CN111699358A - 用于光学相干断层扫描成像仪的数字转换器 - Google Patents

用于光学相干断层扫描成像仪的数字转换器 Download PDF

Info

Publication number
CN111699358A
CN111699358A CN201880087659.1A CN201880087659A CN111699358A CN 111699358 A CN111699358 A CN 111699358A CN 201880087659 A CN201880087659 A CN 201880087659A CN 111699358 A CN111699358 A CN 111699358A
Authority
CN
China
Prior art keywords
signal
digital
oct
digitizer
clock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201880087659.1A
Other languages
English (en)
Inventor
D·埃比歇尔
P-F·迈斯特
T·布拉塞尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aikoris Co ltd
Acqiris SA
Original Assignee
Aikoris Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aikoris Co ltd filed Critical Aikoris Co ltd
Publication of CN111699358A publication Critical patent/CN111699358A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02062Active error reduction, i.e. varying with time
    • G01B9/02067Active error reduction, i.e. varying with time by electronic control systems, i.e. using feedback acting on optics or light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02002Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies
    • G01B9/02004Interferometers characterised by controlling or generating intrinsic radiation properties using two or more frequencies using frequency scans
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02055Reduction or prevention of errors; Testing; Calibration
    • G01B9/02062Active error reduction, i.e. varying with time
    • G01B9/02067Active error reduction, i.e. varying with time by electronic control systems, i.e. using feedback acting on optics or light
    • G01B9/02069Synchronization of light source or manipulator and detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02083Interferometers characterised by particular signal processing and presentation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/0209Low-coherence interferometers
    • G01B9/02091Tomographic interferometers, e.g. based on optical coherence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2290/00Aspects of interferometers not specifically covered by any group under G01B9/02
    • G01B2290/60Reference interferometer, i.e. additional interferometer not interacting with object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2290/00Aspects of interferometers not specifically covered by any group under G01B9/02
    • G01B2290/70Using polarization in the interferometer

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Signal Processing (AREA)
  • Automation & Control Theory (AREA)
  • Optics & Photonics (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

一种用于扫频源光学相干断层扫描(SS‑OCT)成像系统的数字转换器和处理器设备,包括:输入端,其被配置成接收OCT信号;控制输入端,其被配置成接收k时钟信号;组合器单元(130),其接收OCT信号和k时钟信号,被配置成输出复合信号;数字化单元(60),其被布置成将复合信号转换成数字复合信号(69);数据处理单元(70),其被布置成基于数字复合信号(69)来确定生成OCT信号的样本中的光密度的轮廓。

Description

用于光学相干断层扫描成像仪的数字转换器
技术领域
在实施例中,本发明涉及用于光学相干断层扫描成像系统的电子数字转换器。
背景技术
光学相干断层扫描(OCT)是新兴的成像技术,其允许不透明结构中的亚毫米和微米结构的空间重构。该成像技术已用于若干生物学和临床应用,包括眼科学(可能是最成熟的用例)、肠胃病学、心脏病学、肿瘤学、外科手术内成像以及许多其他应用,包括非生物应用。
OCT成像基于密集的数字信号处理技术,并且与先进的光学系统一起需要具有特定架构和创新算法的强大信号处理平台。
OCT使用例如具有经典迈克尔逊结构的光学干涉仪与低相干光源相结合来分析样本中通常具有生物性质的表面下的结构。
早期的OCT实现方式基于机械路径长度扫描。在这些被称为时域OCT或TD-OCT的系统中,通过线性移动(例如,迈克尔逊型)干涉仪的参考臂的反射镜来获得干涉图样,使得当参考路径长度由于样本中的反射而与光路相匹配时,获得干涉图样。轴向分辨率由光源的相干长度确定,并且通常为微米级。
在傅里叶域光学相干断层扫描(FD-OCT)中,从样本反向散射的光与参考光以固定的群延迟混合。样本中不同深度处的反射在干涉光谱中生成振荡。这些振荡的频率与原始反射的延迟或与光路相关联,使得干涉光谱的傅立叶逆变换提供深度扫描信息。
光谱域OCT(也被称为SD-OCT)使用具有短时间相干性的宽带光源(往往是超发光的发光二极管:SLED),以及通过使用光谱仪(例如,衍射光栅)测量干涉仪的检测臂中的光谱密度而获得的深度。光谱图往往由线光探测器收集,并且样本的深度分辨结构可以通过对光谱图进行傅立叶变换来得出。
另一个最近的实现方式(被称为扫频源OCT或SS-OCT)用扫频光源代替了宽带源。在这些仪器中,信号的光谱分量被在时间上分辨;干涉仪的检测臂配备有单个检测器和高速ADC,而不是配备有光谱仪,这在大小、速度、性能和成本上都具有显著优势。
一般而言,用于OCT的扫频源是可调谐激光器,其被特别设计成允许高速扫描。当前的SS-OCT源达到100 nm的波长扫描范围,具有的重复率为100 kHz,并且瞬时线宽为100pm或更佳。扫描周期通常被表示为“A扫描”,因为它提供了有关样本中的轴向轮廓的信息,而术语“B扫描”和“C扫描”指示光束相对于样本的运动,以采集样本的一切片,相应地,一体积中的光密度。
在SS-OCT系统中,通过在干涉仪检测臂处检测到的信号的光谱密度来获得样本中的轴向轮廓,如果采样点被以光波数k线性隔开,则可以通过对数字化信号进行数字傅里叶变换操作来容易地获得样本中的轴向轮廓。大多数源都无法产生扫描,在所述扫描中,瞬时波数k是时间的线性函数,并且已经想出多种多样的硬件和软件解决方案来解决此缺点。大多地,它们涉及参考信号(被表示为k时钟)的生成,该参考信号与源的光波数(或等效地,光频率)一起变化。可以利用干涉仪(例如,马赫-曾德尔干涉仪)和光检测器、或通过其他已知技术来获得k时钟信号。
已知使用高频k时钟信号来为ADC转换器提供时钟,使得与k时钟的振荡同步地对OCT信号进行采样。这确保了OCT信号的样本在k空间中均匀隔开(尽管它们的时间分布并不均匀)。然而,该技术的缺点在于,k时钟信号的时间频率应该至少为OCT信号中最高感兴趣分量的时间频率的两倍。
其他已知系统在时间上均匀地并且因此在k空间中不均匀地对k时钟和OCT信号二者进行采样,然后使用k时钟中包含的相位信息来通过合适的数字处理单元基于非均匀采样的OCT信号计算深度轮廓。此操作往往涉及提取k时钟信号的相位变化,并且在k空间中的等距位置处对OCT信号进行数字重采样。这些系统不需要高速k时钟,但是更加计算密集型,特别是在它们实时运行的情况下,并且需要附加的k时钟信号采集通道。
在几种使用情况下,需要或有利的是同时采集和处理多于一个OCT信号。这种情况特别是在检测和处理光的两个偏振分量的偏振敏感仪器中、以及在多光束仪器中出现。
关于SS-OCT系统(尤其是其中在时间上对OCT信号进行均匀采样的系统)的另一个问题与对相对于光源中的扫描的开始的采样时间进行定位的不确定性有关。一般而言,扫描的开始由A扫描触发信号标记,该信号被用来标记应该被存储的OCT信号的感兴趣区域。一般说来,已知A触发的确切时刻为近似一个采样周期,例如1 ns,这不是可忽略的误差源。
本发明的目标是提供一种具有改善的定时能力的用于光学相干断层扫描(OCT)成像系统的数字转换器和处理器设备。
发明内容
根据本发明,这些目标是借助于所附权利要求的对象而实现的。
附图说明
借助于作为示例给出并由附图图示的实施例的描述,将更好地理解本发明,其中:
图1示意性地示出了根据本发明的一方面的SS-OCT系统的视图。
图2标绘本发明的设备对其进行操作的输入波形的光谱。
图3是示出了根据本发明的数据处理系统的框图。
图4图示了生成OCT信号的过程。
图5图示了触发发生器。
具体实施方式
图1示意性地图示了根据本发明的扫频源OCT系统的结构。光源30是与干涉仪机构50光学连接的宽带扫频光源。如本领域中已知的,干涉仪50被用来分析从样本10反向散射的光,并且生成两个或更多个电OCT信号OCT1、OCT2以及k时钟信号。如本领域已知的,在控制单元40的监督下,采样光束由光学设备44聚焦,并且由受控反射镜43操纵(steer)。
OCT信号OCT1、OCT2以及k时钟信号被传输到采集单元24,该采集单元24尤其被适配成数字化和处理OCT信号。优选地,如图中所示,采集单元24与光学控制单元80包括在同一主机系统20中,尽管这不是本发明的必要特征。主机系统可以是个人计算机、工业PC或任何其他能够进行数字处理的合适设备。采集单元24优选地是模块化卡,其配备有与通信总线兼容的接口,该通信总线确保采集卡24与主机28之间的通信。在本发明的框架中可以采用任何合适的接口,包括PXI、PCI快速、USB、ThunderboltTM或任何其他合适的连接。
该系统优选地在同一采集单元24中包括数字化单元60和数据处理单元70。后者可以由专门编程的FPGA、可编程信号处理器或任何合适的计算装置来具体化。处理单元70的目的是要向应用80提供光谱图、A扫描轮廓或等效信息。然后,该信息可以显示在可视化单元90上,被存储以供进一步分析,被传输到另一个处理单元(未图示),或用于任何其他用途。
优选地,采集单元还包括:触发时间插值模块175,其功能是要改善测量的稳定性和可重复性,从而克服与数字化参考时间信息有关的数字信号处理的离散性质,如将稍后解释的。
如已经提到的,k时钟与被研究样本10的光学属性无关,而是唯一地与OCT源30发出的光的瞬时波数k有关。重要的是,OCT信号OCT1、OCT2和k时钟呈现完全不同的光谱特征,并且可以通过改变参考臂53的长度在期望的频带内偏移OCT1、OCT2信号(图1);生成k时钟信号的光学设备(例如,马赫-曾德尔干涉仪)也可以以这样的方式被选择或定尺寸使得为将k时钟光谱限制到期望的频带。根据本发明的一方面,选择这些参数以使得k时钟信号的光谱不与一个或多个OCT信号的光谱显著重叠,如图2中图示的。
图2示出了处于比OCT信号220更低的频带中的k时钟信号210。然而,本发明设想到其中k时钟信号处于高于OCT信号的频带的频带中的情况。
替换地或此外,如果k时钟信号和OCT信号在频率上稍微重叠,则可以对它们进行滤波,以使得它们的光谱不重叠,而没有显著的性能损失。
图3示出了根据本发明的采集卡24的可能实现方式。如上面提到的,采集卡接收三个模拟信号:来自光谱仪50中的对应光学检测器的OCT信号OCT1、OCT2,以及k时钟信号。
第一OCT信号OCT1被馈送到模拟/数字转换器67a的输入端。通常,在ADC之前将插入抗混叠滤波器,但是没有在图中指示该抗混叠滤波器。A/D转换器67a生成数字OCT1信号68,其是以预确定的采样率、位分辨率和缓冲区深度的OCT1信号的数字表示。在实施例中,数字信号68可以具有1 GS/s或2 GS/s的采样率,每个样本存在于12位或14位字中,并且深度为2048到8192个样本。然而,这些值不是限制性的。
代替地,将第二OCT信号OCT2和k时钟相加在一起,并且馈送到第二模拟/数字转换器67b。优选地,低通滤波器120和/或高通滤波器125确保k时钟信号和OCT2信号的光谱不重叠。所图示的示例在k时钟输入端上具有低通滤波器120,并且在OCT2输入端上具有高通滤波器125,但是,如果k时钟信号在OCT输入端之上偏移,则这些滤波器可以具有相反的种类。如果k时钟和OCT信号固有地受频率限制以使得它们的光谱不重叠,则可以有可能省略滤波器120和125。
求和节点130可以由被用作混频器或任何其他合适设备的无源50Ω分离器来具体化。第二A/D转换器67b生成数字信号69,其是OCT2+k时钟的数字表示。优选地,复合数字信号69的采样率、位分辨率和缓冲区深度与第一数字信号68的采样率、位分辨率和缓冲区深度相同,并且复合信号69的样本与第一信号68的样本同步。
A触发用信号通知源30的波长扫描周期的开始,并且被用来在其相应的数据缓冲区中对准数字信号68、69。通过触发时间插值模块175,也使它可用于数据处理单元70。
A触发可以由扫描源30或者优选地由光学检测器生成,该光学检测器被布置成确定由源30生成的光何时在扫描范围内具有预确定的波长。这样的检测器可以包括光纤布拉格光栅115、循环器110和对从光栅反射的辐射敏感的光检测器,如图5中图示的。
数据处理单元70其可以包括:信号提取滤波器150,其被布置成从数字复合信号69中提取k时钟信号;以及可能地,第二滤波器155,其被布置成从复合信号69中提取OCT2信号;k时钟处理单元77和重采样/光谱处理单元78,其被布置成产生样本10的一个或几个轮廓。尽管为了易于理解,这些元件在这里被呈现为分离的,但是它们应该在功能意义上理解,并且在实施例中可以共享公共资源。实际上,它们可以由软件部分或完全定义,而不需要由分离的物理电路来具体化。在优选实施例中,数据处理单元包括现场可编程门阵列(FPGA)。
在所呈现的示例中,因为k时钟信号的频域低于OCT信号的频域,所以信号提取滤波器150是低通滤波器,并且第二滤波器155是高通滤波器。在相反的情况下,滤波器150将是高通类型的,并且滤波器155将是低通类型的。
现在将参照图3和图4来描述数据处理单元70的流程。框77致力于处理从复合数字信号69中提取(步骤180)的k时钟信号。被标记为185的步骤在于对k空间的校准,即,对数字信号68、69的样本索引与来自源30的光的瞬时波数之间的对应性的规定,或者换句话说,基于数字k时钟信号,确定与数字OCT信号的采样时间相对应的波数的值。
例如,用以重构波数k的可能算法在于在计算k时钟信号的希尔伯特变换,选择其与k时钟的相位相对应的复自变数,并且将其展开以消除不连续性。展开的相位与波数成比例,并且可以通过应用合适的校准将其转换成波数。可以针对每个A扫描实时进行k的重构,或者从对若干个A扫描进行组合处理得到k的重构。
A扫描触发的定时信息被用来对A/D转换器66、67计时(箭头63),使得触发落在采集缓冲区中的预确定位置处。如前言中提到的,这在精确触发位置上留下了一个采样周期(例如1 ns)的不确定性。TTI单元175包括:快速TDC(时间到数字转换器),其测量A/D转换器的采样时钟与A扫描触发信号的前沿之间的时间偏移。通常,TTI单元可以以远小于采样周期的不确定性(例如,因数为10或更小)或者以低于100 ps的不确定性来确定触发的时间上的位置。
TTI单元基于触发相对于A/D转换器的采样时钟的时间位置,引入对在k空间校准步骤185中计算的波数的值的校正(阵列65)。该校正可以包括以下各项中的任何一个或多个:
•按由触发的位置给出的量来对k时钟校准进行时移,
•基于触发的位置来计算(可能不是恒定的)相移,并且将其数字地加到展开的相位,
•其他任何合适的校正。
发明人发现,这样的校正极大地改善了所得OCT轮廓的相位稳定性,这对于偏振敏感的应用而言尤其显著。
在优选实施例中,由A/D转换器以均匀隔开的时间点采样的数字信号68、69被在波数k中均匀隔开的点处进行重采样(步骤190)。然后可以基于由主机系统选择的窗口函数(步骤200)对所得矢量进行窗口化(步骤198),应用数字傅里叶变换(步骤210),检测所得光谱的幅度以及优选地还有相位(步骤220)。优选地,数据处理单元还实现背景减除(步骤230)和平均(步骤233)。
在可能的变体中,数字信号OCT1和OCT2可以被视为k空间中的非均匀样本,并且由合适的非均匀离散傅立叶变换算符处理,而不是在k中均匀地重采样然后进行DFT变换。
由于单元78在任何情况下都实行光谱选择,因此考虑到k时钟210的贡献在感兴趣的深度范围内将可忽略,可以有可能省略输入高通滤波器155。然而,对t采样的数据而不是在k空间中进行操作的前置滤波器155可能是有利的。
经处理的数据被存储在存储器单元235中,主机系统从那里可以通过卡的数据接口(例如,PCIe总线)来收集它们(步骤240)。在优选实施例中,重采样的OCT信号和/或原始OCT信号(箭头232)以及复数DFT输出(箭头234)在存储器中是可寻址的,并且可以根据请求上载到主机。
尽管已经在双通道OCT的重要用例中描述了本发明,但这不是必要的限制。实际上,本发明可以被有用地应用于单通道OCT系统,其中单个ADC将组合了OCT信号和k时钟信号的复合信号数字化。而且,本发明包括具有任意数量N个OCT通道、具有N个A/D转换器的系统,其中至少一个转换器将组合了不同频带中的OCT信号和k时钟信号的复合信号数字化。
附图中使用的参考标记
10 样本
24 采集卡
28 主机系统,PC
30 扫频源
40 光学控制单元
43 检流计反射镜
44 光学设备
50 干涉仪/检测器/循环器
53 参考臂
60 数字化单元
63 A/D开始
65 触发时间补偿
66 A/D转换器
67 A/D转换器
68 数字复合信号
69 数字OCT1信号
70 数据处理单元
77 k时钟处理
78 光谱处理单元
80 应用逻辑
90 显示器
110 循环器
115 光纤布拉格光栅
120 低通滤波器
125 高通滤波器
130 模拟和
150 数字低通滤波器:
155 数字高通滤波器
161 OCT1信号
164 OCT2+k时钟信号
168 A扫描触发
175 触发时间插值
180 时钟提取
185 k空间线性化和校准
190 重采样
198 窗口化
200来自主机的参数
210 DFT
220 幅度/相位计算
230 背景减除
233 平均
235 存储器
240 去往主机。

Claims (9)

1.一种用于扫频源光学相干断层扫描(SS-OCT)成像系统的数字转换器和处理器设备,包括:
输入端,其被配置成接收OCT信号;
控制输入端,其被配置成接收k时钟信号;
组合器单元(130),其接收OCT信号和k时钟信号,被配置成输出复合信号;
数字化单元(60),其被布置成将复合信号转换成数字复合信号(69);
数据处理单元(70),其被布置成基于数字复合信号(69)来确定生成OCT信号的样本的断层轮廓。
2.根据前述权利要求所述的数字转换器和处理器设备,其中,数据处理单元(70)包括:一个或多个数字滤波器(150、155),其被布置成从数字复合信号中提取数字OCT信号和数字k时钟信号,所述数字OCT信号表示OCT信号对数字复合信号的贡献,并且所述数字k时钟信号表示k时钟信号对数字复合信号的贡献。
3.根据前述权利要求所述的数字转换器和处理器,其中,数据处理单元(70)被布置成基于数字k时钟信号来确定与数字OCT信号的采样时间相对应的波数(k)的值。
4.根据前述权利要求所述的数字转换器和处理器,包括:触发输入端,以用于接收触发信号(A-trig),所述触发信号标记扫频光源(30)的扫描的发生,其中,数字化单元(60)生成数字复合信号作为与A/D时钟同步的样本的向量,触发落在向量中的预确定的位置处。
5.根据前述权利要求所述的数字转换器和处理器,其中,数据处理单元包括:触发时间插值单元(175),其被布置成确定触发信号(A-trig)相对于A/D时钟的时间位置,并且基于所述位置对与数字OCT信号的采样时间相对应的波数(k)的值应用校正。
6.根据前述权利要求中任一项所述的数字转换器和处理器,其中,数字处理器被布置成计算重采样的数字OCT信号,其样本是按均匀隔开的波数获取的。
7.根据前述权利要求中任一项所述的数字转换器和处理器,其中,数字处理器被布置成对数字OCT信号计算非均匀离散傅立叶变换。
8.根据前述权利要求中任一项所述的数字转换器和处理器设备,包括:至少一个附加输入端,以用于采集至少一个附加OCT信号。
9.根据前述权利要求中任一项所述的数字转换器和处理器设备,包括:一个触发输入端,其被布置成检测指示扫频OCT光源的A扫描的开始的触发信号,并且其中,数字处理单元被布置成考虑到触发信号的到达时间来确定光密度的轮廓。
CN201880087659.1A 2018-01-26 2018-01-26 用于光学相干断层扫描成像仪的数字转换器 Pending CN111699358A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2018/050489 WO2019145754A1 (en) 2018-01-26 2018-01-26 Digitizer for an optical coherence tomography imager

Publications (1)

Publication Number Publication Date
CN111699358A true CN111699358A (zh) 2020-09-22

Family

ID=61168142

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880087659.1A Pending CN111699358A (zh) 2018-01-26 2018-01-26 用于光学相干断层扫描成像仪的数字转换器

Country Status (6)

Country Link
US (1) US11397076B2 (zh)
EP (1) EP3743678A1 (zh)
JP (1) JP7252977B2 (zh)
CN (1) CN111699358A (zh)
CA (1) CA3088605A1 (zh)
WO (1) WO2019145754A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112587086A (zh) * 2021-03-04 2021-04-02 季华实验室 一种双模式偏振光学相干成像系统及其成像方法
CN112603255A (zh) * 2021-03-04 2021-04-06 季华实验室 一种可消除固有噪声的光学相干成像系统及成像方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150109621A1 (en) * 2012-03-21 2015-04-23 Ludwig Maximilians Universität Swept source oct system and method with phase-locked detection
CN104854423A (zh) * 2012-12-06 2015-08-19 周超 空分复用光学相干断层扫描设备及方法
US20160025478A1 (en) * 2014-07-25 2016-01-28 Axsun Technologies Llc Real Time FPGA Resampling for Swept Source Optical Coherence Tomography
CN106949966A (zh) * 2017-03-24 2017-07-14 中国科学院上海光学精密机械研究所 扫频光学相干层析成像系统的光谱标定方法
US20170241763A1 (en) * 2016-02-24 2017-08-24 Kabushiki Kaisha Topcon Methods and apparatus for phase stabilized swept-source optical coherence tomography (ss-oct) including rescaling and dynamic range enhancement
US20170307353A1 (en) * 2016-04-25 2017-10-26 Kabushiki Kaisha Topcon Swept-source optical coherence tomography (ss-oct) phase stabilization with reference signal calibration

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8687666B2 (en) * 2010-12-28 2014-04-01 Axsun Technologies, Inc. Integrated dual swept source for OCT medical imaging
JP2013181790A (ja) * 2012-02-29 2013-09-12 Systems Engineering Inc 周波数走査型oct用サンプリングクロック発生装置の使用方法、周波数走査型oct用サンプリングクロック発生装置
JP6047059B2 (ja) * 2013-04-22 2016-12-21 日本電信電話株式会社 データ処理装置およびリサンプリング方法
JP6465557B2 (ja) 2014-04-08 2019-02-06 株式会社トーメーコーポレーション 断層撮影装置
JP6426974B2 (ja) * 2014-10-20 2018-11-21 株式会社トプコン データ処理方法及びoct装置
JP6779662B2 (ja) * 2016-05-23 2020-11-04 キヤノン株式会社 撮像装置、撮像装置の制御方法、及びプログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150109621A1 (en) * 2012-03-21 2015-04-23 Ludwig Maximilians Universität Swept source oct system and method with phase-locked detection
CN104854423A (zh) * 2012-12-06 2015-08-19 周超 空分复用光学相干断层扫描设备及方法
US20160025478A1 (en) * 2014-07-25 2016-01-28 Axsun Technologies Llc Real Time FPGA Resampling for Swept Source Optical Coherence Tomography
US20170241763A1 (en) * 2016-02-24 2017-08-24 Kabushiki Kaisha Topcon Methods and apparatus for phase stabilized swept-source optical coherence tomography (ss-oct) including rescaling and dynamic range enhancement
US20170307353A1 (en) * 2016-04-25 2017-10-26 Kabushiki Kaisha Topcon Swept-source optical coherence tomography (ss-oct) phase stabilization with reference signal calibration
CN106949966A (zh) * 2017-03-24 2017-07-14 中国科学院上海光学精密机械研究所 扫频光学相干层析成像系统的光谱标定方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112587086A (zh) * 2021-03-04 2021-04-02 季华实验室 一种双模式偏振光学相干成像系统及其成像方法
CN112603255A (zh) * 2021-03-04 2021-04-06 季华实验室 一种可消除固有噪声的光学相干成像系统及成像方法
CN112603255B (zh) * 2021-03-04 2021-07-20 季华实验室 一种可消除固有噪声的光学相干成像系统及成像方法

Also Published As

Publication number Publication date
US20210055096A1 (en) 2021-02-25
US11397076B2 (en) 2022-07-26
EP3743678A1 (en) 2020-12-02
JP2021517254A (ja) 2021-07-15
CA3088605A1 (en) 2019-08-01
JP7252977B2 (ja) 2023-04-05
WO2019145754A1 (en) 2019-08-01

Similar Documents

Publication Publication Date Title
EP3172527B1 (en) Real time fpga resampling for swept source optical coherence tomography
EP2914925B1 (en) Method and apparatus for processing the signal in spectral domain interferometry and method and apparatus for spectral domain optical coherence tomography
CN102151121B (zh) 基于干涉光谱相位信息的光谱标定方法及系统
CN202027563U (zh) 一种基于干涉光谱相位信息的光谱标定系统
US8139226B2 (en) Soft clock delay for OCT system and method therefor
US8457440B1 (en) Method and system for background subtraction in medical optical coherence tomography system
JP5557397B2 (ja) 半透明物質の画像化の方法および装置
US11397076B2 (en) Digitizer for an optical coherence tomography imager
JP6292860B2 (ja) 光干渉断層計
Cao et al. Non-harmonic analysis applied to optical coherence tomography imaging
EP2799838B1 (en) Information signal generating method
JP5358890B2 (ja) 干渉分光光度計
JP6242644B2 (ja) 画像計測方法および画像計測装置
JP2010223670A (ja) 光断層画像表示システム
JP2019063044A (ja) Oct装置、およびoct装置制御プログラム
US11054243B2 (en) Electronic device for automatic calibration of swept-source optical coherence tomography systems
KR101709973B1 (ko) 혼합 빔 스캐닝 광 가간섭 단층촬영 방법 및 장치
Wu et al. Swept source optical coherence tomography based on non-uniform discrete fourier transform
JP2017201257A (ja) 光断層像撮影装置
JPH05164614A (ja) 時間分解フ−リエ変換分光測定装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200922

RJ01 Rejection of invention patent application after publication