CN111668189A - 一种mis-hemt器件的热电子效应测试结构及其表征方法 - Google Patents

一种mis-hemt器件的热电子效应测试结构及其表征方法 Download PDF

Info

Publication number
CN111668189A
CN111668189A CN201910172827.3A CN201910172827A CN111668189A CN 111668189 A CN111668189 A CN 111668189A CN 201910172827 A CN201910172827 A CN 201910172827A CN 111668189 A CN111668189 A CN 111668189A
Authority
CN
China
Prior art keywords
stress
characteristic
hot electron
voltage
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910172827.3A
Other languages
English (en)
Other versions
CN111668189B (zh
Inventor
郑雪峰
马晓华
李纲
王小虎
陈管君
郝跃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN201910172827.3A priority Critical patent/CN111668189B/zh
Publication of CN111668189A publication Critical patent/CN111668189A/zh
Application granted granted Critical
Publication of CN111668189B publication Critical patent/CN111668189B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • G01R31/2621Circuits therefor for testing field effect transistors, i.e. FET's
    • G01R31/2628Circuits therefor for testing field effect transistors, i.e. FET's for measuring thermal properties thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明涉及一种MIS‑HEMT器件的热电子效应测试结构,包括:底层(15)、势垒层(4)、绝缘层(5)、源极(7)、栅极(8)、漏极(9)、第一掺杂区(11)、第二掺杂区(12)、电极A(13)和电极B(14)。本实施例提供了一种热电子注入数量与能量可控技术的热电子效应测试结构及其表征方法,通过调整偏置电压来控制势垒层中热电子的注入数量,并通过调整偏置电压来控制势垒层中热电子的注入能量,解决了器件热电子注入数量和注入能量的不可控,以及非均匀注入势垒层等问题,有助于对MIS‑HEMT器件的热电子效应进行深入分析。

Description

一种MIS-HEMT器件的热电子效应测试结构及其表征方法
技术领域
本发明属于半导体检测技术领域,具体涉及一种MIS-HEMT器件的热电子效应测试结构及其表征方法。
背景技术
从以硅材料为代表的第一代半导体材料到以砷化镓材料为代表的第二代半导体材料,发展到以氮化镓为代表的第三代半导体材料,其制作而成的异质结器件在大功率、高频率、高电压、高温和耐辐射等领域具有独特优势。
在实际应用中,器件工作在高压条件时,导电沟道中的电子在强电场作用下获得足够高的能量变成高能“热电子”。这些高能热电子会跃出导电沟道,注入到异质结材料中,导致器件性能发生退化,即热电子效应。目前,对于金属-绝缘层-半导体高电子迁移率晶体管(MIS-HEMT,Metal-Insulator-SemiconductorHighElectronMobilityTransistor)热电子效应的表征研究,一般采用对常规结构的MIS-HEMT施加热电子应力偏置,分析应力前后器件特性变化的方法。
然而,常规结构的MIS-HEMT在热电子应力作用下,沟道内载流子数量和加速电场强度均与所加栅极和源极电压、栅极和漏极电压偏置同时相关,所以对常规结构的MIS-HEMT器件施加热电子应力,无法独立研究热电子注入数量和注入能量分别对器件性能退化的影响,从而对于热电子效应的机理缺乏深入研究。
发明内容
为了解决现有技术中存在的上述问题,本发明提供了一种MIS-HEMT器件的热电子效应测试结构及其表征方法。本发明要解决的技术问题通过以下技术方案实现:
本发明实施例提供了一种MIS-HEMT器件的热电子效应测试结构,包括:底层、势垒层、绝缘层、源极、栅极、漏极、第一掺杂区、第二掺杂区、电极A和电极B,其中,
所述势垒层位于所述底层之上;
所述绝缘层位于所述势垒层之上;
所述栅极位于所述绝缘层之上;
所述源极与所述漏极分别位于所述栅极两侧,且所述源极与所述漏极穿过所述势垒层和所述绝缘层位于所述底层之上;
所述第一掺杂区和所述第二掺杂区位于所述底层内;其中,所述第一掺杂区位于所述势垒层两侧,所述第二掺杂区分布在对应的所述第一掺杂区外侧;
所述电极A位于所述第一掺杂区之上;
所述电极B位于所述第二掺杂区之上。
在本发明的一个实施例中,所述底层包括:衬底、成核层和缓冲层;其中,
所述成核层位于所述衬底之上;
所述缓冲层位于所述成核层之上。
本发明的另一个实施例提供了一种MIS-HEMT器件的热电子效应表征方法,应用于一种MIS-HEMT器件的热电子效应测试结构,以对待测器件的热电子效应进行表征,包括:
通过热电子应力实验获取所述待测器件的应力前特性和应力后特性;其中,所述应力前特性和所述应力后特性均包括输出特性和转移特性;
根据所述应力前特性和所述应力后特性,获取所述热电子应力实验对所述待测器件特性的影响的结果。
在本发明的一个实施例中,通过热电子应力实验获取所述待测器件的应力前特性和应力后特性,包括:
获取所述待测器件的应力前特性;
对所述电极A施加第一电压,对所述电极B施加第二电压,对所述栅极施加第三电压,并获取应力时间和栅极电流;其中,所述栅极电流为通过所述栅极的电流;
撤去所述第一电压、所述第二电压和所述第三电压后,获取所述应力后特性。
在本发明的一个实施例中,所述热电子应力实验对所述待测器件特性影响的结果,包括:
热电子注入数量对所述待测器件特性影响的结果、热电子注入能量对所述待测器件特性影响的结果、栅极电压对热电子效应影响的结果。
在本发明的一个实施例中,获取热电子注入数量对所述待测器件特性影响的结果,包括:
保持所述第一电压恒定不变,多次改变所述第二电压进行所述应力试验,并获取多组第一应力实验数据;其中,第一应力实验数据包括所述应力前特性、所述应力后特性、所述应力时间和所述栅极电流;
根据多组所述第一应力实验数据获取注入电子数量对所述待测器件特性影响的结果。
在本发明的一个实施例中,获取热电子注入能量对所述待测器件特性影响的结果,包括:
保持所述第一电压和所述第二电压的压差恒定,多次改变所述第一电压和所述第二电压进行所述应力试验,并获取多组第二应力实验数据,其中,每组第二应力实验数据包括所述应力前特性、所述应力后特性、所述应力时间和所述栅极电流;
根据多组所述第二应力实验数据获取注入电子数量对所述待测器件特性影响的结果。
在本发明的一个实施例中,获取栅极电压对热电子效应的影响的结果,包括:
保持所述第一电压和所述第二电压恒定不变;多次改变所述第三电压进行所述应力试验,并获取多组第三应力实验数据;其中,每组第三应力实验数据包括所述应力前特性、所述应力后特性、所述应力时间和所述栅极电流;
根据多组所述第三应力实验数据获取栅极电压对热电子效应的影响的结果。
在本发明的一个实施例中,获取所述热电子应力实验对所述待测器件特性的影响的结果,包括:获取输出特性的相对退化量和转移特性的相对退化量。
在本发明的一个实施例中,所述输出特性的相对退化量满足以下公式:
Figure BDA0001988630680000041
所述转移特性的相对退化量满足以下公式:
Figure BDA0001988630680000051
其中,ΔSoutput为所述输出特性的相对退化量,Safter-output为所述应力后特性中的所述输出特性,Sbefore-output为所述应力前特性中的所述输出特性,ΔStc为所述转移特性的相对退化量,Safter-tc为所述应力后特性中的所述转移特性,Sbefore-tc为所述应力前特性中的所述转移特性。
与现有技术相比,本发明的有益效果:
1)本发明与传统热电子表征相比,其注入势垒层中的热电子来源于N+重掺杂区注入到P型缓冲层的电子,该电子数量由P/N+结上的偏置电压差决定。因此,可调整偏置电压差来控制势垒层中热电子的注入数量;
2)本发明与传统热电子表征相比,其注入势垒层中热电子的能量由P+重掺杂区与沟道区之间的加速电场决定。由于源极S、漏极D极均接地,整个沟道区可视为0V等势区,则热电子的加速电场由Va决定。因此,可通过调整偏置电压来控制势垒层中热电子的注入能量;
3)本发明中,缓冲层电子在P+重掺杂区与沟道区之间电场的加速作用下,部分成为热电子。由于源极S、漏极D接地,整个沟道区可视为0V等势区,靠近沟道下方的电场可视为匀强电场,且方向垂直沟道向下,故热电子会均匀地向器件势垒层注入,有助于深入研究热电子效应。
附图说明
图1为本发明实施例提供的一种MIS-HEMT器件的热电子效应测试结构的结构示意图;
图2为本发明实施例提供的一种MIS-HEMT器件的热电子效应表征方法的流程示意图;
图3为本发明实施例提供的一种MIS-HEMT器件的热电子效应表征方法的电路连接示意图;
图4为本发明实施例提供的一种MIS-HEMT器件的热电子效应表征方法实现流程图;
图5为本发明提供待测MIS-HEMT器件输出特性与转移特性相对退化量随不同热电子注入数量变化的曲线图;
图6为本发明提供待测MIS-HEMT器件的输出特性与转移特性的退化量分别随不同热电子注入能量变化的曲线图;
图7为本发明提供待测MIS-HEMT器件输出特性与转移特性的退化量分别随不同栅极电压变化的曲线图。
具体实施方式
下面结合具体实施例对本发明做进一步详细的描述,但本发明的实施方式不限于此。
实施例一:
请参见图1,图1为本发明实施例提供的一种MIS-HEMT器件的热电子效应测试结构的结构示意图。本实施例以一种MIS-HEMT器件为例,一种MIS-HEMT器件的热电子效应测试结构包括:底层15、势垒层4、绝缘层5、源极7、栅极8、漏极9、第一掺杂区11、第二掺杂区12、电极A13和电极B14;其中,
势垒层4位于底层15之上;
绝缘层5位于势垒层4之上;
栅极8位于绝缘层5之上;
源极7与漏极9分别位于栅极8两侧,且源极7与漏极9穿过势垒层4和绝缘层5位于底层15之上;
第一掺杂区11和第二掺杂区12位于底层15内;其中,第一掺杂区位于势垒层4两侧,第二掺杂区12分布在对应的第一掺杂区11外侧;
电极A13位于第一掺杂区11之上;
电极B14位于第二掺杂区12之上。
优选地,底层15包括:衬底1、成核层2和缓冲层3;其中,
成核层2位于衬底1之上;
缓冲层3位于成核层2之上。
优选地,该器件还可以包括:第一钝化层6和第二钝化层10,即在该器件表面制备一层钝化膜,增强器件表面的耐蚀性,起钝化作用;其中,
势垒层4位于底层15之上;
绝缘层5位于势垒层4之上;
第一钝化层6位于绝缘层5之上;
栅极8穿透第一钝化层6位于绝缘层5之上;
第二钝化层10分别位于势垒层4两侧,且位于底层15之上;
源极7与漏极9分别位于势垒层4、绝缘层5和第一钝化层6两侧,且源极7与漏极9穿透第二钝化层10,位于底层15之上;
第一掺杂区11和第二掺杂区12位于底层15内,且位于第二钝化层10下表面;其中,第一掺杂区位于势垒层4两侧,第二掺杂区12分布在对应的第一掺杂区11外侧;
电极A13穿透第二钝化层10,且位于第一掺杂区11之上;
电极B14穿透第二钝化层10,且位于第二掺杂区12之上。
优选的,缓冲层3为P型缓冲层,第一掺杂区11为P+重掺杂区,第二掺杂区12为N+重掺杂区。
优选地,所述衬底包括,蓝宝石、SiC、Si、金刚石等材料;所述成核层包括,低温GaN(LT-GaN)、低温AlN(LT-AlN)、高温AlN(HT-AlN)等材料。
优选地,该器件工作时会形成二位电子气(2DEG,Two-Dimensional ElectronGas)16,位于缓冲层3与势垒层4异质结界面偏缓冲层一侧。
优选地,制作该测试结构时,首先选取MIS-HEMT器件,对源极和漏极两侧的缓冲层以上的材料进行刻蚀,刻蚀至缓冲层内,即保留源极与漏极之间缓冲层之上的部分,将源极与漏极两侧缓冲层之上的材料刻蚀掉,暴露出缓冲层。接着在源极和漏极两侧的缓冲层表面,由内向外分别制作对称的P+、N+重掺杂区域,其中,P+重掺杂区在N+重掺杂区内侧。然后,在制作好重掺杂区域后的缓冲层表面上制备第二钝化层。最后,穿透第二钝化层分别在P+、N+重掺杂区域上制作欧姆电极A、B,完成待测器件的制备;
本发明提供的一种MIS-HEMT器件的热电子效应测试结构,解决了器件热电子注入数量和注入能量不可控,以及非均匀注入势垒层的问题,有助于对MIS-HEMT器件中的热电子效应进行深入分析。
实施例二:
请继续参见图1,并请参见图2和图3。图2为本发明实施例提供的一种MIS-HEMT器件的热电子效应表征方法的流程示意图;图3为本发明实施例提供的一种MIS-HEMT器件的热电子效应表征方法的电路连接示意图。本实施例在上述实施例的基础上,以一种MIS-HEMT待测器件为例,重点对一种MIS-HEMT器件的热电子效应表征方法进行详细描述,如图2所示。具体地,包括以下步骤:
通过热电子应力实验获取所述待测器件的应力前特性和应力后特性;
根据所述应力前特性和所述应力后特性,获取所述热电子应力实验对所述待测器件特性的影响的结果;其中,所述热电子应力实验对所述待测器件特性影响的结果,包括:获取热电子注入数量对所述待测器件特性影响的结果、热电子注入能量对所述待测器件特性影响的结果和栅极电压对热电子效应影响的结果。
优选的,所述应力前特性和所述应力后特性包括:输出特性和转移特性。
优选的,如图3所示,所述连接实验电路包括:将所述电极A连接第一电压源的一端,所述第一电压源另一端接地;将所述电极B连接第二电压源一端,所述第二电压源的另一端接地;将所述源极和所述漏极接地;所述栅极连接电流表的一端,所述电流表的另一端连接第三电压源的一端,所述第三电压源的另一端接地。
优选地,所述热电子应力实验包括:获取所述待测器件的应力前特性;对待测器件施加电压应力,即对所述电极A施加第一电压,对所述电极B施加第二电压,对所述栅极施加第三电压,进行应力实验,应力时长为t,并获取所述栅极电流;其中,所述栅极电流为应力过程中通过所述栅极的电流;撤去电压应力,即撤去所述第一电压、所述第二电压和所述第三电压后,获取所述应力后特性。
优选的,设所述第一电压源的电压为Va,所述第二电压源的电压为Vb,所述第三电压源的电压为Vg,则Vg>0,Vb<Va<0,且所述Va和所述Vb满足以下公式:
Va-Vb>Von,其中,
Von为所述P型缓冲层与所述N+重掺杂区所形成pn结的正向导通电压。
优选地,获得注入电子数量对所述待测器件特性影响的结果,包括:保持所述第一电压恒定,多次改变所述第二电压进行所述应力试验,并获取多组第一应力实验数据;其中,每组第一应力实验数据包括所述应力前特性、所述应力后特性、所述应力时间和所述栅极电流;根据所述多组第一应力实验数据获取注入电子数量对所述待测器件特性影响的结果。
优选地,获取注入电子数量对所述待测器件特性影响的结果,包括:保持所述第一电压恒定,多次改变所述第二电压进行所述应力试验,并获取多组第二应力实验数据,其中,每组第二应力实验数据包括所述应力前特性、所述应力后特性、所述应力时间和所述栅极电流;根据所述多组第二应力实验数据获取注入电子数量对所述待测器件特性影响的结果。
优选地,获取栅极电压对热电子效应的影响的结果,包括:多次改变所述第三电压进行所述应力试验,并获取多组第三应力实验数据;其中,每组第三应力实验数据包括所述应力前特性、所述应力后特性、所述应力时间和所述栅极电流;根据所述多组第三应力实验数据获取栅极电压对热电子效应的影响的结果。
优选地,根据所述电流表的栅极电流和所述应力时间可以获取热电子注入数量的近似值,该近似值通过以下公式计算:
Figure BDA0001988630680000101
其中,
Q为注入的热电子数量,IG为第二电流表的稳定电流示数,t为应力时间。
优选地,所述注入电子数量对所述待测器件特性影响的结果、注入电子能量对所述待测器件特性影响的结果和所述栅极电压对热电子效应的影响的结果,包括:输出特性的相对退化量和转移特性的相对退化量。
优选的,所述输出特性的相对退化量满足以下公式:
Figure BDA0001988630680000111
所述转移特性的相对退化量满足以下公式:
Figure BDA0001988630680000112
其中,ΔSoutput为所述输出特性的相对退化量,Safter-output为所述应力后特性中的所述输出特性,Sbefore-output为所述应力前特性中的所述输出特性,ΔStc为所述转移特性的相对退化量,Safter-tc为所述应力前特性中的转移特性,Sbefore-tc为所述应力前特性中的转移特性。
本发明提供的热电子效应表征方法,注入缓冲层的电子在P+重掺杂区与沟道区之间电场的加速作用下,部分成为热电子。由于源极S、漏极D接地,整个沟道区可视为0V等势区,靠近沟道下方的电场可视为匀强电场,且方向垂直沟道向下,故热电子会均匀地向器件势垒层注入,有助于深入研究热电子效应。
实施例三:
请继续参见图1图2和图3,并参见图4、图5和图6,图7,图4为本发明实施例提供的一种MIS-HEMT器件的热电子效应表征方法实现流程图;图5为本发明提供待测MIS-HEMT器件输出特性与转移特性的退化量分别随不同热电子注入数量变化的曲线图;图6为本发明提供待测MIS器件的输出特性与转移特性的退化量分别随不同热电子注入能量变化的曲线图;图7为本发明提供待测器件输出特性与转移特性的退化量分别随不同栅极电压变化的曲线图。本实施例在上述实施例的基础上对该表征方法进行了详细的描述,本实施例以一种MIS-HEMT器件为例,如图4所示,本发明具体实施步骤如下:
步骤1,制作测试图形。
制备MIS-HEMT器件测试图形,其结构是在从下到上依次为衬底1、成核层2、P型缓冲层3、势垒层4和第一钝化层5,在半导体器件表面上,从左到右依次制作源极6、栅极7和漏极8。
然后,对源极和漏极两侧的势垒层、绝缘层和第一钝化层分别进行刻蚀,刻蚀深度达到港后漏出P型缓冲层,即保留源极与漏极之间的势垒层、绝缘层和第一钝化层,将源极与漏极两侧的势垒层刻蚀掉,露出P型缓冲层。接着在源极和漏极两侧的缓冲层表面,由内向外分别制作对称的P+、N+重掺杂区域,其中,P+重掺杂区在N+重掺杂区内侧,并分别在P+、N+重掺杂区域上制作欧姆电极A、B,完成待测器件的制备。
步骤2,进行热电子应力实验。
选取制作好的MIS-HEMT待测器件,即未施加过任何应力的器件,测试应力前器件的应力前特性Sbefore
优选的,应力前特性包括:输出特性Sbefore-output和转移特性Sbefore-tc
如图3所示,将第一电压源的一端连接电极A,另一端接地;将第二电压源的一端与电极B连接,第二电压源另一端接地;将第三电压源V3的一端与电流表A、栅电极G连接,另一端接地;将源极S和漏极D接地,完成实验电路连接;
优选的,设置第一电压源、第二电压源、第三电压源的电压分别为Va,Vb,Vg,并接通电路进行热电子应力实验,应力持续时长为t。
优选的,Vg>0,Vb<Va<0,且(Va-Vb)>Von,其中,Von为P型缓冲层与N+重掺杂区所形成pn结(P/N+结)的正向导通电压。
步骤3,测量热电子注入数量对器件的影响。
优选的,如图3所示,当缓冲层内的P/N+结正向导通时,大量电子会从N+区注入P型缓冲层,故可通过控制P/N+结上所加偏置电压差(Va-Vb)的大小,来调整热电子注入的数量。同时,源极S与漏极D接地,则整个沟道区可视为0V等势区,当P+区施加电压Va时,会形成自沟道指向P+区的强电场,加速缓冲层中的电子,使之成为高能热电子,故可通过控制Va的大小来控制加速电场的强弱,进而控制热电子注入的能量。
优选的,保持Va值恒定不变,即保持热电子注入能量不变,通过多次改变(Va-Vb)的差值,来控制热电子的注入数量。其具体操作是:保持Va恒定为-3V,多次改变第二电压源上的电压为Vb(1)=-4V,Vb(2)=-4.5V,Vb(3)=-5V,则对应P/N+结上的偏压大小为Va-Vb(k),设置Vg=0.5V,应力持续时间为t秒,重复步骤2,对器件施加应力,分别记录热电子应力前后器件的应力前特性Sbefore(k)和应力后特性Safter(k),即分别记录应力前后输出特性Sbefore-output(k)和Safter-output(k),以及转移特性Sbefore-tc(k)和Safter-tc(k)。同时,在应力过程中,记录电流表A的稳定示数IGk(t)。
根据以下公式计算,当应力条件为Va=-3V,Vb(k)分别为-4V,-4.5V,-5V,Vg=0.5V时,热电子注入数量的近似值Qk(t):
Figure BDA0001988630680000141
上式中,t为热电子应力时长,k=1,2,3。
根据应力前后物理参数退化量的定义,可计算出当第二电压源V2上所施加的应力电压为Vb(k)时,待测器件输出特性与转移特性的相对退化量分别为:
Figure BDA0001988630680000142
Figure BDA0001988630680000143
其中,△Soutput(k)指应力电压为Va,Vb(k)时,待测器件在此应力前后输出特性的相对退化量;△Stc(k)指应力电压为Va,Vb(k)时,待测器件在此应力前后转移特性的相对退化量;本实例中k=1,2,3,即给待测器件分别施加了3组不同的电应力。如图5(a)和图5(b)所示,本实例通过分析器件在不同应力前后Soutput(k)与△Stc(k)的变化规律,研究热电子注入数量对器件特性的影响。
步骤4、测量热电子注入能量对器件的影响:
保持Va-Vb差值恒定,即保持热电子注入数量不变,通过多次改变Va的值,来调节缓冲层中电子的加速电场,从而控制不同的热电子注入能量。其具体操作是:保持Va(r)-Vb(r)差值恒定为1V,多次改变第一电压源V1上所施加的电压为Va(1)=-4V,Va(2)=-5V,Va(3)=-6V,和第二电压源V2上所施加的电压为Vb(1)=-5V,Vb(2)=-6V,Vb(3)=-7V,设置Vg=0.5V,应力持续时间为t秒,重复步骤2,对器件施加电应力,分别记录此应力前后器件特性的测试结果Sbefore(r)与Safter(r)。同时,在应力过程中,记录电流表A的稳定示数IGr(t)。
根据以下公式计算,当保持Va-Vb差值恒为1V,应力条件为Va(r)分别为-4V,-5V,-6V,相应的Vb(r)分别为-5V,-6V,-7V,且Vg=0.5V时,热电子注入数量的近似值Qr(t):
Figure BDA0001988630680000151
上式中,t为热电子应力时长,r=1,2,3。
根据应力前后物理参数退化量的定义,可计算出当第一电压源V1和第二电压源V2上分别施加电压Va(r)与Vb(r)时,待测器件输出特性与转移特性的相对退化量分别为:
Figure BDA0001988630680000152
Figure BDA0001988630680000153
其中,△Soutput(r)指应力电压为Va(r),Vb(r)时,待测器件在此应力前后输出特性的相对退化量;△Stc(r)指应力电压为Va(r),Vb(r)时,待测器件在此应力前后转移特性参量的相对退化量。本实例中r=1,2,3,即给待测器件分别施加了3组不同的电应力。如图6(a)和图6(b)所示,本实例通过分析器件在不同应力前后,△Suotput(r)与△Stc(r)的变化规律,研究热电子注入能量对器件特性的影响。
步骤5、测量栅极电压对热电子效应的影响:
保持Va值恒定不变,使缓冲层中的加速电场恒定,即保持热电子注入能量不变。同时保持Va-Vb的差值不变,来控制一定的热电子注入数量,通过多次改变栅压Vg来调控注入势垒层中热电子的加速电场。其具体操作是:多次改变第三电压源V3上所施加的电压为Vg(1)=1V,Vg(2)=2V,Vg(3)=3V,设置Va=-3V,Vb=-4V,应力持续时间为t秒,重复步骤2,对器件施加电应力,分别记录此应力前后器件特性的测试结果Sbefore(l)与Safter(l)。同时,在应力过程中,记录电流表A的稳定示数IGl(t)。
根据以下公式计算,当热电子应力条件为Va=-3V,Vb=-4V,Vg(l)分别为1V,2V,3V时,热电子注入数量的近似值Ql(t):
Figure BDA0001988630680000161
上式中,t为热电子应力时长,l=1,2,3。
根据应力前后物理参数退化量的定义,可计算出当第三电压源V3上分别施加电压Vg(l)时,待测器件输出特性与转移特性的相对退化量分别为:
Figure BDA0001988630680000162
Figure BDA0001988630680000163
其中,ΔSoutput(l)指栅极电压为Vg(l)时,待测器件在此应力前后输出特性的相对退化量;ΔStc(l)指栅极电压为Vg(l)时,待测器件在此应力前后转移特性参量的相对退化量。本实例中l=1,2,3,即给待测器件分别施加了3组不同的栅极电压应力。如图7(a)和图7(b)所示,本实例通过分析器件在不同应力前后,ΔSoutput(l)与ΔStc(l)的变化规律,研究栅极电压对器件热电子效应的影响。
本实施例提供了一种热电子注入数量与能量可控技术的热电子效应测试结构及其表征方法,通过调整电压Va和Vb来控制势垒层中热电子的注入数量,并通过调整电压Va来控制势垒层中热电子的注入能量,解决了器件热电子注入数量和注入能量的不可控,以及非均匀注入势垒层等问题,有助于对MIS-HEMT器件中的热电子效应进行深入分析。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (10)

1.一种MIS-HEMT器件的热电子效应测试结构,其特征在于,包括:底层(15)、势垒层(4)、绝缘层(5)、源极(7)、栅极(8)、漏极(9)、第一掺杂区(11)、第二掺杂区(12)、电极A(13)和电极B(14),其中,
所述势垒层(4)位于所述底层(15)之上;
所述绝缘层(5)位于所述势垒层(4)之上;
所述栅极(8)位于所述绝缘层(5)之上;
所述源极(7)与所述漏极(9)分别位于栅极(8)两侧,且所述源极(7)与所述漏极(9)穿过所述势垒层(4)和所述绝缘层(5)位于所述底层(15)之上;
所述第一掺杂区(11)和所述第二掺杂区(12)位于所述底层(15)内;其中,所述第一掺杂区位于所述势垒层(4)两侧,所述第二掺杂区(12)分布在对应的所述第一掺杂区(11)外侧;
所述电极A(13)位于所述第一掺杂区(11)之上;
所述电极B(14)位于所述第二掺杂区(12)之上。
2.根据权利要求1所述的热电子效应测试结构,其特征在于,所述底层(15)包括:衬底(1)、成核层(2)和缓冲层(3);其中,
所述成核层(2)位于所述衬底(1)之上;
所述缓冲层(3)位于所述成核层(2)之上。
3.一种MIS-HEMT器件的热电子效应表征方法,其特征在于,采用如权利要求2所述测试器件的结构,以对待测器件的热电子效应进行表征,包括:
通过热电子应力实验获取所述待测器件的应力前特性和应力后特性;其中,所述应力前特性和所述应力后特性均包括输出特性和转移特性;
根据所述应力前特性和所述应力后特性,获取所述热电子应力实验对所述待测器件特性的影响的结果。
4.根据权利要求3所述的热电子效应表征方法,其特征在于,通过热电子应力实验获取所述待测器件的应力前特性和应力后特性,包括:
获取所述待测器件的应力前特性;
对所述电极A施加第一电压,对所述电极B施加第二电压,对所述栅极施加第三电压,并获取应力时间和栅极电流;其中,所述栅极电流为通过所述栅极的电流;
撤去所述第一电压、所述第二电压和所述第三电压后,获取所述应力后特性。
5.根据权利要求3所述的热电子效应表征方法,其特征在于,所述热电子应力实验对所述待测器件特性影响的结果,包括:
热电子注入数量对所述待测器件特性影响的结果、热电子注入能量对所述待测器件特性影响的结果、栅极电压对热电子效应影响的结果。
6.根据权利要求5所述的热电子效应表征方法,其特征在于,获取热电子注入数量对所述待测器件特性影响的结果,包括:
保持所述第一电压恒定不变,多次改变所述第二电压进行所述应力试验,并获取多组第一应力实验数据;其中,第一应力实验数据包括所述应力前特性、所述应力后特性、所述应力时间和所述栅极电流;
根据多组所述第一应力实验数据获取注入电子数量对所述待测器件特性影响的结果。
7.根据权利要求5所述的热电子效应表征方法,其特征在于,获取热电子注入能量对所述待测器件特性影响的结果,包括:
保持所述第一电压和所述第二电压的压差恒定,多次改变所述第一电压和所述第二电压进行所述应力试验,并获取多组第二应力实验数据,其中,每组第二应力实验数据包括所述应力前特性、所述应力后特性、所述应力时间和所述栅极电流;
根据多组所述第二应力实验数据获取注入电子数量对所述待测器件特性影响的结果。
8.根据权利要求5所述的热电子效应表征方法,其特征在于,获取栅极电压对热电子效应的影响的结果,包括:
保持所述第一电压和所述第二电压恒定不变;多次改变所述第三电压进行所述应力试验,并获取多组第三应力实验数据;其中,每组第三应力实验数据包括所述应力前特性、所述应力后特性、所述应力时间和所述栅极电流;
根据多组所述第三应力实验数据获取栅极电压对热电子效应的影响的结果。
9.根据权利要求4-8任一项所述的热电子效应表征方法,其特征在于,获取所述热电子应力实验对所述待测器件特性的影响的结果,包括:获取输出特性的相对退化量和转移特性的相对退化量。
10.根据权利要求9所述的热电子效应表征方法,其特征在于,所述输出特性的相对退化量满足以下公式:
Figure FDA0001988630670000031
所述转移特性的相对退化量满足以下公式:
Figure FDA0001988630670000032
其中,ΔSoutput为所述输出特性的相对退化量,Safter-output为所述应力后特性中的所述输出特性,Sbefore-output为所述应力前特性中的所述输出特性,ΔStc为所述转移特性的相对退化量,Safter-tc为所述应力后特性中的所述转移特性,Sbefore-tc为所述应力前特性中的所述转移特性。
CN201910172827.3A 2019-03-07 2019-03-07 一种mis-hemt器件的热电子效应测试结构及其表征方法 Active CN111668189B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910172827.3A CN111668189B (zh) 2019-03-07 2019-03-07 一种mis-hemt器件的热电子效应测试结构及其表征方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910172827.3A CN111668189B (zh) 2019-03-07 2019-03-07 一种mis-hemt器件的热电子效应测试结构及其表征方法

Publications (2)

Publication Number Publication Date
CN111668189A true CN111668189A (zh) 2020-09-15
CN111668189B CN111668189B (zh) 2021-09-21

Family

ID=72382132

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910172827.3A Active CN111668189B (zh) 2019-03-07 2019-03-07 一种mis-hemt器件的热电子效应测试结构及其表征方法

Country Status (1)

Country Link
CN (1) CN111668189B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112379245A (zh) * 2020-11-11 2021-02-19 上海华力集成电路制造有限公司 金属电迁移测试结构及其测试方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102945860A (zh) * 2012-11-21 2013-02-27 西安电子科技大学 原位SiN帽层AlGaN/GaN异质结增强型器件及其制作方法
US20130322487A1 (en) * 2012-06-01 2013-12-05 Denso Corporation Temperature detecting device and method
CN103794526A (zh) * 2014-01-23 2014-05-14 新磊半导体科技(苏州)有限公司 一种新型霍尔测试方法
CN105304712A (zh) * 2014-07-08 2016-02-03 丰田合成株式会社 半导体装置及其制造方法
CN105448962A (zh) * 2015-11-27 2016-03-30 西安电子科技大学 多沟道侧栅结构的AlGaN/GaN高电子迁移率晶体管
CN106356313A (zh) * 2016-11-04 2017-01-25 东南大学 横向绝缘栅双极型晶体管界面态的测试方法及5端口器件
US20170301781A1 (en) * 2016-04-15 2017-10-19 Macom Technology Solutions Holdings, Inc. High-voltage gan high electron mobility transistors

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130322487A1 (en) * 2012-06-01 2013-12-05 Denso Corporation Temperature detecting device and method
JP2013250175A (ja) * 2012-06-01 2013-12-12 Denso Corp 温度検出装置
CN102945860A (zh) * 2012-11-21 2013-02-27 西安电子科技大学 原位SiN帽层AlGaN/GaN异质结增强型器件及其制作方法
CN103794526A (zh) * 2014-01-23 2014-05-14 新磊半导体科技(苏州)有限公司 一种新型霍尔测试方法
CN105304712A (zh) * 2014-07-08 2016-02-03 丰田合成株式会社 半导体装置及其制造方法
CN105448962A (zh) * 2015-11-27 2016-03-30 西安电子科技大学 多沟道侧栅结构的AlGaN/GaN高电子迁移率晶体管
US20170301781A1 (en) * 2016-04-15 2017-10-19 Macom Technology Solutions Holdings, Inc. High-voltage gan high electron mobility transistors
CN109314136A (zh) * 2016-04-15 2019-02-05 麦克姆技术解决方案控股有限公司 高压GaN高电子迁移率晶体管
CN106356313A (zh) * 2016-11-04 2017-01-25 东南大学 横向绝缘栅双极型晶体管界面态的测试方法及5端口器件

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112379245A (zh) * 2020-11-11 2021-02-19 上海华力集成电路制造有限公司 金属电迁移测试结构及其测试方法
CN112379245B (zh) * 2020-11-11 2023-08-11 上海华力集成电路制造有限公司 金属电迁移测试结构及其测试方法

Also Published As

Publication number Publication date
CN111668189B (zh) 2021-09-21

Similar Documents

Publication Publication Date Title
Ghandi et al. Surface-passivation effects on the performance of 4H-SiC BJTs
Zagni et al. “Hole Redistribution” Model Explaining the Thermally Activated R ON Stress/Recovery Transients in Carbon-Doped AlGaN/GaN Power MIS-HEMTs
US20210358749A1 (en) Semiconductor wafer, electronic device, method of performing inspection on semiconductor wafer, and method of manufacturing electronic device
CN111668189B (zh) 一种mis-hemt器件的热电子效应测试结构及其表征方法
Borga et al. Buffer breakdown in GaN-on-Si HEMTs: A comprehensive study based on a sequential growth experiment
Han et al. Annealing temperature influence on the degree of inhomogeneity of the Schottky barrier in Ti/4H—SiC contacts
CN111668127B (zh) 基于hemt器件的热电子效应测试结构及其表征方法
Zagni et al. Mechanisms Underlying the Bidirectional V T Shift After Negative-Bias Temperature Instability Stress in Carbon-Doped Fully Recessed AlGaN/GaN MIS-HEMTs
CN107180769A (zh) 基于电容结构的氟注入工艺稳定性测试方法
Sozzi et al. OCVD lifetime measurements on 4H-SiC bipolar planar diodes: Dependences on carrier injection and diode area
CN111668190B (zh) 基于化合物材料misfet器件的热电子效应表征方法
Ghizzo et al. Preconditioning of p-GaN power HEMT for reproducible Vth measurements
CN104316771B (zh) 碳化硅器件的欧姆接触测试方法
CN106356313A (zh) 横向绝缘栅双极型晶体管界面态的测试方法及5端口器件
CN111668126B (zh) 一种化合物misfet器件热空穴效应的测试结构及表征方法
Deng et al. Experimental study and characterization of an ultrahigh-voltage Ni/4H–SiC junction barrier Schottky rectifier with near ideal performances
CN109946577B (zh) 一种GaN器件电应力可靠性的测试方法
CN111289559B (zh) 一种基于stm-bj的单分子结热电势测量方法及其设备
Fathauer et al. MIS characterization and modeling of the electrical properties of the epitaxial Caf 2/Si (111) interface
Wang et al. Leakage and h FE degradation in microwave bipolar transistors
CN109950145A (zh) 一种GaN器件欧姆接触的改良方法
Kang et al. Reverse recovery characteristics and defect distribution in an electron-irradiated silicon p–n junction diode
Lin et al. Monitoring trapped charge generation for gate oxide under stress [MOS capacitors]
Masante Diamond MOSFET for power electronics
Leurquin Study of degradation mechanisms and dynamic reliability of GAN on Si devices

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant