骤(1)所述大颗粒红柱石粒径为1~3mm,小颗粒红柱石粒径为0.1~1mm。
进一步地,步骤(1)所述大颗粒熔融石英粒径为1~3mm,中颗粒熔融石英粒径为0.1~1mm,小颗粒熔融石英粒径为400目。
进一步地,步骤(1)所述石墨烯片改性纳米氧化铝的制备方法为:在纳米氧化铝粉中加入0.25-3.0wt%的石墨烯片,放入高频感应加热机中,1500℃下热处理1~2h。
进一步地,所述负载镍的多壁碳纳米管的制备方法为:S1、取多壁碳纳米管和硫酸镍置于聚四氟乙烯内胆中,加入80wt%水合肼作为还原剂,再加适量重蒸水稀释溶液,盖上内胆盖子装入不锈钢反应釜,放入反应炉中,反应温度控制在120℃±2℃,反应8~12h后取出,抽滤、依次用重蒸水、乙醇反复清洗,烘干后备用。
进一步地,步骤(1)所述纳米氧化镁、纳米氧化钛、纳米氧化钒的粒径均为200~500nm。
性能测试
①荷软温度
根据GB/T 5989-2008示差升温法测试耐火材料的荷重软化温度。将试样制作成中心带通孔的圆柱体,直径Φ50mm,高度50mm,中心通孔直径Φ12~Φ12mm,并与圆柱体同轴。对试样施加0.2MPa的压力,升温程序:≤1000℃时,升温速率为10℃/min;>1000℃时,升温速率为5℃/min,直至试验结束。试样变形量为0.6%时,记录结果。
②显气孔率
根据GB/T 2997-2000)和ISO 5017测试气孔率。使用50mm3的立方体试样,先称量干燥试样的质量m1,然后让试样在容器中抽真空,在加入水充分饱和试样,称量水饱和试样的质量在水中的悬浮重量m2以及水饱和试样在空气中的质量m3。显气孔率的计算公式为:
Figure BDA0002591405340000081
体积密度的计算公式为:
Figure BDA0002591405340000082
式中πa——耐火材料砖的显气孔率,%;ρb——耐火材料砖的体积密度,g/cm3;m1——干燥试样的质量,g;;m2——水饱和试样的悬浮质量,g;;m3——饱和试样在空气中的质量,g。
③常温耐压强度
耐火材料的常温耐压强度按GB/T 5072,GB/T 3001规定的方法测定。在机械或液压试验机上以规定的加压速率对圆形或者方形的试样加荷,直到试样破碎。根据记录的最大载荷和试样受载荷的面积,用公式(3)计算试样的耐压强度:
Figure BDA0002591405340000083
式中S——试样的耐压强度,MPa;P——试样破碎时的最大载荷,N;A1,A2——分别为试样上下受压面的面积,mm2
④高温抗折强度
高温抗折强度根据GB/T 3002~2004进行测试。将经过高温烧成并冷却的条形试样按规定间隔置于可移动间距为125mm的两个下刀口的滑板上装进试验炉内,调节试样与上刀口的间距不小于5mm。加热到1350℃时保温30min后,将试样对称地置于下刀口上,使上刀口在试样的压力面中部垂直均匀加荷直至断裂,记录断裂时的最大载荷。按照公式(4)计算抗折强度:
Figure BDA0002591405340000091
式中,Re——抗折强度,MPa;Fmax——试样断裂时的最大载荷,N;Ls——支承刀口之间的距离,mm;b——试样的宽度,mm;h——试样的高度,mm。
⑤抗热震性能
试样干燥:试样于110±5℃,或允许的较高的温度下干燥至恒重。干燥后式样不能受潮。
试样急热过程:将干燥后的试样,放入预加热至200~300℃的干燥箱内至少保持2h。加热炉预加热至950±10℃保温15min后,迅速将试样移入炉膛内。立即关闭炉门,炉温下降不应大于0℃。5min内将炉温升至950±10℃。试样在此温度下保持30min。
试样的急冷过程:将试样迅速从炉膛内取出,用冷空气吹5min。
重复以上冷热交替实验5次,试样在热冷交替的过程中,严禁发生碰撞、摔裂等外力损伤。
试样的常温耐压强度的保持率来表示抗热震性的好坏。计算公式如下:
Figure BDA0002591405340000092
式中,σFR——常温抗压强度保持率,%;σFa——热震后试样的常温抗压强度,MPa;σFb——热震前试样的常温抗压强度,MPa。
⑥抗水化性能
将20ml的小烧杯洗干净放干燥箱内烘干至恒重,试样破碎过40目筛,要筛上样,称取10g~50g(m1),放入烧杯中,再将烧杯放置20℃、90%湿度的恒温恒湿箱中72h,水化完成后将试样放入干燥箱内,烘干至恒重(m2)。试样的水化增重率为:
Figure BDA0002591405340000093
式中,ψ(%)——试样的水化增重率,%;m1——试样水化前的质量,g;m2——试样水化后的质量,g。
⑦抗腐蚀性能
根据国标GB/T14983-2008中的熔碱坩埚法对样品进行抗碱腐蚀性测试。试样的抗熔碱性以试样的质量变化率mr表示,数值以%计,按式(7)计算:
Figure BDA0002591405340000094
式中,mr——试样的质量变化率;m——抗碱试验前试验的质量,g;m1——抗碱试验后试样的质量,g。
对实施例1~3制得的高强度耐火材料砖样品进行上述性能测试,测试结果如下表1所示:
表1
检测项 实施例1 实施例2 实施例3
荷软温度(℃) 1792 1795 1791
显气孔率π<sub>a</sub>(%) 2.43 2.28 2.67
常温耐压强度S(MPa) 172.35 174.64 171.52
高温抗折强度Re(MPa) 18.3 18.8 17.6
抗热震性能σ<sub>FR</sub>(%) 84.43 85.20 84.85
抗水化性能ψ(%) 10.4 9.9 10.7
抗腐蚀性能m<sub>r</sub> 3.8 4.1 4.2
从表1可以看出,本发明实施例1~3制得的高强度耐火材料砖荷软温度大于1700℃,显气孔率低于3%,常温耐压强度大于170MPa,高温抗折强度大于18MPa,抗热震和抗水化性能优异。
对比例1
除步骤(1)红柱石粒径均为1~3mm,即用大颗粒红柱石替换小颗粒红柱石外,其余同实施例2。
对比例2
除步骤(1)红柱石粒径均为0.1~1mm,即用小颗粒红柱石替换大颗粒红柱石外,其余同实施例2。
对比例3
除步骤(1)熔融石英粒径均为1~3mm,即用大颗粒熔融石英替换中颗粒和小颗粒熔融石英外,其余同实施例2。
对比例4
除步骤(1)熔融石英粒径均为0.1~1mm,即用中颗粒熔融石英替换大颗粒和小颗粒熔融石英外,其余同实施例2。
对比例5
除步骤(1)熔融石英粒径均为400目,即用小颗粒熔融石英替换大颗粒和中颗粒熔融石英外,其余同实施例2。
对比例6
除步骤(1)用微米级氧化镁、氧化钛、氧化钒替换粒径为200~500nm的纳米氧化镁、纳米氧化钛、纳米氧化钒外,其余同实施例2。
对对比例1~6制得的耐火材料砖样品进行上述性能测试,测试结果如下表2所示:
表2
Figure BDA0002591405340000111
从表2可以看出,本发明对比例1~6制得耐火材料显气孔率随中颗粒和小颗粒用量增加而减小,但是中颗粒和小颗粒用量增加后,耐火材料砖的常温耐压强度和高温抗折强度急剧下降,抗热震性能也大大减弱,这可能是由于不含大颗粒时,材料在受压时微裂纹容易穿过中细颗粒,导致材料开裂崩溃。对比例6纳米颗粒替换为微米颗粒,表层致密度下降,抗水化性能大大减弱,显气孔率增大,耐压强度、高温抗折强度和抗热震性能均有大幅下降,说明材料表层的致密度对材料的整体性能有较大影响。
对比例7
本对比例制备方法包括以下步骤:
(1)配料:以下份数均为重量份数,将大颗粒红柱石9份、大颗粒熔融石英21份、小颗粒红柱石12份、中颗粒熔融石英8份、小颗粒熔融石英15份、石墨烯片改性纳米氧化铝7份、负载镍的多壁碳纳米管12份混合均匀,加入168份的无水乙醇,42份的研磨球,采用震击式球磨仪研磨,研磨时间1h,将研磨后的物料在70℃下烘干,然后将4份糊精加入烘干的物料中,搅拌使物料表面湿润,得物料A;
将纳米氧化镁10份、纳米氧化钛4份、纳米氧化钒2份混合均匀后,加入32份的质量分数为50%的油酸溶液,采用纳米研磨机研磨3h,将研磨后的物料在70℃下烘干,然后将3份碱性纳米硅溶胶加入烘干的物料中,搅拌使物料表面湿润,得物料B;
(2)铺料:将物料B在模具底部平铺一层,之后再平铺一层物料A,最上层平铺一层物料B;
(3)制坯:在真空度为0.1MPa,压强100MPa下压制成型,制得耐火材料砖坯体;
(4)烧结:将耐火材料砖坯体在120℃烘烤8h,再转入高温炉1300℃下烧结4h,烧结完成后自然冷却、切割,即得耐火材料砖。
进一步地,所述大颗粒红柱石粒径为1~3mm,小颗粒红柱石粒径为0.1~1mm。
进一步地,所述大颗粒熔融石英粒径为1~3mm,中颗粒熔融石英粒径为0.1~1mm,小颗粒熔融石英粒径为400目。
进一步地,所述石墨烯片改性纳米氧化铝的制备方法为:在纳米氧化铝粉中加入0.25-3.0wt%的石墨烯片,放入高频感应加热机中,1500℃下热处理1~2h。
进一步地,所述负载镍的多壁碳纳米管的制备方法为:S1、取多壁碳纳米管和硫酸镍置于聚四氟乙烯内胆中,加入80wt%水合肼作为还原剂,再加适量重蒸水稀释溶液,盖上内胆盖子装入不锈钢反应釜,放入反应炉中,反应温度控制在120℃±2℃,反应8~12h后取出,抽滤、依次用重蒸水、乙醇反复清洗,烘干后备用。
进一步地,所述纳米氧化镁、纳米氧化钛、纳米氧化钒的粒径均为200~500nm。
对比例8
本对比例制备方法包括以下步骤:
(1)配料:以下份数均为重量份数,将大颗粒红柱石9份、大颗粒熔融石英21份、小颗粒红柱石12份、中颗粒熔融石英8份、小颗粒熔融石英15份、石墨烯片改性纳米氧化铝7份、负载镍的多壁碳纳米管12份混合均匀,加入168份的无水乙醇,42份的研磨球,采用震击式球磨仪研磨,研磨时间1h,将研磨后的物料在70℃下烘干,然后将4份糊精加入烘干的物料中,搅拌使物料表面湿润,得物料A;
将纳米氧化镁10份、纳米氧化钛4份、纳米氧化钒2份混合均匀后,加入32份的质量分数为50%的油酸溶液,采用纳米研磨机研磨3h,将研磨后的物料在70℃下烘干,然后将3份碱性纳米硅溶胶加入烘干的物料中,搅拌使物料表面湿润,得物料B;
(2)铺料:将物料A与物料B混合均匀后,平铺到模具中;
(3)制坯:在真空度为0.1MPa,压强100MPa下压制成型,制得耐火材料砖坯体;
(4)烧结:将耐火材料砖坯体在120℃烘烤8h,再转入高温炉1300℃下烧结4h,烧结完成后自然冷却、切割,即得耐火材料砖。
进一步地,所述大颗粒红柱石粒径为1~3mm,小颗粒红柱石粒径为0.1~1mm。
进一步地,所述大颗粒熔融石英粒径为1~3mm,中颗粒熔融石英粒径为0.1~1mm,小颗粒熔融石英粒径为400目。
进一步地,所述石墨烯片改性纳米氧化铝的制备方法为:在纳米氧化铝粉中加入0.25-3.0wt%的石墨烯片,放入高频感应加热机中,1500℃下热处理1~2h。
进一步地,所述负载镍的多壁碳纳米管的制备方法为:S1、取多壁碳纳米管和硫酸镍置于聚四氟乙烯内胆中,加入80wt%水合肼作为还原剂,再加适量重蒸水稀释溶液,盖上内胆盖子装入不锈钢反应釜,放入反应炉中,反应温度控制在120℃±2℃,反应8~12h后取出,抽滤、依次用重蒸水、乙醇反复清洗,烘干后备用。
进一步地,所述纳米氧化镁、纳米氧化钛、纳米氧化钒的粒径均为200~500nm。
对比例9
除步骤(4)烧结高温炉温度为1100℃外,其余同实施例2。
对比例10
除步骤(4)烧结高温炉温度为1600℃外,其余同实施例2。
对对比例7~10制得的耐火材料砖样品进行上述性能测试,测试结果如下表3所示:
表3
检测项 实施例2 对比例7 对比例8 对比例9 对比例10
荷软温度(℃) 1795 1620 1684 1533 1796
显气孔率π<sub>a</sub>(%) 2.28 8.05 9.26 2.49 2.25
常温耐压强度S(MPa) 174.64 100.63 89.27 164.54 175.03
高温抗折强度Re(MPa) 18.8 13.4 12.8 17.9 18.7
抗热震性能σ<sub>FR</sub>(%) 85.20 73.85 68.46 79.82 85.18
抗水化性能ψ(%) 9.9 13.8 14.7 10.5 9.7
抗腐蚀性能m<sub>r</sub> 4.1 7.2 8.5 5.6 4.0
从表3可以看出,对比例7和对比例8制得的耐火材料砖各项性能均不及实施例2,表明本发明分级混料及分层铺料对提升耐火材料砖的性能起到关键作用;对比例9烧结温度较低,耐火材料砖的显气孔率较高,抗水化性能较差,耐压强度和高温抗折强度也明显降低,这可能是由于材料结构不够致密,导致各项性能变差;对比例10烧结温度较高,除显气孔率略有下降外,其余各项性能与实施例2相比没有明显提升,从能源节约的角度选定烧结温度为1200~1500℃。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,本领域普通技术人员对本发明的技术方案所做的其他修改或者等同替换,只要不脱离本发明技术方案的精神和范围,均应涵盖在本发明的权利要求范围当中。

Claims (8)

1.一种高强度耐火材料砖,其特征在于,由以下重量份的原料制成:大颗粒红柱石6~12份、小颗粒红柱石9~18份、大颗粒熔融石英15~30份、中颗粒熔融石英5~10份、小颗粒熔融石英10~20份、石墨烯片改性纳米氧化铝5~9份、负载镍的多壁碳纳米管9~14份、纳米氧化镁6~14份、纳米氧化钛3~5份、纳米氧化钒2~3份、结合剂5~9份;
所述大颗粒红柱石粒径为1~3 mm,小颗粒红柱石粒径为0.1~1 mm;所述大颗粒熔融石英粒径为1~3 mm,中颗粒熔融石英粒径为0.1~1 mm,小颗粒熔融石英粒径为400目;所述纳米氧化镁、纳米氧化钛、纳米氧化钒的粒径均为200~500 nm;
所述的高强度耐火材料砖的制备方法,具体包括以下步骤:
(1)配料:将大颗粒红柱石、大颗粒熔融石英混合均匀,采用震击式球磨仪研磨后烘干,然后将3~5份结合剂A加入烘干的物料中,搅拌使物料表面湿润,得物料1;
将小颗粒红柱石、中颗粒熔融石英混合均匀,采用震击式球磨仪研磨后烘干,得物料2;
将小颗粒熔融石英、石墨烯片改性纳米氧化铝、负载镍的多壁碳纳米管混合均匀,采用震击式球磨仪研磨后烘干,得物料3;
将纳米氧化镁、纳米氧化钛、纳米氧化钒混合均匀,采用纳米研磨机研磨后烘干,然后将2~4份结合剂B加入烘干的物料中,搅拌使物料表面湿润,得物料4;
(2)铺料:将物料4在模具底部平铺一层,之后再平铺一层物料3,再平铺一层物料2,最后平铺一层物料1,接着平铺一层物料2,再平铺一层物料3,最上层平铺一层物料4;
(3)制坯:真空压制成型,制得耐火材料砖坯体;
(4)烧结:将耐火材料砖坯体在110~130 ℃烘烤4~12 h,再转入高温炉1200~1500 ℃下烧结3~5 h,烧结完成后自然冷却、切割,即得耐火材料砖。
2.根据权利要求1所述的高强度耐火材料砖,其特征在于,所述石墨烯片改性纳米氧化铝的制备方法为:在纳米氧化铝粉中加入0.25-3.0 wt%的石墨烯片,放入高频感应加热机中,1500 ℃下热处理1~2 h。
3.根据权利要求1所述的高强度耐火材料砖,其特征在于,所述负载镍的多壁碳纳米管的制备方法为:S1、取多壁碳纳米管和硫酸镍置于聚四氟乙烯内胆中,加入80wt%水合肼作为还原剂,再加适量重蒸水稀释溶液,盖上内胆盖子装入不锈钢反应釜,放入反应炉中,反应温度控制在120 ℃±2 ℃,反应8~12 h后取出,抽滤、依次用重蒸水、乙醇反复清洗,烘干后备用。
4.根据权利要求1所述的高强度耐火材料砖,其特征在于,所述结合剂包括结合剂A和结合剂B;结合剂A为聚合氯化铝、糊精、聚乙二醇中的一种或几种;结合剂B为碱性纳米硅溶胶。
5.根据权利要求1所述的高强度耐火材料砖的制备方法,其特征在于,步骤(1)中采用震击式球磨仪研磨的具体操作为:加入物料重量2倍的助磨剂,物料重量一半的研磨球,采用震击式球磨仪研磨,将研磨后的物料在60~80 ℃下烘干。
6.根据权利要求1所述的高强度耐火材料砖,其特征在于,步骤(1)中采用震击式球磨仪研磨所用的助磨剂为无水乙醇,研磨时间0.5~2 h;步骤(1)中采用纳米研磨机研磨所用的助磨剂为质量分数为40%~60%的油酸溶液,研磨时间2~4 h。
7.根据权利要求1所述的高强度耐火材料砖,其特征在于,步骤(1)中研磨后物料的烘干温度为60~80 ℃。
8.根据权利要求1所述的高强度耐火材料砖,其特征在于,步骤(3)中真空压制的真空度为0~0.01 MPa,压制的强度为60~130 MPa。
CN202010696759.3A 2020-07-20 2020-07-20 一种高强度耐火材料砖及其制备方法 Active CN111704448B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010696759.3A CN111704448B (zh) 2020-07-20 2020-07-20 一种高强度耐火材料砖及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010696759.3A CN111704448B (zh) 2020-07-20 2020-07-20 一种高强度耐火材料砖及其制备方法

Publications (2)

Publication Number Publication Date
CN111704448A CN111704448A (zh) 2020-09-25
CN111704448B true CN111704448B (zh) 2022-03-01

Family

ID=72546726

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010696759.3A Active CN111704448B (zh) 2020-07-20 2020-07-20 一种高强度耐火材料砖及其制备方法

Country Status (1)

Country Link
CN (1) CN111704448B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113601693B (zh) * 2021-10-11 2021-12-28 佛山市东鹏陶瓷有限公司 一种分区分层布料制备强韧化岩板的工艺技术
EP4431255A1 (en) * 2022-12-16 2024-09-18 Kuraray Noritake Dental Inc. Oxide-ceramic molded body manufacturing method
CN116253561B (zh) * 2022-12-28 2024-01-26 宜兴市隆昌耐火材料有限公司 用于石膏制硫酸回转窑的环保型复合耐火砖的生产工艺

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110089243A (ko) * 2011-07-13 2011-08-05 이재환 일라이트-에어로젤 도료 조성물
CN103073314A (zh) * 2013-02-17 2013-05-01 濮阳濮耐高温材料(集团)股份有限公司 一种碳复合耐火材料的制备方法及其得到的产品
CN105036771A (zh) * 2015-07-09 2015-11-11 长兴泓矿炉料有限公司 一种耐火材料及其制备方法
CN105036716A (zh) * 2015-07-09 2015-11-11 长兴泓矿炉料有限公司 一种耐腐蚀耐火材料及其制备方法
CN105908041A (zh) * 2016-04-27 2016-08-31 富耐克超硬材料股份有限公司 高韧性聚晶复合材料和高韧性聚晶刀片及其制备方法
CN106278299A (zh) * 2016-07-21 2017-01-04 济源市金峰耐火材料有限公司 红柱石复合耐火砖及其制备方法和应用
CN106587960A (zh) * 2016-12-09 2017-04-26 新昌县永佳耐火材料厂 一种抗热震耐火砖及其制备方法
CN109053060A (zh) * 2018-10-18 2018-12-21 合肥慧林建材有限公司 一种高强度耐腐蚀水泥砖及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9663723B2 (en) * 2015-08-26 2017-05-30 King Fahd University Of Petroleum And Minerals Method for removing sulfur compounds from fuel using an adsorbent
CN107555958A (zh) * 2017-09-02 2018-01-09 佛山市嘉亿艺术陶瓷研究有限公司 一种陶器用莫来石纤维增韧陶土

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110089243A (ko) * 2011-07-13 2011-08-05 이재환 일라이트-에어로젤 도료 조성물
CN103073314A (zh) * 2013-02-17 2013-05-01 濮阳濮耐高温材料(集团)股份有限公司 一种碳复合耐火材料的制备方法及其得到的产品
CN105036771A (zh) * 2015-07-09 2015-11-11 长兴泓矿炉料有限公司 一种耐火材料及其制备方法
CN105036716A (zh) * 2015-07-09 2015-11-11 长兴泓矿炉料有限公司 一种耐腐蚀耐火材料及其制备方法
CN105908041A (zh) * 2016-04-27 2016-08-31 富耐克超硬材料股份有限公司 高韧性聚晶复合材料和高韧性聚晶刀片及其制备方法
CN106278299A (zh) * 2016-07-21 2017-01-04 济源市金峰耐火材料有限公司 红柱石复合耐火砖及其制备方法和应用
CN106587960A (zh) * 2016-12-09 2017-04-26 新昌县永佳耐火材料厂 一种抗热震耐火砖及其制备方法
CN109053060A (zh) * 2018-10-18 2018-12-21 合肥慧林建材有限公司 一种高强度耐腐蚀水泥砖及其制备方法

Also Published As

Publication number Publication date
CN111704448A (zh) 2020-09-25

Similar Documents

Publication Publication Date Title
CN111704448B (zh) 一种高强度耐火材料砖及其制备方法
Liang et al. Fabrication of SiC reticulated porous ceramics with multi-layered struts for porous media combustion
Bag et al. Study on low carbon containing MgO-C refractory: Use of nano carbon
CN107032810B (zh) 一种粘结性能优良的烧结大烟道用喷补料及制备方法
Ludwig et al. Recycled magnesia-carbon aggregate as the component of new type of MgO-C refractories
US8821633B2 (en) Cast bodies, castable compositions, and methods for their production
CN102161590B (zh) 干熄焦装置关键部位用莫来石-红柱石制品及其制法
Chen et al. Improved thermal shock resistance of MgO–C refractories with addition of calcium magnesium aluminate (CMA) aggregates
CN111792923B (zh) 一种耐火材料砖及其制备方法
CN114163228B (zh) 一种铝钙碳质转炉挡渣滑板及其制备方法
CN1050591C (zh) 烧成微孔铝炭砖及其制作方法
CN111548182A (zh) 一种多孔陶瓷及其制备方法
CN106830955B (zh) 一种微波干燥制备不烧改性高纯镁铝尖晶石复合砖的方法
CN109293379B (zh) 氧化铬砖及其制备方法
Chen et al. Improved comprehensive properties of Al2O3-MgO-C refractories containing lightweight tabular alumina aggregates
CN107043265B (zh) 一种冶金、有色熔炼炉用不烧镁铬砖及其制备方法
Hojamberdiev et al. Processing of refractory materials using various magnesium sources derived from Zinelbulak talc-magnesite
CN113087538B (zh) 一种含微孔骨料的钢包工作衬预制砖
CN107298587B (zh) 一种应用于有色行业的低气孔镁铬砖及其生产方法
CN112279657B (zh) 一种轻量矾土基耐火砖及其制备方法
CN114644525A (zh) 添加废弃料的复合匣钵及其制备方法
CN114478030A (zh) 一种rh精炼炉用多形貌共存的镁阿隆耐火材料制备方法
Liu et al. Optimization of matrix pore structure and its effects on physicochemical properties of corundum castables
CN112159230A (zh) 大尺寸碳硅化铝的制法及基于大尺寸碳硅化铝添加提升镁碳砖高温性能的方法
CN113416060A (zh) 一种连铸中间包镁钙质干式振动料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20220129

Address after: 266000 No. 39, Jinyuan Road, Chengyang District, Qingdao City, Shandong Province

Applicant after: Qingdao multivariate New Material Co.,Ltd.

Address before: 459007 west of Jinma coking Beimen Road, Chengliu Town, Jiyuan City, Henan Province

Applicant before: JIYUAN JINFENG REFRACTORY MATERIAL Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant