CN111693518A - 一种汞离子的检测方法 - Google Patents
一种汞离子的检测方法 Download PDFInfo
- Publication number
- CN111693518A CN111693518A CN201910191366.4A CN201910191366A CN111693518A CN 111693518 A CN111693518 A CN 111693518A CN 201910191366 A CN201910191366 A CN 201910191366A CN 111693518 A CN111693518 A CN 111693518A
- Authority
- CN
- China
- Prior art keywords
- sequence
- solution
- tris
- hemin
- thymine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title abstract description 20
- BQPIGGFYSBELGY-UHFFFAOYSA-N mercury(2+) Chemical compound [Hg+2] BQPIGGFYSBELGY-UHFFFAOYSA-N 0.000 title abstract description 17
- 238000000034 method Methods 0.000 claims abstract description 24
- BTIJJDXEELBZFS-QDUVMHSLSA-K hemin Chemical group CC1=C(CCC(O)=O)C(C=C2C(CCC(O)=O)=C(C)\C(N2[Fe](Cl)N23)=C\4)=N\C1=C/C2=C(C)C(C=C)=C3\C=C/1C(C)=C(C=C)C/4=N\1 BTIJJDXEELBZFS-QDUVMHSLSA-K 0.000 claims abstract description 12
- UAIUNKRWKOVEES-UHFFFAOYSA-N 3,3',5,5'-tetramethylbenzidine Chemical compound CC1=C(N)C(C)=CC(C=2C=C(C)C(N)=C(C)C=2)=C1 UAIUNKRWKOVEES-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229940025294 hemin Drugs 0.000 claims abstract description 8
- 239000000243 solution Substances 0.000 claims description 34
- 239000000446 fuel Substances 0.000 claims description 15
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 claims description 14
- 229910052753 mercury Inorganic materials 0.000 claims description 12
- -1 mercury ions Chemical class 0.000 claims description 8
- 239000007853 buffer solution Substances 0.000 claims description 6
- 238000002371 ultraviolet--visible spectrum Methods 0.000 claims description 5
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L magnesium chloride Substances [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 claims description 4
- 229910001629 magnesium chloride Inorganic materials 0.000 claims description 4
- 101001128634 Homo sapiens NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 2, mitochondrial Proteins 0.000 claims description 3
- 102100032194 NADH dehydrogenase [ubiquinone] 1 beta subcomplex subunit 2, mitochondrial Human genes 0.000 claims description 3
- 150000001875 compounds Chemical class 0.000 claims description 2
- 108020004414 DNA Proteins 0.000 abstract description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 10
- 238000006243 chemical reaction Methods 0.000 abstract description 9
- 229940113082 thymine Drugs 0.000 abstract description 9
- 230000003197 catalytic effect Effects 0.000 abstract description 7
- 238000006555 catalytic reaction Methods 0.000 abstract description 5
- 230000000694 effects Effects 0.000 abstract description 5
- 102000016938 Catalase Human genes 0.000 abstract description 3
- 108010053835 Catalase Proteins 0.000 abstract description 3
- 102000004190 Enzymes Human genes 0.000 abstract description 3
- 108090000790 Enzymes Proteins 0.000 abstract description 3
- 230000003278 mimic effect Effects 0.000 abstract description 3
- 239000000758 substrate Substances 0.000 abstract description 3
- 238000002360 preparation method Methods 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 10
- 238000002835 absorbance Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 4
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 238000004737 colorimetric analysis Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 230000036541 health Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 238000001338 self-assembly Methods 0.000 description 2
- 239000012086 standard solution Substances 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- FOIXSVOLVBLSDH-UHFFFAOYSA-N Silver ion Chemical compound [Ag+] FOIXSVOLVBLSDH-UHFFFAOYSA-N 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- ASJWEHCPLGMOJE-LJMGSBPFSA-N ac1l3rvh Chemical compound N1C(=O)NC(=O)[C@@]2(C)[C@@]3(C)C(=O)NC(=O)N[C@H]3[C@H]21 ASJWEHCPLGMOJE-LJMGSBPFSA-N 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000012496 blank sample Substances 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000009918 complex formation Effects 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 231100000086 high toxicity Toxicity 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002910 solid waste Substances 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 238000004056 waste incineration Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N21/78—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/33—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Pathology (AREA)
- General Health & Medical Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- General Physics & Mathematics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
本发明提供了一种将胸腺嘧啶‑Hg2+‑胸腺嘧啶(T‑Hg2+‑T)配位化学和熵驱动催化显色反应联用的汞离子检测方法。熵驱动的催化反应由T‑Hg2+‑T配位化学诱导,导致释放出富G序列。可以在氯化血红素的帮助下形成氯化血红素/G‑四联体结构,形成具有过氧化氢酶活性的DNA模拟酶,氧化底物3,3',5,5'‑四甲基联苯胺,颜色从无色变为蓝色,在0.05nM至2nM之间存在良好的线性关系。该方法可用于水中Hg2+浓度的现场分析。
Description
技术领域
本发明涉及汞离子的检测领域,特别是将胸腺嘧啶-Hg2+-胸腺嘧啶(T-Hg2+-T)配位化学和熵驱动催化显色反应联用的汞离子检测方法领域。
背景技术
汞污染已成为人类健康和环境保护的全球性问题。尽管汞在环境中天然存在,但人类活动导致汞进入环境,如采矿,化石燃料燃烧和固体废物焚烧等。痕量的Hg2+可能通过与含巯基的分子结合而通过生物累积积聚在人体内。人体内的Hg2+即使在极低浓度下也会引起神经系统疾病,肾脏疾病和其他疾病,因为它的毒性很高。因此,有必要开发一种检测食品安全和环境保护领域Hg2+的灵敏度方法。由于肉眼可以简单,快速和可观察到结果,比色法引起了很多关注。不同种类的比色法已被用于基于金纳米粒子、石墨烯、SiO2纳米粒子、银纳米粒子和G-四联体等的Hg2+检测。然而,上述方法的灵敏度不足或选择性较差。
现有技术已经证明了胸腺嘧啶-胸腺嘧啶错配碱基对与Hg2+之间的高亲和力。胸腺嘧啶-Hg2+-胸腺嘧啶(T-Hg2+-T)配位化学已经与比色法,荧光,电化学,电化学发光和增强拉曼散射法结合。但是,现有技术的检测限高于30nM(由世界卫生组织设定的饮用水中汞的最大污染物水平),无法满足实际应用的要求。为了显著提高灵敏度,现有技术中使用了杂交链式反应、发夹催化自组装、催化自组装等无酶的信号增强方法用于胸腺嘧啶-Hg2+-胸腺嘧啶(T-Hg2+-T)配位的Hg2+检测。这些方法中的大多数是由碱基对形成的自由能驱动的,这可能导致相对高的背景和假阳性结果。
尚无将胸腺嘧啶-Hg2+-胸腺嘧啶(T-Hg2+-T)配位化学和熵驱动催化显色反应联用的汞离子检测方法的报道。
发明内容
为解决上述问题,本发明提供一种将胸腺嘧啶-Hg2+-胸腺嘧啶(T-Hg2+-T)配位化学和熵驱动催化显色反应联用的汞离子检测方法。
本发明包括如下步骤:
(1)在待测溶液中加入适量DNA复合物、序列T和燃料链F,所述序列T为:5’-TTCATTGTGTTACTTT_TCTCCA-3’;所述DNA复合物由序列R、序列Q和序列P杂交形成,其中序列R为5’-GGGTTGGGCGGGATGGGTTTCAC-3’,序列Q为5’-TGGAGA_TTTGTTTCTCTTTGTT_AGGG_GTGAAACCCATCCCG-3’,序列P为5’-CCACATACATCATATT_CCCT_AACAAAGAGAAACAAA-3’;所述燃料链F为5’-CGGGATGGGTTTCAC_CCCT_AACAAAGAGAAACAAA-3’;
(2)将步骤(1)所得溶液加入含有适量MgCl2的Tris-HCl缓冲溶液中孵育;
(3)在步骤(2)所得溶液中加入适量氯化血红素和适量KCl;
(4)将步骤(3)所得溶液加入含有适量3,3',5,5'-四甲基联苯胺和H2O2的Tris-HCl溶液中;
(5)测定其UV-vis吸收光谱,并用标准曲线法计算溶液中汞离子浓度。
优选的,所述DNA复合物形成步骤如下:将50nM序列P,50nM序列R和50nM序列Q混合在一起并在10mM Tris-HCl溶液(pH8)中加热至90℃保持5分钟,然后将其缓慢冷却以形成DNA复合物。
优选的,步骤(1)中加入的DNA复合物、序列T和燃料链F分别为50nM、100nM和100nM。
优选的,步骤(2)具体为将步骤(1)所得溶液加入含有5mM MgCl2的10mM Tris-HCl缓冲溶液(pH 7.5)中在37℃下孵育120分钟。
优选的,步骤(3)中加入的氯化血红素和KCl分别为30nM和25mM。
优选的,步骤(4)具体为:将步骤(4)所得溶液加入含有600μM 3,3',5,5'-四甲基联苯胺和10mM H2O2的Tris-HCl溶液(pH 5.5)中。
本发明创造性地将胸腺嘧啶-Hg2+-胸腺嘧啶(T-Hg2+-T)配位化学和熵驱动催化显色反应联用,不仅多级放大汞离子信号,提高了灵敏度,还使得信号以肉眼可见形式出现,直观且容易检测,降低成本。
附图说明
图1(A)不同浓度的Hg2+(0.05nM,0.1nM,1nM,2nM,4nM,5nM和10nM)的UV-vis吸收光谱曲线。(B)作为Hg2+浓度的函数的Δ吸光度强度和具有不同浓度的Hg2+的样品的照片。插图:浓度校准曲线在0.05nM至2pM范围内。
图2为本发明检测过程示意图。
图3为对比例一中不同样品的紫外-可见吸收光谱曲线和△吸光度强度(插图:照片)。
图4为对比例二中不同样品的吸光度对比。
具体实施例
下面结合实施例对本发明作进一步详细的说明。
实施例1
绘制标准曲线:配制梯度浓度的汞离子标准溶液,溶液浓度分别为:0.05nM,0.1nM,0.5nM,1nM,2nM,4nM,5nM,10nM。将适量上述标准溶液分别与100nM序列T,50nM DNA复合物和100nM燃料链F混合,在37℃下在含有5mM MgCl2的10mM Tris-HCl缓冲溶液(pH7.5)中孵育120分钟。然后,在上述溶液中加入30nM氯化血红素和25mM KCl,最后,将其加入600μM 3,3',5,5'-四甲基联苯胺和10mM H2O2的Tris-HCl溶液(pH 5.5)中用于显色反应。通过UV-vis分光光度计检测UV-vis吸收光谱。如图1A所示,吸光度强度随着Hg2+浓度的增加而升高。在0.05nM至2nM的吸光度强度和Hg2+浓度之间显示出良好的线性相关性(图1B)。回归方程可表示为Y=0.11331+0.0575C(R2=0.999),其中Y和C分别代表吸光度强度和Hg2+浓度。检测限(LOD)计算为7pM,Hg2+的目测检测限约为0.1nM。绘制吸光度-浓度标准曲线。
将适量待测溶液与100nM序列T,50nM DNA复合物和100nM燃料链F混合,在37℃下在含有5mM MgCl2的10mM Tris-HCl缓冲溶液(pH 7.5)中孵育120分钟。然后,在上述溶液中加入30nM氯化血红素和25mM KCl,最后,将其加入600μM 3,3',5,5'-四甲基联苯胺和10mMH2O2的Tris-HCl溶液(pH 5.5)中用于显色反应。通过UV-vis分光光度计检测UV-vis吸收光谱。通过标准曲线计算待测溶液中汞离子浓度。
检测微观过程如图2所示:序列Q显示为链1*,2*,3*,4*;序列R显示为链1;序列P显示为链5,2,3;序列T显示为链3’,4;燃料链F显示为链1”,2”,3”。序列T后端(表示为4)可以结合在序列Q的前端(表示为4*)。在序列Q的尾部存在富含胸腺嘧啶的部分。在Hg2+存在下,序列T和Q之间的T-Hg2+-T配位化学可以从DNA复合物中取代序列R,然后暴露序列Q的结构域2*。然后结构域2*成为燃料链F置换序列R和序列T的立足点。序列T可以进入下一个循环并引起大量序列R的释放。氯化血红素与富含G的序列R形成氯化血红素/G-四联体结构,形成具有过氧化氢酶活性的DNA模拟酶,氧化底物3,3',5,5'-四甲基联苯胺,颜色从无色变为蓝色,。
实施例2
从自来水,溪流和泉水中收集水样。在测量之前,将所有水样品通过0.22μm膜过滤以除去固体残余物。检测过程同实施例1,检测结果如表1所示,实际水样中Hg2+的浓度分别为自来水,小溪水和泉水。回收率从91.6%上升至105.3%。这些结果表明在真实环境水样中检测汞离子具有很大的前景。
表1.真实水样检测结果
对比例一
为体现上述实施例的技术效果,特提供以下对比例:1、空白样品,待测溶液中不含有汞离子,其余检测过程同实施例1。2、用序列T’替换实施例1中的序列T,序列T’为:5’-CCCACCGCGCCACCCC_TCTCCA-3’,其余检测过程同实施例1。3、检测过程不添加燃料链F,其余检测过程同实施例1。4、燃料链F的浓度为实施例1中燃料链F的浓度的一半,其余检测过程同实施例1。5、DNA复合物由序列P,R'和Q'形成,序列R'5’-CTACGTCTCCAACTAACTTACGG-3’,序列Q'为:5’-TGGAGA_TTTGTTTCTCTTTGTT_AGGG_CCGTAAGTTAGTTGGAGACGTAG-3’,其余检测过程同实施例1。6、检测过程同实施例1。
结果显示在图3中,对比例1中,样品不含Hg2+,检测结果显示出背景吸光度强度。对比例2中,由于更换序列T的胸腺嘧啶区域,得到低吸光度强度。对比例3中,在没有燃料链的情况下,熵驱动的催化反应不能进行,显示出弱的吸收强度证明T-Hg2+-T碱基对启动熵驱动的催化反应至关重要。对比例4中,具有一半浓度燃料链的样品显示出强吸收强度和浅蓝色,证明熵驱动的催化反应不能仅用一半浓度的燃料链完全完成。对比例5中,序列R的G富集区域被没有G富集区域的R'取代,导致弱吸光度强度。因为没有G富集区域的存在而不能形成氯化血红素/G-四联体结构,。样品6的检测结果显示出强吸收强度和深蓝色,所有反应成分均表明T-Hg2+-T配位化学成功启动了熵驱动的催化反应,并且成功形成了氯化血红素/G-四联体结构,形成具有过氧化氢酶活性的DNA模拟酶,氧化底物3,3',5,5'-四甲基联苯胺,颜色从无色变为蓝色。
对比例二
将实施例1中的汞离子分别替换成相同浓度的Cu2+,Ca2+,Pb2+,Co2+,Fe2+,Sn2+和Zn2 +,其余检测过程同实施例1。检测结果如图4所示,该方法对Hg2+表现出强烈的响应信号。然而,用其他干扰金属离子获得的信号可忽略不计。与2nM Hg2+信号相比,干扰金属离子的信号强度要弱得多。由于T-Hg2+-T配位化学的强亲和力,这些结果证明了所提出方法的良好选择性。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
Claims (6)
1.一种溶液中汞离子浓度的检测方法,包括如下步骤:
(1)在待测溶液中加入适量DNA复合物、序列T和燃料链F,所述序列T为:5’-TTCATTGTGTTACTTT_TCTCCA-3’;所述DNA复合物由序列R、序列Q和序列P杂交形成,其中序列R为5’-GGGTTGGGCGGGATGGGTTTCAC-3’,序列Q为5’-TGGAGA_TTTGTTTCTCTTTGTT_AGGG_GTGAAACCCATCCCGCCCAACCC-3’,序列P为5’-CCACATACATCATATT_CCCT_AACAAAGAGAAACAAA-3’;所述燃料链F为5’-GGGTTGGGCGGGATGGGTTTCAC_CCCT_AACAAAGAGAAACAAA-3’;
(2)将步骤(1)所得溶液加入含有适量MgCl2的Tris-HCl缓冲溶液中孵育;
(3)在步骤(2)所得溶液中加入适量氯化血红素和适量KCl;
(4)将步骤(3)所得溶液加入含有适量3,3',5,5'-四甲基联苯胺和H2O2的Tris-HCl溶液中;
(5)测定其UV-vis吸收光谱,并用标准曲线法计算溶液中汞离子浓度。
2.如权利要求1所述的方法,其特征在于所述DNA复合物形成步骤如下:将50nM序列P,50nM序列R和50nM序列Q混合在一起并在10mM Tris-HCl溶液(pH=8)中加热至90℃5分钟,然后将其缓慢冷却以形成DNA复合物。
3.如前述权利要求之一所述的方法,其特征在于步骤(1)中加入的DNA复合物、序列T和燃料链F分别为50nM、100nM和100nM。
4.如前述权利要求之一所述的方法,其特征在于步骤(2)具体为将步骤(1)所得溶液加入含有5mM MgCl2的10mM Tris-HCl缓冲溶液(pH 7.5)中在37℃下孵育120分钟。
5.如前述权利要求之一所述的方法,其特征在于步骤(3)中加入的氯化血红素和KCl分别为30nM和25mM。
6.如前述权利要求之一所述的方法,其特征在于步骤(4)具体为:将步骤(4)所得溶液加入含有600μM 3,3',5,5'-四甲基联苯胺和10mM H2O2的Tris-HCl溶液(pH 5.5)中。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910191366.4A CN111693518B (zh) | 2019-03-14 | 2019-03-14 | 一种汞离子的检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910191366.4A CN111693518B (zh) | 2019-03-14 | 2019-03-14 | 一种汞离子的检测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111693518A true CN111693518A (zh) | 2020-09-22 |
CN111693518B CN111693518B (zh) | 2022-08-05 |
Family
ID=72475016
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910191366.4A Expired - Fee Related CN111693518B (zh) | 2019-03-14 | 2019-03-14 | 一种汞离子的检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111693518B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112662741A (zh) * | 2021-01-16 | 2021-04-16 | 湘潭大学 | 一种高通用性的核酸检测方法及试剂盒 |
CN112924406A (zh) * | 2021-02-02 | 2021-06-08 | 湘潭大学 | 一种模拟酶辅助的汞离子检测方法及试剂盒 |
Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5503062B1 (ja) * | 2013-07-23 | 2014-05-28 | Necソフト株式会社 | ターゲット分析用蛍光センサ、ターゲット分析用キット、およびこれを用いたターゲットの分析方法 |
CN103983637A (zh) * | 2014-05-21 | 2014-08-13 | 成都理工大学 | 一种光催化可视化现场检测水样中Hg2+方法 |
US20150197804A1 (en) * | 2013-12-30 | 2015-07-16 | Yissum Research Development Company Of The Hebrew University Of Jerusalem Lt | Compositions, kits, uses and methods for amplified detection of an analyte |
CN105002269A (zh) * | 2015-06-29 | 2015-10-28 | 常熟理工学院 | 一种基于核酸外切酶及信号放大功能确定样品中汞离子浓度的方法 |
CN105018474A (zh) * | 2014-08-22 | 2015-11-04 | 江苏省原子医学研究所 | 一种基于g-四链体-氯血红素dna酶的探针及其应用 |
CN106191042A (zh) * | 2016-07-16 | 2016-12-07 | 湖南工程学院 | 基于核酸外切酶iii辅助的双循环串联信号放大dna组合探针组合物及制备方法与应用 |
US20170051005A1 (en) * | 2010-02-19 | 2017-02-23 | Ohio State Innovation Foundation | Primers and Methods for Nucleic Acid Amplification |
CN107091926A (zh) * | 2017-03-13 | 2017-08-25 | 广东省生态环境技术研究所 | 一种四环素的检测方法及检测试剂盒 |
CN107254550A (zh) * | 2017-05-25 | 2017-10-17 | 重庆医科大学 | 一种检测hiv相关基因的spr传感器及其制备与应用 |
CN107505367A (zh) * | 2016-06-14 | 2017-12-22 | 上海市计量测试技术研究院 | 用于铅离子检测的dna四面体探针及检测铅离子的方法 |
CN107941797A (zh) * | 2017-12-11 | 2018-04-20 | 福州大学 | 一种检测汞离子的目视比色传感器 |
CN107988321A (zh) * | 2017-10-27 | 2018-05-04 | 中国农业大学 | 一种汞的耐高盐核酸传感器及其应用 |
CN108315400A (zh) * | 2018-02-11 | 2018-07-24 | 中国农业大学 | 一种重金属离子的可视化定量检测新方法 |
CN109444397A (zh) * | 2018-10-31 | 2019-03-08 | 重庆工商大学 | 一种汞离子的检测方法 |
-
2019
- 2019-03-14 CN CN201910191366.4A patent/CN111693518B/zh not_active Expired - Fee Related
Patent Citations (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20170051005A1 (en) * | 2010-02-19 | 2017-02-23 | Ohio State Innovation Foundation | Primers and Methods for Nucleic Acid Amplification |
JP5503062B1 (ja) * | 2013-07-23 | 2014-05-28 | Necソフト株式会社 | ターゲット分析用蛍光センサ、ターゲット分析用キット、およびこれを用いたターゲットの分析方法 |
US20150197804A1 (en) * | 2013-12-30 | 2015-07-16 | Yissum Research Development Company Of The Hebrew University Of Jerusalem Lt | Compositions, kits, uses and methods for amplified detection of an analyte |
CN103983637A (zh) * | 2014-05-21 | 2014-08-13 | 成都理工大学 | 一种光催化可视化现场检测水样中Hg2+方法 |
CN105018474A (zh) * | 2014-08-22 | 2015-11-04 | 江苏省原子医学研究所 | 一种基于g-四链体-氯血红素dna酶的探针及其应用 |
CN105002269A (zh) * | 2015-06-29 | 2015-10-28 | 常熟理工学院 | 一种基于核酸外切酶及信号放大功能确定样品中汞离子浓度的方法 |
CN107505367A (zh) * | 2016-06-14 | 2017-12-22 | 上海市计量测试技术研究院 | 用于铅离子检测的dna四面体探针及检测铅离子的方法 |
CN106191042A (zh) * | 2016-07-16 | 2016-12-07 | 湖南工程学院 | 基于核酸外切酶iii辅助的双循环串联信号放大dna组合探针组合物及制备方法与应用 |
CN107091926A (zh) * | 2017-03-13 | 2017-08-25 | 广东省生态环境技术研究所 | 一种四环素的检测方法及检测试剂盒 |
CN107254550A (zh) * | 2017-05-25 | 2017-10-17 | 重庆医科大学 | 一种检测hiv相关基因的spr传感器及其制备与应用 |
CN107988321A (zh) * | 2017-10-27 | 2018-05-04 | 中国农业大学 | 一种汞的耐高盐核酸传感器及其应用 |
CN107941797A (zh) * | 2017-12-11 | 2018-04-20 | 福州大学 | 一种检测汞离子的目视比色传感器 |
CN108315400A (zh) * | 2018-02-11 | 2018-07-24 | 中国农业大学 | 一种重金属离子的可视化定量检测新方法 |
CN109444397A (zh) * | 2018-10-31 | 2019-03-08 | 重庆工商大学 | 一种汞离子的检测方法 |
Non-Patent Citations (9)
Title |
---|
DE-MING KONG: "‘Turn-on’ detection of Hg2+ ion using a peroxidase-like split G-quadruplex–hemin DNAzyme", 《ANALYST》 * |
SUJING WANG等: "A metal ion-triggered and DNA-fueled molecular machine foramplified and sensitive fluorescent detection of Hg2+", 《SENSORS AND ACTUATORS B: CHEMICAL》 * |
WEN YUN等: "Proximity ligation assay induced hairpin to DNAzyme structure switching for entropy-driven amplified detection of thrombin", 《PROXIMITY LIGATION ASSAY INDUCED HAIRPIN TO DNAZYME STRUCTURE》 * |
吴霜: "基于链置换反应的多功能基因检测平台", 《万方数据》 * |
朱颖等: "基于T-Hg~(2+)-T及G四聚体自身熄灭能力的"Turn on"型单标记DNA荧光探针用于碘离子的检测", 《高等学校化学学报》 * |
林茜等: "基于氧化石墨烯模拟酶比色法检测汞离子", 《光谱学与光谱分析》 * |
汤薇等: "利用模拟酶催化显色和等温核酸扩增反应检测特定序列DNA", 《分析化学》 * |
王久军等: "基于T-Hg(Ⅱ)-T结合力和G-四联体非标记型汞离子传感器的研制", 《分析试验室》 * |
马佳等: "双链DN A中汞/银离子-嘧啶碱基对间结合作用及其在检测技术方面的应用研究进展", 《应用与环境生物学报》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112662741A (zh) * | 2021-01-16 | 2021-04-16 | 湘潭大学 | 一种高通用性的核酸检测方法及试剂盒 |
CN112924406A (zh) * | 2021-02-02 | 2021-06-08 | 湘潭大学 | 一种模拟酶辅助的汞离子检测方法及试剂盒 |
CN112924406B (zh) * | 2021-02-02 | 2022-08-12 | 湘潭大学 | 一种模拟酶辅助的汞离子检测方法及试剂盒 |
Also Published As
Publication number | Publication date |
---|---|
CN111693518B (zh) | 2022-08-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mukherjee et al. | Sensory development for heavy metal detection: A review on translation from conventional analysis to field-portable sensor | |
Berlina et al. | Progress in rapid optical assays for heavy metal ions based on the use of nanoparticles and receptor molecules | |
Du et al. | Urine for plasmonic nanoparticle‐based colorimetric detection of mercury ion | |
Li et al. | DNA-templated silver nanocluster as a label-free fluorescent probe for the highly sensitive and selective detection of mercury ions | |
Wang et al. | Chemical redox-regulated mesoporous silica-coated gold nanorods for colorimetric probing of Hg2+ and S 2− | |
Zhou et al. | Colorimetric detection of Mn2+ using silver nanoparticles cofunctionalized with 4-mercaptobenzoic acid and melamine as a probe | |
Liu et al. | Gold‐nanocluster‐based fluorescent sensors for highly sensitive and selective detection of cyanide in water | |
Lou et al. | An indirect approach for anion detection: the displacement strategy and its application | |
Li et al. | A long lifetime ratiometrically luminescent tetracycline nanoprobe based on Ir (III) complex-doped and Eu3+-functionalized silicon nanoparticles | |
Lou et al. | A highly sensitive and selective fluorescent probe for cyanide based on the dissolution of gold nanoparticles and its application in real samples | |
Paleologos et al. | On-line sorption preconcentration of metals based on mixed micelle cloud point extraction prior to their determination with micellar chemiluminescence: Application to the determination of chromium at ng l− 1 levels | |
Chen et al. | Colorimetric detection of potassium ions using aptamer-functionalized gold nanoparticles | |
Chen et al. | Highly sensitive detection of chromium (III) ions by resonance Rayleigh scattering enhanced by gold nanoparticles | |
Guo et al. | A test strip platform based on DNA-functionalized gold nanoparticles for on-site detection of mercury (II) ions | |
Hao et al. | Oligonucleotide-based fluorogenic sensor for simultaneous detection of heavy metal ions | |
Wang et al. | Electrochemiluminescence of a nanoAg–carbon nanodot composite and its application to detect sulfide ions | |
EP3625167B1 (en) | A method for detecting the presence of mercury in water, and a kit for carrying out the method | |
Liu et al. | Fluorescence detection of Pb2+ based on the DNA sequence functionalized CdS quantum dots | |
Wang et al. | Highly sensitive fluorescence detection of copper ion based on its catalytic oxidation to cysteine indicated by fluorescein isothiocyanate functionalized gold nanoparticles | |
Guo et al. | A sensitive biosensor with a DNAzyme for lead (II) detection based on fluorescence turn-on | |
CN111693518B (zh) | 一种汞离子的检测方法 | |
Chen et al. | Scanometric nanomolar lead (II) detection using DNA-functionalized gold nanoparticles and silver stain enhancement | |
Zhou et al. | An electrochemiluminescent assay for high sensitive detection of mercury (II) based on isothermal rolling circular amplification | |
SeokáKim | Gold nanoparticle-based homogeneous fluorescent aptasensor for multiplex detection | |
CN102608108A (zh) | 一种用于汞离子快速检测的纳米生物传感器方法和试剂盒 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220805 |
|
CF01 | Termination of patent right due to non-payment of annual fee |