CN111697092A - 具有非穿透沟槽的窄边缘电流型硅pin辐射探测器及其制备方法 - Google Patents

具有非穿透沟槽的窄边缘电流型硅pin辐射探测器及其制备方法 Download PDF

Info

Publication number
CN111697092A
CN111697092A CN202010498778.5A CN202010498778A CN111697092A CN 111697092 A CN111697092 A CN 111697092A CN 202010498778 A CN202010498778 A CN 202010498778A CN 111697092 A CN111697092 A CN 111697092A
Authority
CN
China
Prior art keywords
region
silicon
silicon wafer
semiconductor
radiation detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010498778.5A
Other languages
English (en)
Other versions
CN111697092B (zh
Inventor
于民
李铁松
刘佳乐
王景玺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Peking University
Original Assignee
Peking University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peking University filed Critical Peking University
Priority to CN202010498778.5A priority Critical patent/CN111697092B/zh
Publication of CN111697092A publication Critical patent/CN111697092A/zh
Application granted granted Critical
Publication of CN111697092B publication Critical patent/CN111697092B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/115Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation
    • H01L31/117Devices sensitive to very short wavelength, e.g. X-rays, gamma-rays or corpuscular radiation of the bulk effect radiation detector type, e.g. Ge-Li compensated PIN gamma-ray detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Measurement Of Radiation (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种具有非穿透沟槽的窄边缘电流型硅PIN辐射探测器及其制备方法。在I区半导体硅片的正面和背面通过离子注入工艺形成P+区和N+区,在I区半导体硅片上刻蚀形成宽度足够大的非穿透沟槽,并在沟槽表面扩散掺杂形成N+区。本发明在常规PIN结构探测器的基础上设计了非穿透沟槽结构,不仅避免了全穿透沟槽结构对支撑硅片的依赖性,简化了工艺;而且达到探测器窄边缘的目的,减小探测器的死区和所需的划片面积,同时降低了缺陷的产生,提高了探测器的收集效率。另外,非穿透沟槽表面的N+区形成低阻层,使得探测器可在高压下工作。本发明的电流型硅PIN辐射探测器可用于对收集效率和高压工作环境有需求的核辐射探测、航空航天等领域。

Description

具有非穿透沟槽的窄边缘电流型硅PIN辐射探测器及其制备 方法
技术领域
本发明涉及核辐射探测领域,具体涉及一种具有非穿透沟槽的窄边缘电流型硅PIN辐射探测器及其制备方法。
背景技术
随着半导体技术领域的不断发展,半导体辐射探测器的性能得到了大幅度提升。其中,电流型硅PIN辐射探测器由于具有结构简单、体积小、能量分辨率高、线性范围宽、脉冲时间响应快等优点,在核辐射探测、辐射防护、航空航天、环境监测等领域得到了很广泛的应用。
电流型硅PIN辐射探测器是通过对探测器外加反向偏压使其处于全耗尽状态,当辐射粒子进入探测器并被吸收以后产生相应的电子空穴对,这些电子空穴对在电场的作用下向探测器两面漂移,产生的瞬间脉冲电流信号用来估计所俘获的粒子的能量与数量。当下,随着核辐射探测器应用场景的不断更新,科学研究对电流型辐射探测器的收集效率和耐高压性能提出了更高的要求。
在电流型硅PIN辐射探测器制作过程中,通常使用金刚刀划片将探测器从晶圆片上切割分离下来,切割的过程会在探测器边缘引入杂质和缺陷,产生复合中心,这使得探测器存在较大的漏电流,限制其在高压下工作。此外,PN结界面与探测器实际边缘之间通常存在至少几百微米的距离,这就造成探测器存在较大的死区,极大影响了辐射探测器的收集效率。在三维探测器领域报道了在探测器边缘刻蚀一个宽度比较窄的穿透性沟槽,并在边缘进行高浓度的离子注入掺杂形成欧姆接触以减少死区,但穿透性的沟槽工艺需要在支撑硅片上进行操作,工艺复杂性和难度均较大。因此,为了减小划片面积和工艺操作难度,同时减小探测器死区和满足耐高压需求,我们亟需研究一种新的电流型硅PIN辐射探测器的制备方法来满足核辐射探测的应用要求。
发明内容
本发明的目的在于提供一种具有非穿透沟槽的窄边缘电流型硅PIN辐射探测器及其制备方法。相比于已报道的其他结构,该电流型硅PIN辐射探测器结构简化了工艺,减小了划片面积和死区,提高了收集效率,可在高压下工作。
本发明的技术思路如下:为减小电流型硅PIN辐射探测器在边缘区域存在的死区,可通过减小PN结界面到探测器边缘的距离来实现,但考虑到使用金刚刀划片对整个探测器侧面进行切割时会导致损伤和缺陷的产生,故本发明采用沟槽工艺在电流型硅PIN辐射探测器的边缘挖一个宽度较大的沟槽,该沟槽设计为非穿透的沟槽结构,即有限深度的沟槽,沟槽并未穿透到辐射探测器衬底最底部,设计目的在于避免了全穿透沟槽结构制作中支撑硅片的使用,简化了沟槽工艺。与此同时,通过非穿透沟槽结构设计,减小了PN结到辐射探测器边缘的距离,即减小了辐射探测器的死区,实现窄边缘效果以提高电流型硅PIN辐射探测器的收集效率。另外,为了使窄边缘的电流型硅PIN辐射探测器能在高压下工作,我们在沟槽区域进行高浓度的扩散掺杂,使得沟槽区域的表面形成低阻层,提高其击穿电压。在对本发明所设计的具有非穿透沟槽的窄边缘电流型硅PIN辐射探测器进行划片时,由于非穿透沟槽的结构设计,最终需要划片的面积大幅减小,这样一来划片造成的危害也被大大降低。
依据上述思路,为了减小划片面积和工艺操作难度,同时减小探测器死区和满足耐高压需求,本发明提供了一种具有非穿透沟槽的窄边缘电流型硅PIN辐射探测器,其结构包括I 区半导体硅片,所述I区半导体硅片的正面有掺杂形成的P+区,所述P+区之外的硅片上表面覆盖有二氧化硅钝化层;所述P+区的上面覆盖有薄金属层,该薄金属层具有场板结构;所述 I区半导体硅片的背面全部为掺杂形成的N+区;所述N+区下表面覆盖有厚金属层;在所述I 区半导体硅片上,器件的边缘处设有非穿透沟槽,并在沟槽表面全部掺杂形成N+区。
优选的,上述具有非穿透沟槽结构的窄边缘电流型硅PIN辐射探测器是针对厚PIN辐射探测器的应用而设计,故所述I区半导体硅片优选为N型硅,电阻率>1000Ω·cm,厚度250~ 300μm。
所述I区半导体硅片的正面有掺杂形成的P+区,所述P+区之外的硅片上表面覆盖有二氧化硅钝化层,所述P+区上面覆盖有薄金属层,该薄金属层具有场板结构,薄金属层与I区半导体硅片的接触面积优选小于P+区。所述薄金属层的厚度在
Figure BDA0002523967260000022
Figure BDA0002523967260000021
范围内,其材料优选为铝。
所述I区半导体硅片的背面掺杂形成N+区,优选整个I型半导体硅片的背面都掺杂形成 N+区。在N+区表面覆盖有厚金属层。所述厚金属层的厚度在0.5μm到1μm范围内,其材料优选为铝。
所述非穿透沟槽的深度小于I区半导体硅片的厚度,沟槽宽度要足够宽以保证器件达到窄边缘的效果,并且易于划片操作。在所述非穿透沟槽的表面全部扩散掺杂形成N+区。
上述具有非穿透沟槽的窄边缘电流型硅PIN辐射探测器可以通过下述方法制备:
1)在I区半导体硅片的正面和背面通过热氧化生长一层二氧化硅作为器件表面钝化层,然后在I区半导体硅片的正面通过光刻和刻蚀定义后续离子注入P+区图形;
2)在I区半导体硅片的正面通过离子注入形成P+区,在I区半导体硅片的背面通过进行离子注入形成N+区,然后进行退火;
3)在I区半导体硅片上器件的边缘处刻蚀一个不穿透I区半导体硅片的非穿透沟槽(有限深度的沟槽);
4)在非穿透沟槽的表面区域掺杂形成沟槽N+区,以形成低阻层;
5)在硅片正面光刻定义金属与P+区的接触窗口,双面腐蚀除去硅片正面窗口内的二氧化硅和硅片背面的二氧化硅;在I区半导体硅片的正面溅射一层薄金属层,然后通过光刻和刻蚀工艺形成覆盖P+区并具有场板结构的薄金属层;在I区半导体硅片的背面溅射厚金属层;
6)在非穿透沟槽内进行划片,获得具有非穿透沟槽的窄边缘电流型硅PIN辐射探测器。
在上述步骤1)中的I区半导体硅片优选N型硅,电阻率>1000Ω·cm,厚度250~300μm;在对I区半导体硅片作预处理之后,在硅片上下表面热氧化形成一层厚度
Figure BDA0002523967260000031
二氧化硅钝化层,在正面光刻探测窗口图形,并刻蚀减薄探测窗口内的二氧化硅和硅片背面的二氧化硅。
步骤2)优选在I区半导体硅片正面进行硼离子注入形成P+区,离子注入剂量优选为 1e14/cm2~1e15/cm2,注入能量优选为30KeV~50KeV;优选在硅基片背面进行磷离子注入形成N+区,注入区域优选为整个硅片背表面,离子注入剂量优选为1e14/cm2~1e15/cm2,注入能量优选为80KeV~120KeV;离子注入后去除光刻胶,然后快速退火,退火温度优选为850℃~1050℃。
步骤3)中优选通过干法刻蚀工艺(DRIE)刻蚀硅片形成非穿透沟槽,非穿透沟槽的深度小于I区半导体硅片的厚度,优选为200~250μm,宽度优选为200~400μm。
步骤4)优选在非穿透沟槽的表面区域通过扩散工艺进行掺杂,更优选进行高浓度的磷离子掺杂形成沟槽N+区,扩散工艺在高能量氛围进行,炉管温度大于800℃。
步骤5)在I区半导体硅片正面的二氧化硅层上光刻定义金属/硅接触窗口图形;优选采用BHF缓冲溶液腐蚀硅片正面金属/硅接触窗口内的二氧化硅和硅片背面的二氧化硅;常规清洗后在硅片正面溅射一薄金属层(优选为铝),厚度优选为
Figure BDA0002523967260000032
光刻、腐蚀正面金属,得到正面金属层图形;在硅片背面溅射一厚金属层(优选为铝),厚度优选为0.5~1μm。
步骤6)一般是利用金刚刀在非穿透沟槽中央进行划片,获得窄边缘电流型硅PIN辐射探测器。
和现有技术相比,本发明具有如下优点:
1)本发明在探测器边缘设计了非穿透沟槽结构,沟槽为有限深度的沟槽,未穿透到硅片的底部,这样的设计简化了穿透性沟槽结构需要在支撑硅片上进行制作的工艺,降低了工艺难度和成本,同时使得PN结界面到探测器边缘的宽度大大减小,达到电流型硅PIN辐射探测器窄边缘的设计目标,减小了探测器死区,提高了探测器对辐射粒子的收集效率。
2)本发明通过扩散工艺在沟槽的表面扩散形成N+区以达到欧姆接触的效果,减小了沟槽附近的漏电流,从而保证探测器的耐击穿性能不被损坏。通过非穿透的沟槽结构兼得电流型硅PIN辐射探测器的窄边缘和耐高压是本发明的一大特色所在。
3)本发明在非穿透沟槽的中央进行划片,极大减小了金刚刀划片的面积,从而避免了大面积划片对探测器边缘造成的污染与损伤,减小了探测器的漏电流。
附图说明
图1到图7为本发明的一种具有非穿透沟槽的窄边缘电流型硅PIN辐射探测器的具体制备流程中各步骤的结构示意图,其中:
1-I区半导体硅片,2-二氧化硅层,3-P+区(离子注入工艺),4-N+区(离子注入工艺),5-非穿透沟槽,6-沟槽N+区(扩散工艺),7-正面薄铝层电极,8-背面厚铝层电极,9-场板结构。
具体实施方式
以下结合附图所示的最佳实例对本发明的一种具有非穿透沟槽的窄边缘电流型硅PIN辐射探测器及其制备方法作进一步详述。
本实施例所制备的具有非穿透沟槽的窄边缘电流型硅PIN辐射探测器主要结构如图7所示,包括:I区半导体层硅片1和非穿透沟槽5。其中,I区半导体硅片1为高阻N型硅,厚度为300μm,电阻率为4000Ω·cm,非穿透沟槽5的深度为250μm。
I区半导体硅片1的正面通过硼掺杂(离子注入)形成P+区3,其上覆盖有薄铝层电极7,薄铝层电极7具有场板结构9,以通过分散主结边缘的电场来提高击穿电压;正面探测窗口以外区域用二氧化硅层2作钝化层。I区半导体硅片1的背面通过磷掺杂(离子注入)形成 N+区4;N+区4上覆盖有厚铝层电极8。非穿透沟槽5的深度小于I区半导体硅片1的厚度,避免了全穿透沟槽对支撑硅片的依赖性,简化了沟槽工艺,减小了工艺难度;非穿透沟槽5 的表面有通过扩散工艺形成的沟槽N+区6,以形成欧姆接触。
上述具有非穿透沟槽的窄边缘电流型硅PIN辐射探测器的具体制备方法包括下述步骤:
a.选用的I区半导体硅片1的厚度为300μm,N型硅,电阻率为4000Ω·cm,双面抛光;备片后,对I区半导体硅片1进行常规清洗预处理;在I区半导体硅片1的上下表面热氧化生长厚度为
Figure BDA0002523967260000051
的二氧化硅层2;光刻正面探测窗口图形,用等离子刻蚀法减薄探测窗口图形内的二氧化硅和硅片背面的二氧化硅,定义硅片正反面后续离子注入区域。该步骤之后的结构如图1所示。
b.利用离子注入工艺从I区半导体硅片1的正面以50KeV注入能量、1e14/cm2的注射剂量注入硼离子,形成P+区3;从背面以100KeV注入能量、1e15/cm2的注射剂量注入磷离子,形成背面N+区4;之后进行N2环境下退火1min,退火温度为900℃。该步骤之后的结构如图2所示。
c.通过光刻,腐蚀二氧化硅开窗口,利用干法腐蚀工艺DRIE在I区半导体硅片1上挖一个非穿透沟槽5,深度小于I区半导体硅片,深度为200μm,宽度为300μm。该步骤之后的结构如图3所示。
d.在非穿透沟槽5表面区域通过扩散工艺形成高掺杂的沟槽N+区6。该步骤之后的结构如图4所示。
e.在正面二氧化硅层2上光刻铝/硅接触窗口图形,将硅片浸入BHF缓冲溶液中约2min,腐蚀铝/硅接触窗口内以及I区半导体硅片1背面的二氧化硅层2。该步骤之后的结构如图5 所示。
f.在正面溅射一厚度为
Figure BDA0002523967260000052
的薄铝层,形成正面薄铝层;在背面溅射厚度为0.5μm 的厚铝层,形成背面厚铝层;光刻正面薄铝层电极7图形,用磷酸腐蚀出具有场板结构9的正面铝层图形;之后进行430℃,30min的铝合金,以形成良好的欧姆接触。该步骤之后的结构如图6所示。
g.使用金刚刀划片机在沟槽中间进行划片。该步骤之后的结构如图7所示。

Claims (10)

1.一种电流型硅PIN辐射探测器,包括I区半导体硅片,所述I区半导体硅片的正面有掺杂形成的P+区,所述P+区之外的硅片上表面覆盖有二氧化硅钝化层;所述P+区的上面覆盖有薄金属层,该薄金属层具有场板结构;所述I区半导体硅片的背面全部为掺杂形成的N+区;所述N+区下表面覆盖有厚金属层;在所述I区半导体硅片上,器件的边缘处设有非穿透沟槽,并在沟槽表面全部掺杂形成N+区。
2.如权利要求1所述的电流型硅PIN辐射探测器,其特征在于,所述I区半导体硅片为N型硅,电阻率>1000Ω·cm,厚度在250~300μm。
3.如权利要求1所述的电流型硅PIN辐射探测器,其特征在于,所述薄金属层与I区半导体硅片的接触面积小于P+区。
4.如权利要求1所述的电流型硅PIN辐射探测器,其特征在于,所述薄金属层的厚度在
Figure FDA0002523967250000011
Figure FDA0002523967250000012
Figure FDA0002523967250000013
范围内,所述厚金属层的厚度在0.5μm到1μm范围内。
5.如权利要求1所述的电流型硅PIN辐射探测器,其特征在于,所述非穿透沟槽的深度小于I区半导体硅片的厚度,宽度要易于划片操作且划片后保证器件达到窄边缘的效果。
6.权利要求1~5任一所述电流型硅PIN辐射探测器的制备方法,包括以下步骤:
1)在I区半导体硅片的正面和背面通过热氧化生长一层二氧化硅作为器件表面钝化层,然后在硅片正面通过光刻和刻蚀定义后续离子注入P+区图形;
2)在硅片正面通过离子注入形成P+区,在硅片背面通过进行离子注入形成N+区,然后退火;
3)在I区半导体硅片上器件的边缘处刻蚀一个不穿透I区半导体硅片的非穿透沟槽;
4)在非穿透沟槽的表面区域掺杂形成沟槽N+区;
5)在硅片正面光刻定义金属与P+区的接触窗口,双面腐蚀除去硅片正面窗口内的二氧化硅和硅片背面的二氧化硅;在硅片正面溅射一层薄金属层,然后通过光刻和刻蚀工艺形成覆盖P+区并具有场板结构的薄金属层;在硅片背面溅射厚金属层;
6)在非穿透沟槽内进行划片,获得电流型硅PIN辐射探测器。
7.如权利要求6所述的制备方法,其特征在于,步骤1)对I区半导体硅片作预处理之后,在硅片上下表面热氧化形成一层厚度
Figure FDA0002523967250000014
二氧化硅钝化层,在硅片正面光刻探测窗口图形,并刻蚀减薄探测窗口内的二氧化硅和硅片背面的二氧化硅。
8.如权利要求6所述的制备方法,其特征在于,在I区半导体硅片正面进行硼离子注入形成P+区,在硅基片背面进行磷离子注入形成N+区;离子注入后去除光刻胶,然后快速退火。
9.如权利要求6所述的制备方法,其特征在于,步骤3)通过干法刻蚀硅片形成非穿透沟槽,非穿透沟槽的深度为200~250μm,宽度为200~400μm。
10.如权利要求6所述的制备方法,其特征在于,步骤5)在I区半导体硅片正面的二氧化硅层上光刻定义所述接触窗口,采用BHF缓冲溶液腐蚀硅片正面所述接触窗口内的二氧化硅和硅片背面的二氧化硅;步骤6)利用金刚刀在非穿透沟槽中央进行划片。
CN202010498778.5A 2020-06-04 2020-06-04 具有非穿透沟槽的窄边缘电流型硅pin辐射探测器及其制备方法 Active CN111697092B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010498778.5A CN111697092B (zh) 2020-06-04 2020-06-04 具有非穿透沟槽的窄边缘电流型硅pin辐射探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010498778.5A CN111697092B (zh) 2020-06-04 2020-06-04 具有非穿透沟槽的窄边缘电流型硅pin辐射探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN111697092A true CN111697092A (zh) 2020-09-22
CN111697092B CN111697092B (zh) 2021-09-28

Family

ID=72478877

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010498778.5A Active CN111697092B (zh) 2020-06-04 2020-06-04 具有非穿透沟槽的窄边缘电流型硅pin辐射探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN111697092B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113871509A (zh) * 2021-09-16 2021-12-31 北京大学 双沟槽型窄边缘耐高压硅pin辐射探测器及其制备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274450A (ja) * 2000-03-23 2001-10-05 Fuji Electric Co Ltd β線検出器
US20140319642A1 (en) * 2010-01-19 2014-10-30 Osi Optoelectronics Wavelength Sensitive Sensor Photodiodes
JP3202551U (ja) * 2015-11-25 2016-02-12 株式会社島津製作所 X線検出器
WO2019003303A1 (ja) * 2017-06-27 2019-01-03 株式会社島津製作所 放射線検出器
CN109686812A (zh) * 2019-01-03 2019-04-26 北京大学 基于隧穿氧化层的键合硅pin辐射响应探测器及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274450A (ja) * 2000-03-23 2001-10-05 Fuji Electric Co Ltd β線検出器
US20140319642A1 (en) * 2010-01-19 2014-10-30 Osi Optoelectronics Wavelength Sensitive Sensor Photodiodes
JP3202551U (ja) * 2015-11-25 2016-02-12 株式会社島津製作所 X線検出器
WO2019003303A1 (ja) * 2017-06-27 2019-01-03 株式会社島津製作所 放射線検出器
CN109686812A (zh) * 2019-01-03 2019-04-26 北京大学 基于隧穿氧化层的键合硅pin辐射响应探测器及制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DEJUN HAN 等: "《Reduction of the Dead Region for Edge on Strip Detector by a Guard Ring Structure》", 《IEEE TRANSACTIONS ON ELECTRON DEVICES》 *
王景玺等: "《高性能硅PIN辐射探测器研究》", 《中国核科学技术进展报告(第六卷)核电子学与核探测技术分卷》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113871509A (zh) * 2021-09-16 2021-12-31 北京大学 双沟槽型窄边缘耐高压硅pin辐射探测器及其制备
CN113871509B (zh) * 2021-09-16 2024-03-15 北京大学 双沟槽型窄边缘耐高压硅pin辐射探测器及其制备

Also Published As

Publication number Publication date
CN111697092B (zh) 2021-09-28

Similar Documents

Publication Publication Date Title
US8900891B2 (en) Fabrication method for interdigitated back contact photovoltaic cells
Hilali et al. Development of screen-printed silicon solar cells with high fill factors on 100/spl Omega//sq emitters
JP4660642B2 (ja) 太陽電池及びその製造方法
Engelhart et al. Laser structuring for back junction silicon solar cells
Young et al. Interdigitated back passivated contact (IBPC) solar cells formed by ion implantation
CN102637767B (zh) 太阳能电池的制作方法以及太阳能电池
CN109686812B (zh) 基于隧穿氧化层的键合硅pin辐射响应探测器及制备方法
CN103578978A (zh) 一种基于硅基键合材料的高压快恢复二极管制造方法
KR20170029652A (ko) 후면 콘택 헤테로 접합 광전지
CN104681433B (zh) 一种fs‑igbt的制备方法
CN102522136B (zh) 外延硅基pin结微型同位素电池及其制备方法
CN113964223A (zh) 一种抑制切割边缘漏电的晶体硅太阳能电池片、电池组件及制备方法
CN111697092B (zh) 具有非穿透沟槽的窄边缘电流型硅pin辐射探测器及其制备方法
CN103875082B (zh) 光伏装置的制造方法及光伏装置
CN105552122A (zh) 一种带有深阱终端环结构的平面可控硅芯片及其制造方法
CN113871509B (zh) 双沟槽型窄边缘耐高压硅pin辐射探测器及其制备
KR101444709B1 (ko) 기판형 태양전지 및 그 제조방법
US20210391492A1 (en) Method for singulating a seminconductor component having a pn junction and semiconductor component havnig a pn junction
CN104681434B (zh) 一种fs‑igbt的制备方法
CN107425063B (zh) 面向物联网的具有热电转换功能的砷化镓基hemt器件
CN102683504B (zh) 通过离子注入砷改进晶体硅太阳能电池制作工艺的方法
Mai et al. Rear junction laser doped solar cells on CZ n-type silicon
CN102569495B (zh) 太阳能晶片的掺杂方法
KR101382585B1 (ko) 초박형 에미터 접합층을 갖는 블랙 실리콘 태양전지 및 그 제조방법
CN114050199A (zh) 一种锑化铟平面型焦平面探测器芯片及其制备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant