CN111696791B - MnO/CNT复合材料的制备方法 - Google Patents
MnO/CNT复合材料的制备方法 Download PDFInfo
- Publication number
- CN111696791B CN111696791B CN201910179605.4A CN201910179605A CN111696791B CN 111696791 B CN111696791 B CN 111696791B CN 201910179605 A CN201910179605 A CN 201910179605A CN 111696791 B CN111696791 B CN 111696791B
- Authority
- CN
- China
- Prior art keywords
- mno
- urea
- composite material
- cnt composite
- preparation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002131 composite material Substances 0.000 title claims abstract description 28
- 238000002360 preparation method Methods 0.000 title claims abstract description 13
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims abstract description 27
- 239000004202 carbamide Substances 0.000 claims abstract description 27
- AMWRITDGCCNYAT-UHFFFAOYSA-L manganese oxide Inorganic materials [Mn].O[Mn]=O.O[Mn]=O AMWRITDGCCNYAT-UHFFFAOYSA-L 0.000 claims abstract description 24
- 239000000463 material Substances 0.000 claims abstract description 17
- 238000000034 method Methods 0.000 claims abstract description 17
- 238000001354 calcination Methods 0.000 claims abstract description 12
- 230000001681 protective effect Effects 0.000 claims abstract description 10
- 238000002156 mixing Methods 0.000 claims abstract description 9
- 238000000227 grinding Methods 0.000 claims abstract description 8
- 239000000843 powder Substances 0.000 claims abstract description 8
- 238000003837 high-temperature calcination Methods 0.000 claims abstract description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical group [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 8
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 7
- 238000001035 drying Methods 0.000 claims description 7
- 238000004140 cleaning Methods 0.000 claims description 6
- 229910052786 argon Inorganic materials 0.000 claims description 5
- 229910052757 nitrogen Inorganic materials 0.000 claims description 4
- 230000008569 process Effects 0.000 abstract description 9
- 239000002041 carbon nanotube Substances 0.000 abstract description 8
- 238000005054 agglomeration Methods 0.000 abstract description 2
- 230000002776 aggregation Effects 0.000 abstract description 2
- 239000006258 conductive agent Substances 0.000 abstract description 2
- 238000005265 energy consumption Methods 0.000 abstract description 2
- 230000009467 reduction Effects 0.000 abstract description 2
- VASIZKWUTCETSD-UHFFFAOYSA-N manganese(II) oxide Inorganic materials [Mn]=O VASIZKWUTCETSD-UHFFFAOYSA-N 0.000 description 40
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 229910021393 carbon nanotube Inorganic materials 0.000 description 4
- 239000002243 precursor Substances 0.000 description 4
- 239000011572 manganese Substances 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 238000003723 Smelting Methods 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000001027 hydrothermal synthesis Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 150000002697 manganese compounds Chemical class 0.000 description 1
- PPNAOCWZXJOHFK-UHFFFAOYSA-N manganese(2+);oxygen(2-) Chemical compound [O-2].[Mn+2] PPNAOCWZXJOHFK-UHFFFAOYSA-N 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002114 nanocomposite Substances 0.000 description 1
- 239000002135 nanosheet Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001699 photocatalysis Effects 0.000 description 1
- 238000007146 photocatalysis Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910000314 transition metal oxide Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/46—Metal oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
- H01G11/36—Nanostructures, e.g. nanofibres, nanotubes or fullerenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
- H01G11/86—Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Crystallography & Structural Chemistry (AREA)
- Composite Materials (AREA)
- Inorganic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本发明公开了一种MnO/CNT复合材料的制备方法。所述方法按Mn3O4与尿素的质量比为1:5~20,先将Mn3O4粉末材料和尿素混合,并研磨均匀,在保护气氛下,600~800℃下高温煅烧1~5h后得到MnO/CNT复合材料。本发明采用一步高温煅烧法,工艺简单,能耗低。本发明制得的MnO/CNT复合材料,MnO纳米立方体与CNT均匀分布,CNT交错排布在MnO之间,形貌均匀无团聚,在后期的应用中,可增强材料的整体导电性,减少作为各种电子器件的电极过程中,导电剂的使用所造成的电化学性能的降低,提高材料利用率。
Description
技术领域
本发明属于纳米复合材料制备技术领域,涉及一种MnO/CNT复合材料的制备方法。
背景技术
过渡金属氧化物由于其特定结构与性能,在超级电容器、离子电池和光催化等领域受到广泛关注。其中,锰基氧化物应用于国民经济的各个领域,主要包括一氧化锰、二氧化锰、四氧化三锰等。一氧化锰又称氧化亚锰,是锰化合物中重要的一种,主要用作生产铁氧化物的原料、催化剂、冶炼、焊接及电池制造业等。
目前,一氧化锰由于自然资源丰富、合适的电动势、低的电压滞后(<0.8V),高的理论比容量(756mA h g-1)等特点,被广泛应用于电池材料行业。但其存在导电性差和体积膨胀大等缺点。因此,和高导电性且结构稳定的物质复合是改善一氧化锰电化学性能的有效途径。
目前常见的制备一氧化锰复合材料的方法是两步法。第一步包括水浴法、水热法等,第二步主要为热处理过程(Zhang K et al,Synthesis of nitrogen-doped MnO/grapheme nanosheets hybrid material for lithium ion batteries[J].Acs AppliedMaterials&Interfaces,2012,4(2):658-664.)。上述方法较为复杂,过程中需调控的反应因素较多,包括前驱液的浓度、pH值、锻烧温度等,因此合成的复合材料的分散均匀比较难以控制。MnO也存在自身的问题,如导电性较差,材料利用率较低。通常,MnO/CNT复合材料的制备主要是直接混合锰氧化物前驱体与商用碳纳米管(Xia C et al,Preparation ofpompon-like MnO/carbon nanotube composite microspheres as anodes for lithiumion batteries[J],Electrochimica Acta,2015,180,858-865),商用碳纳米管的成本较高,且由于锰氧化物前驱体与商用碳纳米管直接混合,制得的复合材料中二者的复合均匀度较差,进而影响其电学性能。
发明内容
本发明的目的在于提供一种MnO/CNT复合材料的制备方法。该方法将锰氧化物前驱体与尿素混合后经过高温煅烧得到均匀复合的MnO/CNT复合材料。
实现本发明目的的技术方案如下:
MnO/CNT复合材料的制备方法,包括以下步骤:
按Mn3O4与尿素的质量比为1:5~20,先将Mn3O4粉末材料和尿素混合,并研磨均匀,在保护气氛下,600~800℃下高温煅烧1~5h,反应结束后,无水乙醇清洗,干燥得到MnO/CNT复合材料。
优选地,所述的Mn3O4与尿素的质量比为1:5~10。
优选地,所述的高温煅烧温度为600~750℃,煅烧时间为2~4h。
优选地,所述的保护气氛可以是氩气或者氮气。
与现有技术相比,本发明具有以下优点:
本发明采用简单的一步高温煅烧法,合成时间短,反应能耗低,工艺简单,过程可控。制得的MnO/CNT复合材料中,MnO纳米立方体与CNT均匀分布,CNT交错排布在MnO之间,形貌均匀无团聚。在后期的应用中,可增强材料的整体导电性,减少作为各种电子器件的电极过程中,导电剂的使用所造成的电化学性能的降低,提高材料利用率。
附图说明
图1是本发明制备的MnO/CNT复合材料的XRD图谱。
图2是本发明制备的MnO/CNT复合材料的高倍SEM图。
图3是本发明制备的MnO/CNT复合材料的低倍SEM图。
图4是本发明制备的MnO/CNT复合材料在25mV/s扫速下的CV曲线。
具体实施方式
下面结合实施例和附图对本发明做进一步详细的描述。
实施例1
按Mn3O4与尿素的质量比为1:5,先将Mn3O4粉末材料和尿素混合,并研磨均匀,在氩气保护气氛的管式炉中高温600℃煅烧2h,反应结束后,无水乙醇清洗,烘干得到MnO/CNT复合材料。
实施例2
按Mn3O4与尿素的质量比为1:10,先将Mn3O4粉末材料和尿素混合,并研磨均匀,在氮气保护气氛的管式炉中高温700℃煅烧2h,反应结束后,无水乙醇清洗,烘干得到MnO/CNT复合材料。
实施例3
按Mn3O4与尿素的质量比为1:10,先将Mn3O4粉末材料和尿素混合,并研磨均匀,在氮气保护气氛的管式炉中高温750℃煅烧4h,反应结束后,无水乙醇清洗,烘干得到MnO/CNT复合材料。
实施例4
按Mn3O4与尿素的质量比为1:10,先将Mn3O4粉末材料和尿素混合,并研磨均匀,在氩气保护气氛的管式炉中高温750℃煅烧4h,反应结束后,无水乙醇清洗,烘干得到MnO/CNT复合材料。
如图1所示,本发明的制备方法制备的MnO/CNT复合材料的XRD图谱,与数据库中的标准卡片No.75-0626完全吻合,说明产物的晶相组成为MnO,此外可见射线衍射峰的峰型尖锐、峰强较高,说明晶型发育良好。
如图2、图3所示,本发明的制备方法制备的MnO/CNT复合材料的SEM图,可见碳纳米管均匀分散在MnO纳米立方体之间,相互交联。
如图4所示,本发明制备的MnO/CNT复合材料电极作为超级电容器正极材料在25mV/s扫速下的CV曲线,存在明显的氧化还原峰,对应MnO中锰的氧化还原过程所提供的容量。
对比例1
按Mn3O4与尿素的质量比为1:10,先将Mn3O4粉末材料和尿素混合,并研磨均匀,在氩气保护气氛的管式炉中高温900℃煅烧4h,反应结束后,无水乙醇清洗,烘干得到MnO/CNT复合材料。与实施例2对比,提高煅烧温度,MnO颗粒的尺寸增大,电极材料性能下降。
Claims (5)
1.MnO/CNT复合材料的制备方法,其特征在于,包括以下步骤:
按Mn3O4与尿素的质量比为1:5~20,先将Mn3O4粉末材料和尿素混合,并研磨均匀,在保护气氛下,600~800℃下高温煅烧1~5h,反应结束后,无水乙醇清洗,干燥得到MnO/CNT复合材料。
2.根据权利要求1所述的制备方法,其特征在于,所述的Mn3O4与尿素的质量比为1:5~10。
3.根据权利要求1所述的制备方法,其特征在于,所述的高温煅烧温度为600~750℃。
4.根据权利要求1所述的制备方法,其特征在于,煅烧时间为2~4h。
5.根据权利要求1所述的制备方法,其特征在于,所述的保护气氛为氩气或者氮气。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910179605.4A CN111696791B (zh) | 2019-03-11 | 2019-03-11 | MnO/CNT复合材料的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910179605.4A CN111696791B (zh) | 2019-03-11 | 2019-03-11 | MnO/CNT复合材料的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111696791A CN111696791A (zh) | 2020-09-22 |
CN111696791B true CN111696791B (zh) | 2021-09-03 |
Family
ID=72474473
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910179605.4A Active CN111696791B (zh) | 2019-03-11 | 2019-03-11 | MnO/CNT复合材料的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111696791B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115715980B (zh) * | 2022-11-28 | 2024-05-07 | 武汉中地硒研创科技有限公司 | Mn3O4/CNTs类芬顿催化剂及其制备方法和应用 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101814604A (zh) * | 2010-01-08 | 2010-08-25 | 北京化工大学 | 一种贵金属/复合金属氧化物/碳纳米管型电催化剂及其制备方法和应用 |
CN102208610A (zh) * | 2011-04-18 | 2011-10-05 | 北京工业大学 | 一种碳包覆MnO负极材料的制备方法 |
CN108816261A (zh) * | 2018-01-31 | 2018-11-16 | 中南大学 | 一种钴氧化物/氮共掺杂碳纳米管复合材料及其制备和应用 |
-
2019
- 2019-03-11 CN CN201910179605.4A patent/CN111696791B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101814604A (zh) * | 2010-01-08 | 2010-08-25 | 北京化工大学 | 一种贵金属/复合金属氧化物/碳纳米管型电催化剂及其制备方法和应用 |
CN102208610A (zh) * | 2011-04-18 | 2011-10-05 | 北京工业大学 | 一种碳包覆MnO负极材料的制备方法 |
CN108816261A (zh) * | 2018-01-31 | 2018-11-16 | 中南大学 | 一种钴氧化物/氮共掺杂碳纳米管复合材料及其制备和应用 |
Non-Patent Citations (2)
Title |
---|
"Ultrasmall MnO Nanoparticles Supported on Nitrogen-Doped Carbon Nanotubes as Efficient Anode Materials for Sodium Ion Batteries";Yanzhen He;《ACS Applied Materials & Interfaces》;20171016;全文 * |
"锂离子电池过渡金属氧化物/碳纳米管双纳米复合负极材料研究";贾玉洁;《中国优秀硕士学位论文全文数据库(电子期刊)工程科技Ⅱ辑》;20160215;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN111696791A (zh) | 2020-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Template ion-exchange synthesis of Co-Ni composite hydroxides nanosheets for supercapacitor with unprecedented rate capability | |
Yan et al. | NiCo2O4 with oxygen vacancies as better performance electrode material for supercapacitor | |
Ali et al. | High performance MnO2 nanoflower supercapacitor electrode by electrochemical recycling of spent batteries | |
Raj et al. | Synthesis of Mn3O4 nanoparticles via chemical precipitation approach for supercapacitor application | |
Liao et al. | Solvothermal synthesis of porous MnCo2O4. 5 spindle-like microstructures as high-performance electrode materials for supercapacitors | |
He et al. | Fabrication of ultrafine ZnFe2O4 nanoparticles decorated on nitrogen doped carbon nanofibers composite for efficient adsorption/electrocatalysis effect of lithium-sulfur batteries | |
Zhang et al. | One-step synthesis of NiCo2O4 nanorods and firework-shaped microspheres formed with necklace-like structure for supercapacitor materials | |
Zhou et al. | Enhancing electrochemical performance of electrode material via combining defect and heterojunction engineering for supercapacitors | |
He et al. | Binder-free MgCo2O4@ Ni3S2 core-shell-like composites as advanced battery materials for asymmetric supercapacitors | |
JP2012099436A (ja) | 電池用正極材、その製造方法及び非水電解液二次電池 | |
Iuchi et al. | Synthesis and electrochemical performance of a nanocrystalline Li4Ti5O12/C composite for lithium-ion batteries prepared using resorcinol–formaldehyde resins | |
Muruganantham et al. | Tailoring the mesoporous ZnMn2O4 spheres as anode materials with excellent cycle stability for sodium-ion batteries | |
Dang et al. | ZnNi‐MnCo2O4@ CNT porous double heterojunction cage‐like structure with three‐dimensional network for superior lithium‐ion batteries and capacitors | |
Guan et al. | RGO/KMn8O16 composite as supercapacitor electrode with high specific capacitance | |
Zhang et al. | Electrocatalytic performance of Sb-modified Bi25FeO40 for nitrogen fixation | |
Yin et al. | Low-dimensional high entropy oxide (FeCoCrMnNi) 3 O 4 for supercapacitor applications | |
Huo et al. | Hydrothermal synthesis and energy storage performance of ultrafine Ce2Sn2O7 nanocubes | |
Liu et al. | A facile polymer-pyrolysis preparation of submicrometer CoMoO4 as an electrode of lithium ion batteries and supercapacitors | |
Li et al. | Controlled synthesis of porous CaCo2O4 nanoflowers and their multifunctional applications for lithium ion batteries and oxygen evolution reaction | |
Liang et al. | Ultrathin V6O13 nanosheets assembled into 3D micro/nano structured flower-like microspheres for high-performance cathode materials of Li-ion batteries | |
CN111696791B (zh) | MnO/CNT复合材料的制备方法 | |
Shejini et al. | Designing the redox activity of CuMoO4 electrodes on N-rich reduced graphene oxide nanocomposite for high performance supercapacitor | |
Zhang et al. | A simple self-template strategy to synthesize ε-MnO2 and its application in supercapacitors | |
Yu et al. | Rapid microwave-assisted synthesis strategy of dual-cationic molybdates as high-performance electrodes for alkaline battery-supercapacitor hybrid devices | |
Li et al. | High-loading cobalt-doped manganese tetroxide on carbon cloth as an electrode material for high-performance zinc ion hybrid capacitors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |