CN111696791B - MnO/CNT复合材料的制备方法 - Google Patents

MnO/CNT复合材料的制备方法 Download PDF

Info

Publication number
CN111696791B
CN111696791B CN201910179605.4A CN201910179605A CN111696791B CN 111696791 B CN111696791 B CN 111696791B CN 201910179605 A CN201910179605 A CN 201910179605A CN 111696791 B CN111696791 B CN 111696791B
Authority
CN
China
Prior art keywords
mno
urea
composite material
cnt composite
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910179605.4A
Other languages
English (en)
Other versions
CN111696791A (zh
Inventor
夏晖
赵旸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201910179605.4A priority Critical patent/CN111696791B/zh
Publication of CN111696791A publication Critical patent/CN111696791A/zh
Application granted granted Critical
Publication of CN111696791B publication Critical patent/CN111696791B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种MnO/CNT复合材料的制备方法。所述方法按Mn3O4与尿素的质量比为1:5~20,先将Mn3O4粉末材料和尿素混合,并研磨均匀,在保护气氛下,600~800℃下高温煅烧1~5h后得到MnO/CNT复合材料。本发明采用一步高温煅烧法,工艺简单,能耗低。本发明制得的MnO/CNT复合材料,MnO纳米立方体与CNT均匀分布,CNT交错排布在MnO之间,形貌均匀无团聚,在后期的应用中,可增强材料的整体导电性,减少作为各种电子器件的电极过程中,导电剂的使用所造成的电化学性能的降低,提高材料利用率。

Description

MnO/CNT复合材料的制备方法
技术领域
本发明属于纳米复合材料制备技术领域,涉及一种MnO/CNT复合材料的制备方法。
背景技术
过渡金属氧化物由于其特定结构与性能,在超级电容器、离子电池和光催化等领域受到广泛关注。其中,锰基氧化物应用于国民经济的各个领域,主要包括一氧化锰、二氧化锰、四氧化三锰等。一氧化锰又称氧化亚锰,是锰化合物中重要的一种,主要用作生产铁氧化物的原料、催化剂、冶炼、焊接及电池制造业等。
目前,一氧化锰由于自然资源丰富、合适的电动势、低的电压滞后(<0.8V),高的理论比容量(756mA h g-1)等特点,被广泛应用于电池材料行业。但其存在导电性差和体积膨胀大等缺点。因此,和高导电性且结构稳定的物质复合是改善一氧化锰电化学性能的有效途径。
目前常见的制备一氧化锰复合材料的方法是两步法。第一步包括水浴法、水热法等,第二步主要为热处理过程(Zhang K et al,Synthesis of nitrogen-doped MnO/grapheme nanosheets hybrid material for lithium ion batteries[J].Acs AppliedMaterials&Interfaces,2012,4(2):658-664.)。上述方法较为复杂,过程中需调控的反应因素较多,包括前驱液的浓度、pH值、锻烧温度等,因此合成的复合材料的分散均匀比较难以控制。MnO也存在自身的问题,如导电性较差,材料利用率较低。通常,MnO/CNT复合材料的制备主要是直接混合锰氧化物前驱体与商用碳纳米管(Xia C et al,Preparation ofpompon-like MnO/carbon nanotube composite microspheres as anodes for lithiumion batteries[J],Electrochimica Acta,2015,180,858-865),商用碳纳米管的成本较高,且由于锰氧化物前驱体与商用碳纳米管直接混合,制得的复合材料中二者的复合均匀度较差,进而影响其电学性能。
发明内容
本发明的目的在于提供一种MnO/CNT复合材料的制备方法。该方法将锰氧化物前驱体与尿素混合后经过高温煅烧得到均匀复合的MnO/CNT复合材料。
实现本发明目的的技术方案如下:
MnO/CNT复合材料的制备方法,包括以下步骤:
按Mn3O4与尿素的质量比为1:5~20,先将Mn3O4粉末材料和尿素混合,并研磨均匀,在保护气氛下,600~800℃下高温煅烧1~5h,反应结束后,无水乙醇清洗,干燥得到MnO/CNT复合材料。
优选地,所述的Mn3O4与尿素的质量比为1:5~10。
优选地,所述的高温煅烧温度为600~750℃,煅烧时间为2~4h。
优选地,所述的保护气氛可以是氩气或者氮气。
与现有技术相比,本发明具有以下优点:
本发明采用简单的一步高温煅烧法,合成时间短,反应能耗低,工艺简单,过程可控。制得的MnO/CNT复合材料中,MnO纳米立方体与CNT均匀分布,CNT交错排布在MnO之间,形貌均匀无团聚。在后期的应用中,可增强材料的整体导电性,减少作为各种电子器件的电极过程中,导电剂的使用所造成的电化学性能的降低,提高材料利用率。
附图说明
图1是本发明制备的MnO/CNT复合材料的XRD图谱。
图2是本发明制备的MnO/CNT复合材料的高倍SEM图。
图3是本发明制备的MnO/CNT复合材料的低倍SEM图。
图4是本发明制备的MnO/CNT复合材料在25mV/s扫速下的CV曲线。
具体实施方式
下面结合实施例和附图对本发明做进一步详细的描述。
实施例1
按Mn3O4与尿素的质量比为1:5,先将Mn3O4粉末材料和尿素混合,并研磨均匀,在氩气保护气氛的管式炉中高温600℃煅烧2h,反应结束后,无水乙醇清洗,烘干得到MnO/CNT复合材料。
实施例2
按Mn3O4与尿素的质量比为1:10,先将Mn3O4粉末材料和尿素混合,并研磨均匀,在氮气保护气氛的管式炉中高温700℃煅烧2h,反应结束后,无水乙醇清洗,烘干得到MnO/CNT复合材料。
实施例3
按Mn3O4与尿素的质量比为1:10,先将Mn3O4粉末材料和尿素混合,并研磨均匀,在氮气保护气氛的管式炉中高温750℃煅烧4h,反应结束后,无水乙醇清洗,烘干得到MnO/CNT复合材料。
实施例4
按Mn3O4与尿素的质量比为1:10,先将Mn3O4粉末材料和尿素混合,并研磨均匀,在氩气保护气氛的管式炉中高温750℃煅烧4h,反应结束后,无水乙醇清洗,烘干得到MnO/CNT复合材料。
如图1所示,本发明的制备方法制备的MnO/CNT复合材料的XRD图谱,与数据库中的标准卡片No.75-0626完全吻合,说明产物的晶相组成为MnO,此外可见射线衍射峰的峰型尖锐、峰强较高,说明晶型发育良好。
如图2、图3所示,本发明的制备方法制备的MnO/CNT复合材料的SEM图,可见碳纳米管均匀分散在MnO纳米立方体之间,相互交联。
如图4所示,本发明制备的MnO/CNT复合材料电极作为超级电容器正极材料在25mV/s扫速下的CV曲线,存在明显的氧化还原峰,对应MnO中锰的氧化还原过程所提供的容量。
对比例1
按Mn3O4与尿素的质量比为1:10,先将Mn3O4粉末材料和尿素混合,并研磨均匀,在氩气保护气氛的管式炉中高温900℃煅烧4h,反应结束后,无水乙醇清洗,烘干得到MnO/CNT复合材料。与实施例2对比,提高煅烧温度,MnO颗粒的尺寸增大,电极材料性能下降。

Claims (5)

1.MnO/CNT复合材料的制备方法,其特征在于,包括以下步骤:
按Mn3O4与尿素的质量比为1:5~20,先将Mn3O4粉末材料和尿素混合,并研磨均匀,在保护气氛下,600~800℃下高温煅烧1~5h,反应结束后,无水乙醇清洗,干燥得到MnO/CNT复合材料。
2.根据权利要求1所述的制备方法,其特征在于,所述的Mn3O4与尿素的质量比为1:5~10。
3.根据权利要求1所述的制备方法,其特征在于,所述的高温煅烧温度为600~750℃。
4.根据权利要求1所述的制备方法,其特征在于,煅烧时间为2~4h。
5.根据权利要求1所述的制备方法,其特征在于,所述的保护气氛为氩气或者氮气。
CN201910179605.4A 2019-03-11 2019-03-11 MnO/CNT复合材料的制备方法 Active CN111696791B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910179605.4A CN111696791B (zh) 2019-03-11 2019-03-11 MnO/CNT复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910179605.4A CN111696791B (zh) 2019-03-11 2019-03-11 MnO/CNT复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN111696791A CN111696791A (zh) 2020-09-22
CN111696791B true CN111696791B (zh) 2021-09-03

Family

ID=72474473

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910179605.4A Active CN111696791B (zh) 2019-03-11 2019-03-11 MnO/CNT复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN111696791B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115715980B (zh) * 2022-11-28 2024-05-07 武汉中地硒研创科技有限公司 Mn3O4/CNTs类芬顿催化剂及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101814604A (zh) * 2010-01-08 2010-08-25 北京化工大学 一种贵金属/复合金属氧化物/碳纳米管型电催化剂及其制备方法和应用
CN102208610A (zh) * 2011-04-18 2011-10-05 北京工业大学 一种碳包覆MnO负极材料的制备方法
CN108816261A (zh) * 2018-01-31 2018-11-16 中南大学 一种钴氧化物/氮共掺杂碳纳米管复合材料及其制备和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101814604A (zh) * 2010-01-08 2010-08-25 北京化工大学 一种贵金属/复合金属氧化物/碳纳米管型电催化剂及其制备方法和应用
CN102208610A (zh) * 2011-04-18 2011-10-05 北京工业大学 一种碳包覆MnO负极材料的制备方法
CN108816261A (zh) * 2018-01-31 2018-11-16 中南大学 一种钴氧化物/氮共掺杂碳纳米管复合材料及其制备和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Ultrasmall MnO Nanoparticles Supported on Nitrogen-Doped Carbon Nanotubes as Efficient Anode Materials for Sodium Ion Batteries";Yanzhen He;《ACS Applied Materials & Interfaces》;20171016;全文 *
"锂离子电池过渡金属氧化物/碳纳米管双纳米复合负极材料研究";贾玉洁;《中国优秀硕士学位论文全文数据库(电子期刊)工程科技Ⅱ辑》;20160215;全文 *

Also Published As

Publication number Publication date
CN111696791A (zh) 2020-09-22

Similar Documents

Publication Publication Date Title
Wang et al. Template ion-exchange synthesis of Co-Ni composite hydroxides nanosheets for supercapacitor with unprecedented rate capability
Yan et al. NiCo2O4 with oxygen vacancies as better performance electrode material for supercapacitor
Ali et al. High performance MnO2 nanoflower supercapacitor electrode by electrochemical recycling of spent batteries
Raj et al. Synthesis of Mn3O4 nanoparticles via chemical precipitation approach for supercapacitor application
Liao et al. Solvothermal synthesis of porous MnCo2O4. 5 spindle-like microstructures as high-performance electrode materials for supercapacitors
He et al. Fabrication of ultrafine ZnFe2O4 nanoparticles decorated on nitrogen doped carbon nanofibers composite for efficient adsorption/electrocatalysis effect of lithium-sulfur batteries
Zhang et al. One-step synthesis of NiCo2O4 nanorods and firework-shaped microspheres formed with necklace-like structure for supercapacitor materials
Zhou et al. Enhancing electrochemical performance of electrode material via combining defect and heterojunction engineering for supercapacitors
He et al. Binder-free MgCo2O4@ Ni3S2 core-shell-like composites as advanced battery materials for asymmetric supercapacitors
JP2012099436A (ja) 電池用正極材、その製造方法及び非水電解液二次電池
Iuchi et al. Synthesis and electrochemical performance of a nanocrystalline Li4Ti5O12/C composite for lithium-ion batteries prepared using resorcinol–formaldehyde resins
Muruganantham et al. Tailoring the mesoporous ZnMn2O4 spheres as anode materials with excellent cycle stability for sodium-ion batteries
Dang et al. ZnNi‐MnCo2O4@ CNT porous double heterojunction cage‐like structure with three‐dimensional network for superior lithium‐ion batteries and capacitors
Guan et al. RGO/KMn8O16 composite as supercapacitor electrode with high specific capacitance
Zhang et al. Electrocatalytic performance of Sb-modified Bi25FeO40 for nitrogen fixation
Yin et al. Low-dimensional high entropy oxide (FeCoCrMnNi) 3 O 4 for supercapacitor applications
Huo et al. Hydrothermal synthesis and energy storage performance of ultrafine Ce2Sn2O7 nanocubes
Liu et al. A facile polymer-pyrolysis preparation of submicrometer CoMoO4 as an electrode of lithium ion batteries and supercapacitors
Li et al. Controlled synthesis of porous CaCo2O4 nanoflowers and their multifunctional applications for lithium ion batteries and oxygen evolution reaction
Liang et al. Ultrathin V6O13 nanosheets assembled into 3D micro/nano structured flower-like microspheres for high-performance cathode materials of Li-ion batteries
CN111696791B (zh) MnO/CNT复合材料的制备方法
Shejini et al. Designing the redox activity of CuMoO4 electrodes on N-rich reduced graphene oxide nanocomposite for high performance supercapacitor
Zhang et al. A simple self-template strategy to synthesize ε-MnO2 and its application in supercapacitors
Yu et al. Rapid microwave-assisted synthesis strategy of dual-cationic molybdates as high-performance electrodes for alkaline battery-supercapacitor hybrid devices
Li et al. High-loading cobalt-doped manganese tetroxide on carbon cloth as an electrode material for high-performance zinc ion hybrid capacitors

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant