CN111672493A - 一种碱性介孔催化剂及其制备方法及应用 - Google Patents

一种碱性介孔催化剂及其制备方法及应用 Download PDF

Info

Publication number
CN111672493A
CN111672493A CN202010446031.5A CN202010446031A CN111672493A CN 111672493 A CN111672493 A CN 111672493A CN 202010446031 A CN202010446031 A CN 202010446031A CN 111672493 A CN111672493 A CN 111672493A
Authority
CN
China
Prior art keywords
catalyst
mgo
reaction
oxalate
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202010446031.5A
Other languages
English (en)
Inventor
石磊
许光文
于悦
郑修富
和鹏华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang University of Chemical Technology
Original Assignee
Shenyang University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang University of Chemical Technology filed Critical Shenyang University of Chemical Technology
Priority to CN202010446031.5A priority Critical patent/CN111672493A/zh
Publication of CN111672493A publication Critical patent/CN111672493A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/10Magnesium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/03Preparation of carboxylic acid esters by reacting an ester group with a hydroxy group

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种碱性介孔催化剂及其制备方法及应用,涉及一种催化剂及其制备方法及应用。该方法制备的氧化镁催化剂在草酸二甲酯与乙醇摩尔比为1:4,反应温度70℃,常压下反应1 h,草酸二甲酯的转化率就达到90%以上,草酸二乙酯选择性50%,收率为43.35%。升高反应温度,增长反应时间以及提高反应体系中乙醇含量均能够明显提高草酸二甲酯转化率以及草酸二乙酯选择性。该催化剂具有反应条件温和,催化活性高,目标产物选择性高以及催化剂寿命长等优点,本发明在草酸二乙酯合成中的应用,以煤化工制乙二醇的中间产物草酸二甲酯为原料,和乙醇通过酯交换路径,实现高附加值的草酸二乙酯合成,具有良好的工业应用前景。

Description

一种碱性介孔催化剂及其制备方法及应用
技术领域
本发明涉及一种催化剂及其制备方法及应用,特别涉及一种碱性介孔催化剂及其制备方法及应用。
背景技术
乙二醇是一种重要的基础化工原料,广泛应用于各个领域,主要用于生产聚酯纤维、防冻剂、不饱和聚酯树脂、润滑剂、增塑剂、非离子表面活性剂以及炸药等。我国乙二醇消费在亚洲处于主导地位,同时也是全球最大的乙二醇消费市场,据统计2018年我国乙二醇表观消费量约1700万吨。目前石油乙烯法仍是生产乙二醇的主流工艺,由于我国“富煤、少油、缺气”的资源结构,以煤制乙二醇和甲醇制烯烃为代表的煤化工技术在我国得到长足发展。煤制乙二醇技术包括:煤气化、甲醇合成、一氧化碳偶联羰化以及草酸二甲酯加氢等技术;由于其投资少、技术较为成熟而备受煤化工企业的青睐。据国家统计局统计,截止到2019年10月,中国乙二醇总产能约1080.5万吨,其中煤制乙二醇产能为451万吨占比41.8%,新疆天业乙二醇产能95万吨/年,约占我国乙二醇产能的9%,占煤化工路线乙二醇产能的22%。
目前国内煤制乙二醇技术同质化竞争严重,导致煤制乙二醇整体开工率不高,据金联创数据统计,2019年煤制乙二醇整体开工率在65%左右,较2018年明显下降,特别是9月份只有约50%的开工率。更为严重的是,我国还有500万吨/年以上产能的煤制乙二醇项目正处在建设中。另外国际油价未来可能长期处于低价位(低于30美元/桶)造成乙二醇价格持续低迷,目前已跌至3500元/吨。随着石油价格不断的下跌,煤制乙二醇技术较石油法已不再具备成本优势。因此急需拓宽乙二醇的下游产业,发展一头多尾的煤制乙二醇产业链,谋求乙二醇下游大宗或高附加值产品的开发亟不可待。由煤制乙二醇中间产品草酸二甲酯为中转,生成具有多功能性的草酸烷基酯类精细化学品或潜在的大宗化工材料,是对煤制乙二醇技术的重大突破和产业链高值化补充和延展。
草酸二乙酯又名乙二酸二乙酯(DEO),为无色油状液体,可燃,有芳香气味,属于中等毒性的有毒物质,小鼠半数至死量为每公斤体重口服2000毫克DEO,对粘膜和皮肤有刺激性,豚鼠皮肤接触500毫克24小时后轻度损伤。DEO与乙醇、乙醚、乙酸乙酯等常见有机溶剂混溶,微溶于水,在空气中吸潮而缓慢水解生成草酸,应置于阴凉处密封干燥保存。
草酸二乙酯是重要的有机化工原料和乙基化试剂,能与脂肪酸酯、酰胺或苯胺类化合物以及许多杂环化合物进行各种缩合反应。它主要用于医药工业,合成激素胸腺碱,是制造苯巴比妥、硫唑嘌呤、长效磺胺、磺胺甲基噁唑、羧苯酯青霉素、乙哌氧氨苄青霉素、乳酸氯喹、噻苯咪唑、酮酯类等药物的中间体;其次草酸二乙酯还可以用于制造塑料促进剂、纤维素和香料溶剂、纺织助剂、染料中间体及染料敏化电池添加剂、轴承耐高压润滑剂等;草酸二乙酯还能够与腐蚀的碳酸盐基质作用,形成独特的草酸盐表层,防止基质进一步腐蚀,直接代替草酸用于木屑造纸行业或从植物纤维中提取半纤维糖;草酸二乙酯还可以取代剧毒的氯乙酸氰化路线合成丙二酸乙二酯,通过简单的水解和脱羰基化反应制备具有重要化工应用的草酸和碳酸二乙酯。
已商业化的草酸二乙酯合成方法有:乙醇液相氧化羰基化法、间接气相氧化羰基化法以及草酸-乙醇酯化法。液相氧化羰基化法的主要缺点是PdCl2-CuCl2基催化剂在反应过程中容易中毒失活,难以从反应体系分离以及在分离过程中造成催化剂流失导致活性下降。间接法是乙醇首先与NOx生成亚硝酸乙酯,而后亚硝酸乙酯发生羰基化反应得到草酸二乙酯,残余N2O、NO和N2混合气经再次氧化为NOx后循环使用。该工艺缺点是采用贵金属催化剂,催化剂价格较高,而且随着该技术的推广,贵金属的价格还会大幅上涨。N2O俗称笑气具有神经毒性,其温室效应为CO2的300倍。该技术连续运转过程中产生少量有强腐蚀性的硝酸,对设备造成腐蚀,同时副产工业废水,并和原料乙醇形成共沸物,难以分离,造成产品收率低和能耗高,是一个非环境友好的过程。草酸与乙醇酯化法是以苯为带水剂,草酸自催化20-24 h至塔顶没有水带出后塔釜得到粗草酸二乙酯。该路线缺点是反应时间长、草酸收率低,一般低于85%、带水剂苯强致癌,有致DNA、RNA损伤的基因毒性、草酸腐蚀性较强,需要特种设备、反应工艺复杂,需要多次水洗、碱洗以及无水硫酸钠干燥,产生大量含VOC的废水以及含盐废水。
发明内容
本发明的目的在于提供一种碱性介孔催化剂及其制备方法及应用,提供一种草酸二甲酯和乙醇通过酯交换生产草酸二乙酯的催化剂,具有反应条件温和,催化剂活性高,目的产物选择性高,催化剂寿命长的特点。
本发明的目的是通过以下技术方案实现的:
一种碱性介孔催化剂,所述催化剂为大比表面、大孔径以及高碱含量和中强碱中心介孔氧化镁;催化剂比表面积160-250 m2/ g,平均孔径为20-40 nm,总碱含量为6.1-8.0mmol/g,其中中强碱含量为3.6-5.0 mmol/g。
一种碱性介孔催化剂制备方法,所述方法制备步骤如下:
将镁盐前驱体与过饱和碳酸钠溶液控制pH值剧烈搅拌沉淀,老化后经去离子水洗涤至中性,经过滤、干燥和焙烧;
镁盐浓度为0.2 -6 mol/L浓度的镁盐水溶液或含乙醇的水-醇复合溶液,优选浓度范围2-4 mol/L;其过饱和碳酸溶液浓度大于3.14 mol/L,且有未溶解的碳酸钠沉淀;沉淀温度为40-80 ℃,优选沉淀温度为55-70 ℃;沉淀时控制pH值范围9.5-11,优选pH值10-10.5;老化时间5-40 h,优选10-30 h;控制水洗后pH值8-9,优选8.4-8.6;过滤后催化剂干燥温度90-150 ℃,优选110-130 ℃;催化剂干燥时间5-30 h,优选10-20 h;催化剂焙烧温度400-650 ℃,优选500-600 ℃;催化剂焙烧时间1-10 h,优选3-5 h。
所述的一种碱性介孔催化剂制备方法,所述镁盐前驱体包含硝酸镁、硫酸镁和氯化镁等可溶镁盐中的一种或多种。
一种碱性介孔催化剂应用,所述催化剂在原料草酸二甲酯和乙醇的摩尔比为1:2-1:20,反应压力为0.05-1.0 MPa,反应温度25-120 ℃,催化剂用量为0.1-5 wt%,用固定床或釜式反应器,反应1-2 h即达到反应平衡;宜用于草酸二甲酯和乙醇酯交换制备草酸二乙酯反应。
本发明的优点与效果是:
本发明提出一种过量碳酸钠沉淀法制备高比表面、大孔体积与孔径、高碱含量和大量中强碱活性中心的氧化镁催化剂的方法,能明显提高草酸二甲酯转化率以及草酸二乙酯选择性。该催化剂具有反应条件温和,催化活性高,目标产物选择性高以及催化剂寿命长等优点,具有良好的工业应用前景。
附图说明
图1为草酸二甲酯转化率、草酸二乙酯选择性及收率随反应时间变化情况;
图2(A)用不同类型沉淀剂所制备催化剂前驱体的XRD谱图;
图2(B)煅烧催化剂的XRD图;
图3 (A) MgO-NaOH-3-Pre类型和浓度的沉淀剂制备的前驱体的TG-DTA曲线;
图3 (B) MgO-Na2CO3-3-Pre类型和浓度的沉淀剂制备的前驱体的TG-DTA曲线;
图3 (C) MgO- Na2CO3-3.14-Pre类型和浓度的沉淀剂制备的前驱体的TG-DTA曲线;
图4 催化剂的N2吸附-脱附等温线;
图5 不同催化剂的CO2-TPD曲线。
具体实施方式
下面结合附图所示实施例对本发明进行详细说明。
本发明采用沉淀法和过量碳酸沉淀法:将0.4 mol Mg(NO3)2•6H2O溶解在250 mL去离子水中,记为溶液A,而溶液B包含不同类型或不同浓度的碱。在60 ℃和pH值为10的剧烈搅拌下,将溶液A和B同时滴入1000 mL去离子水中。沉淀过后,将溶液连续搅拌0.5 h,然后在室温下老化20 h。然后过滤、洗涤,直到pH值达到约9。将所得沉淀物在120 ℃下干燥15h,记为MgO-NaOH-Pre和MgO-Na2CO3-Pre,然后在空气中500℃煅烧3小时。所得的MgO催化剂分别标记为MgO-NaOH-m和MgO-Na2CO3-n。在所有情况下,“m”和“n”分别代表NaOH和Na2CO3的浓度。采用单一Na2CO3为沉淀剂,保持B溶液中60 ℃下有未完全溶解的Na2CO3,此时Na2CO3浓度为3.14 mol/L,沉滴定时,保持B溶液和远过量的Na2CO3沉淀共同加入1000 mL大烧杯中。
下面结合实施例对本发明进行详细说明。
实施例1 (体现制备方法的优越性)
草酸二甲酯(DMO)与乙醇(EtOH)酯交换反应条件:原料DMO和EtOH摩尔比为1:4(DMO原料90 g和约140 g EtOH加入三口烧瓶中),称取催化剂质量0.9 g(占原料DMO质量的1%),常压并控制反应在外加热自回流条件下进行,反应60 min后取样分析。所有产物经配备HP-FFAP色谱柱的气相色谱GC-2010 Pro分析,色谱分析条件为:汽化室温度230 ℃,采用FID检测器,检测器温度250 ℃,固定相为改性的聚乙二醇,色谱柱流量2.5 mL/min,气体总流量105.8 mL/min,初始温度40 ℃,保持3 min,而后以10 ℃/min升至100 ℃,不停留,直接以20 ℃/min升至220 ℃,保持5 min。
如表1所示,仅反应60 min,MgO-NaOH-3展现出82.79%DMO转化率和37.42%的草酸二乙酯(DEO)选择性和30.98%收率,整个反应仅有草酸甲乙酯(EMO)是中间产物,完全没有含量高于0.001%的副产物生成。MgO-Na2CO3-3的催化效果更佳,达到86.49%的DMO转化率和43.33%DEO选择性。如果采用过量碳酸钠沉淀法制备的MgO- Na2CO3-3.14催化剂表现出极佳的催化活性,反应60 min达到90%以上的DMO转化率,接近50%的DEO选择性和43.35%的DEO收率,其催化效率接近MgO-NaOH-3催化剂1.5倍,比MgO- Na2CO3-3催化剂高15%以上。
表1不同MgO制备方法对草酸酯交换效率的影响
Figure DEST_PATH_IMAGE002
反应条件:DMO/EtOH = 1/4,催化剂含量占DMO的1 wt%,反应温度70 ℃,反应时间60min。
实施例2(为催化效率服务)
图1 DMO转化率、DEO选择性以及收率随反应时间变化情况。反应条件:DMO / EtOH =1/4,催化剂含量为DMO质量的1 wt%,反应温度70℃,常压。
以MgO-Na2CO3-3.14为催化剂,原料DMO和EtOH摩尔比为1:4,催化剂质量占原料DMO质量的1%,常压并控制反应在外加热自回流条件下进行,原料DMO转化率、DEO选择性以及收率随反应时间变化情况如图1所示。反应30 min就达到76.23%的DMO转化率、30.71%DEO选择性以及23.41%DEO收率。随着时间延长,DMO转化率和DEO收率逐渐增加,初始增加速率较快,当反应时间大于60 min时,DMO转化率增长速率明显变慢,当反应时间达到120 min时,反应基本接近平衡,达到大约94%的DMO转化率,55.5%左右的DEO选择性以及52%左右的收率。
实施例3(为不同前驱体种类服务)
分别以0.4 mol MgSO4•7H2O、0.4 mol MgCl2•6H2O以及0.2 mol MgSO4•7H2O和0.2 molMgCl2•6H2O配置成溶液A,采用过量碳酸钠法沉淀制备催化剂,用于DMO和EtOH酯交换反应,反应结果如表2所示。
表2 不同前驱体对MgO催化剂活性的影响
Figure DEST_PATH_IMAGE004
反应条件:DMO/EtOH = 1/4,催化剂含量占DMO的1 wt%,反应温度70 ℃,反应时间60min。
所有镁盐前驱体通过过量碳酸钠沉淀法制备的氧化镁催化剂活性近似。
实施例4(为反应原料摩尔比范围服务)
以MgO-Na2CO3-3.14为催化剂,催化剂质量为DMO质量的1%,常压约70 ℃反应120 min,DMO转化率、DEO选择性以及收率随反应原料DMO和EtOH摩尔比变化情况如表3所示。
表3 不同原料摩尔比对草酸酯交换反应的影响
Figure DEST_PATH_IMAGE006
反应条件:催化剂含量占DMO的1 wt%,共沸反应,反应时间120 min。
随着反应物中EtOH的摩尔比例增加,DMO的转化率逐渐提升,产物DEO的选择性也逐步提到,当DMO/EtOH=1/20时,DMO转化率达到98.48%,DEO选择性为77.54%,收率为76.36%。
实施例5(为反应温度范围服务)
以MgO-Na2CO3-3.14为催化剂,原料DMO和EtOH的摩尔比为1:4,催化剂质量为反应原料DMO质量的1%,常压下反应120 min,DMO转化率、DEO选择性以及收率随反应温度变化情况如表4所示。
表4 反应温度对草酸酯交换反应的影响
Figure DEST_PATH_IMAGE008
反应条件:DMO/EtOH=1/4,催化剂含量占DMO的1 wt%,反应时间120 min。
当反应仅为50 ℃且催化剂含量为DMO质量的1%时,MgO-Na2CO3-3.14就展现出了68.79%的DMO转化率、26.65%DEO选择性以及18.33%的收率。逐渐提高反应温度至60 ℃,DMO转化率、DEO选择性以及收率显著提升至87.67%、44.37%和38.90%。继续升高反应温度至65和70 ℃,两者差别并不明显,DMO转化率均稳定在92%-93%之间,保持DEO选择性高于50%,DEO收率在50%附近。
实施例6(为催化剂含量服务)
以MgO-Na2CO3-3.14为催化剂,原料DMO和EtOH的摩尔比为1:4,反应温度70 ℃附近,常压下反应60 min,DMO转化率、DEO选择性以及收率随催化剂含量变化情况如表5所示。
表5 催化剂含量对草酸酯交换反应的影响
Figure DEST_PATH_IMAGE010
反应条件:DMO/EtOH=1/4,反应温度70 ℃,反应60 min。
催化剂含量仅为DMO质量的0.5%时,MgO-Na2CO3-3.14就展现出了81.42%的DMO转化率、38.20%DEO选择性以及31.10%的收率。逐渐提升催化剂含量至1%时,达到90.21%的DMO转化率、48.06%DEO选择性以及43.35%的收率。继续提升催化剂含量占DMO质量的3%和5%时,催化效率提升并不明显。
实施例7 (为催化剂使用寿命长服务)
以MgO-Na2CO3-3.14为催化剂,原料DMO和EtOH的摩尔比为1:4,催化剂含量占DMO质量的3%,反应温度70 ℃附近,常压下反应60 min,DMO转化率、DEO选择性以及收率随催化剂重复使用变化情况如表5所示。每次评价完成后,在真空140-145 ℃下减压旋蒸30 min,保证反应原料和产物分离出反应体系后,剩余的催化剂回用。如表6所示,催化剂重复使用5次未见明显失活,说明制备的MgO催化剂展现出良好的催化草酸酯交换反应的稳定性。
表6 催化剂重复使用对草酸酯交换反应的影响
Figure DEST_PATH_IMAGE012
反应条件:DMO/EtOH=1/4,反应温度70 ℃,反应60 min。
实施例8(表征证明非过量沉淀和过量沉淀制备前驱体结构存在本质差异)
图2前驱体(A)及焙烧后的催化剂(B)的XRD (A): (a') MgO-NaOH-3-Pre, (b') MgO-Na2CO3-3-Pre, and (c') MgO-Na2CO3-3.14-Pre. (B): (a) MgO-NaOH-3, (b) MgO-Na2CO3-3, and (c) MgO-Na2CO3-3.14.
图2(A)展示了用不同类型沉淀剂所制备催化剂前驱体的XRD谱图。显然,MgO-NaOH-3-Pre(a')的所有衍射峰均归属于氢氧化镁Mg(OH)2。当使用Na2CO3作为沉淀剂时,MgO-Na2CO3-3-Pre(b')和MgO-Na2CO3-3.14-Pre(c')呈现的谱图与碱性碳酸镁相符,随着Na2CO3浓度的增加,各催化剂的结晶度也逐渐增加。
图2(B)显示了煅烧催化剂的XRD图。所有样品均显示36.94°,42.92°,62.32°,74.70°和78.64°的衍射峰,依次归属于(111),(200),(220),(311)和(222)平面空间群Fm-3m(225)的立方MgO(PDF-#45-0946)。基于在2θ下最强的42.92°的衍射峰,我们利用Sherrer公式计算出MgO的晶粒尺寸,晶粒大小变化顺序为MgO-NaOH-3 < MgO-Na2CO3-3 <MgO-Na2CO3-3.14。以上结果可以看出,MgO催化剂的晶粒尺寸随着Na2CO3沉淀浓度的提高而增大,其中用饱和Na2CO3溶液中带有少量未溶解的Na2CO3残留物沉淀出来的MgO晶粒尺寸最大。
实施例9(热分解表征证明非过量沉淀和过量沉淀制备前驱体结构存在本质差异)
图3(A-C)展示了由不同类型氧化镁前驱体的TG-DTA曲线分析, MgO-NaOH-3-Pre在400 ℃左右只有一个吸热峰,对应的催化剂损失的质量约为31.18 wt%,与氢氧化镁Mg(OH)2分解为MgO(100×18.0/58.0 = 31.0 wt%)。
图3 (A-C) 由不同类型和浓度的沉淀剂制备的前驱体的TG-DTA曲线。(A) MgO-NaOH-3-Pre, (B) MgO-Na2CO3-3-Pre, (C) MgO- Na2CO3-3.14-Pre.
MgO-Na2CO3-3-Pre和MgO-Na2CO3-3.14-Pre的DTA曲线展现了三个吸热峰和一个放热峰。第一个吸热峰出现在约250℃,归因于碱性碳酸镁的脱水。碱性碳酸镁的脱羟基和脱碳导致了第二个400℃处吸热峰的出现,放出CO2和H2O。在500 ℃处出现第三个吸热峰,归因于碳酸镁的脱碳产生氧化镁。但在490 ℃处有一个小放热峰,可能是无定形晶体碳酸镁变成氧化镁而产生的。这两个样品的总重量损失约为57%,与碱性碳酸镁MgCO3•Mg(OH)2•4H2O分解成MgO(100×(5×18 + 4×44)/466 = 57.1 wt%)的理论计算值相似,表明MgO-Na2CO3-3-Pre和MgO-Na2CO3-3.14-Pre也是由碱性碳酸镁组成。并且MgO-Na2CO3-3-Pre和MgO-Na2CO3-3.14-Pre在500℃左右有一个吸热峰,前驱体MgO-Na2CO3-3.14-Pre比MgO-Na2CO3-3-Pre吸热峰更尖锐。猜测该结构分解后的MgO结构具有最佳的催化草酸酯交换能力,共损失了约19.60%的重量,而MgO-Na2CO3-3-Pre在这部分损失18.42%。
实施例10 (证明高比表面和大孔径服务)
催化剂MgO-NaOH-3、MgO-Na2CO3-3和MgO-Na2CO3-3.14的N2吸附-脱吸等温线如图4所示,所有催化剂均类似于IV型等温线H3滞回环。由于在相对压力高于P/P0 = 0.4时含有磁滞回线,这显然表明由沉淀法合成的所有样品MgO均是介孔结构材料。与MgO-NaOH-3催化剂相比,MgO-Na2CO3-3和MgO-Na2CO3-3.14表现出超强的氮气吸附能力。显然,MgO-Na2CO3-3.14的磁滞回线大于MgO-NaOH-3和MgO-Na2CO3-3的滞回线,这表明MgO-Na2CO3-3.14的孔径最大。
图4 催化剂的N2吸附-脱附等温线;(a) MgO-NaOH-3, (b) MgO-Na2CO3-3, (c)MgO-Na2CO3-3.14。
通过t-plot法计算介孔催化剂的比表面积。MgO-NaOH-3的比表面积,孔体积和平均孔径都相对较小,催化剂MgO-Na2CO3-3和MgO-Na2CO3-3.14的BET表面积,孔体积和平均孔径随着Na2CO3沉淀浓度的增加而增加。3.14 mol/L Na2CO3沉淀获得的MgO-Na2CO3-3.14具有最高的比表面积,孔体积和平均孔直径分别为162 m2/ g,0.97 cm3/g和23.91 nm。
实施例11(证明强碱性)
通过CO2-TPD测量不同方法制备MgO的碱量和碱强度。所有样品TPD分布图包含几个CO2解吸峰,表明在每个表面上存在具有不同强度的各种碱性位点。MgO上碱性位的化学性质与表面原子排列有关:低配位的O2- > Mg2+-O2-对中的氧>羟基。在100-200 ℃处显示出的CO2解吸峰对应于弱碱性位点,在200-400 ℃处的解析峰对应中强碱性位点,400 ℃以上为强碱性位点。低于200 ℃的峰归因于CO2与对应于表面羟基的弱碱性位点的相互作用。第二组200 ℃至400 ℃之间的吸收峰可能与CO2在Mg2+–O2-位置上的吸附有关。最后,高于400 ℃的温度可以归因于对应于孤立的O2-对CO2的吸附。
图5 不同催化剂的CO2-TPD曲线;(a) MgO-NaOH-3, (b) MgO-Na2CO3-3, (c) MgO-Na2CO3-3.14.
根据CO2-TPD曲线可以看出,在100-200 ℃的弱碱的解吸峰里,MgO-Na2CO3-3和MgO-Na2CO3-3.14的解吸峰均高于MgO-NaOH-3,说明氢氧化钠沉淀出来的氧化镁低碱性位含量最低,而过量碳酸钠沉淀出来的氧化镁低碱性位的含量最多。对于200-400 ℃中强碱性位,催化剂MgO-Na2CO3-3.14的吸收峰显而易见是最高的,说明中强碱活性位最多。对于MgO-NaOH-3、MgO-Na2CO3-3和MgO-Na2CO3-3.14三种催化剂,随着沉淀剂碳酸钠的浓度增加,总碱量增加,其中MgO-Na2CO3-3.14峰最高,吸收的二氧化碳的对多,碱含量最多,同时具有最多的中强碱活性位。经计算,MgO-Na2CO3-3.14总碱含量为6.1 mmol/g,其中中强碱含量为3.6 mmol/g。

Claims (4)

1.一种碱性介孔催化剂,其特征在于,所述催化剂为大比表面、大孔径以及高碱含量和中强碱中心介孔氧化镁;催化剂比表面积160-250 m2/ g,平均孔径为20-40 nm,总碱含量为6.1-8.0 mmol/g,其中中强碱含量为3.6-5.0 mmol/g。
2.一种碱性介孔催化剂制备方法,其特征在于,所述方法制备步骤如下:
将镁盐前驱体与过饱和碳酸钠溶液控制pH值剧烈搅拌沉淀,老化后经去离子水洗涤至中性,经过滤、干燥和焙烧;
镁盐浓度为0.2 -6 mol/L浓度的镁盐水溶液或含乙醇的水-醇复合溶液,优选浓度范围2-4 mol/L;其过饱和碳酸溶液浓度大于3.14 mol/L,且有未溶解的碳酸钠沉淀;沉淀温度为40-80 ℃,优选沉淀温度为55-70 ℃;沉淀时控制pH值范围9.5-11,优选pH值10-10.5;老化时间5-40 h,优选10-30 h;控制水洗后pH值8-9,优选8.4-8.6;过滤后催化剂干燥温度90-150 ℃,优选110-130 ℃;催化剂干燥时间5-30 h,优选10-20 h;催化剂焙烧温度400-650 ℃,优选500-600 ℃;催化剂焙烧时间1-10 h,优选3-5 h。
3.根据权利要求2所述的一种碱性介孔催化剂制备方法,其特征在于,所述镁盐前驱体包含硝酸镁、硫酸镁和氯化镁等可溶镁盐中的一种或多种。
4.一种碱性介孔催化剂应用,其特征在于,所述催化剂在原料草酸二甲酯和乙醇的摩尔比为1:2-1:20,反应压力为0.05-1.0 MPa,反应温度25-120 ℃,催化剂用量为0.1-5wt%,用固定床或釜式反应器,反应1-2 h即达到反应平衡;宜用于草酸二甲酯和乙醇酯交换制备草酸二乙酯反应。
CN202010446031.5A 2020-05-25 2020-05-25 一种碱性介孔催化剂及其制备方法及应用 Withdrawn CN111672493A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010446031.5A CN111672493A (zh) 2020-05-25 2020-05-25 一种碱性介孔催化剂及其制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010446031.5A CN111672493A (zh) 2020-05-25 2020-05-25 一种碱性介孔催化剂及其制备方法及应用

Publications (1)

Publication Number Publication Date
CN111672493A true CN111672493A (zh) 2020-09-18

Family

ID=72452725

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010446031.5A Withdrawn CN111672493A (zh) 2020-05-25 2020-05-25 一种碱性介孔催化剂及其制备方法及应用

Country Status (1)

Country Link
CN (1) CN111672493A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112279762A (zh) * 2020-11-11 2021-01-29 新疆至臻化工工程研究中心有限公司 一种非均相催化酯交换合成草酸甲乙酯的工艺方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112279762A (zh) * 2020-11-11 2021-01-29 新疆至臻化工工程研究中心有限公司 一种非均相催化酯交换合成草酸甲乙酯的工艺方法
CN112279762B (zh) * 2020-11-11 2023-08-11 新疆至臻化工工程研究中心有限公司 一种非均相催化酯交换合成草酸甲乙酯的工艺方法

Similar Documents

Publication Publication Date Title
Zhang et al. Cerium oxide-based catalysts made by template-precipitation for the dimethyl carbonate synthesis from Carbon dioxide and methanol
Deng et al. A review on transesterification of propylene carbonate and methanol for dimethyl carbonate synthesis
Pradhan et al. Green synthesis of glycerol carbonate by transesterification of bio glycerol with dimethyl carbonate over Mg/ZnO: A highly efficient heterogeneous catalyst
CN110104667B (zh) 一种用于有机硫催化的镁铝水滑石及制备方法和应用
CN108126704B (zh) 一种铈铁锆复合氧化物催化剂及制备方法和应用
Wong et al. Effect of calcination temperatures of CaO/Nb2O5 mixed oxides catalysts on biodiesel production
CN103566949B (zh) 由草酸二甲酯加氢制乙二醇及乙二醇单甲醚的铜基催化剂及其制备方法
Kumar et al. Synergic effect of manganese oxide on ceria based catalyst for direct conversion of CO2 to green fuel additive: Catalyst activity and thermodynamics study
CN102863335B (zh) 一种丁二酸二酯的制备方法
CN107096540B (zh) 一种复合金属氧化物及其制备方法和应用
CN114436806B (zh) 一步法低温转化pet聚酯废塑料制备对苯二甲酸二钠和氢气的方法
CN111672493A (zh) 一种碱性介孔催化剂及其制备方法及应用
CN103601210B (zh) 膨润土一步碱溶合成沸石的方法
Bankar et al. Iridium supported on spinal cubic cobalt oxide catalyst for the selective hydrogenation of CO2 to formic acid
Jiang et al. Direct synthesis of dimethyl carbonate from carbon dioxide and methanol over Ce-BTC-derived CeO2
Pradhan et al. Exploring the promotional effect of transition metals (Cr and V) on the catalytic activity of MgO for glycerol carbonate synthesis
CN104072376B (zh) 一种由co2和甲醇合成碳酸二甲酯的方法
CN102850223A (zh) 一种合成碳酸甲乙酯的方法
CN104069858B (zh) 一种合成碳酸二甲酯的双功能催化剂及其制备和应用方法
CN108997591B (zh) 一种可见光响应铪基金属有机骨架材料及其制备方法
CN105664954A (zh) 一种钙盐作为添加剂促进铜基催化剂前驱体中绿铜锌矿相形成的方法
Yue et al. Monodisperse mesoporous La 2 O 3 flakes for the synthesis of glycerol carbonate by efficiently catalyzing the transesterification of dimethyl carbonate with glycerol
CN113856688A (zh) 一种用于CO2加氢制甲醇的Cu基催化剂的制备方法
CN101406842A (zh) 铝柱撑坡缕石改性固体酸催化剂及其制备和应用
CN100391600C (zh) 合成碳酸二甲酯的催化剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20200918

WW01 Invention patent application withdrawn after publication