CN111664816A - Qtt天线主反射面变形检测方法、校正方法及检测装置 - Google Patents

Qtt天线主反射面变形检测方法、校正方法及检测装置 Download PDF

Info

Publication number
CN111664816A
CN111664816A CN202010667313.8A CN202010667313A CN111664816A CN 111664816 A CN111664816 A CN 111664816A CN 202010667313 A CN202010667313 A CN 202010667313A CN 111664816 A CN111664816 A CN 111664816A
Authority
CN
China
Prior art keywords
antenna
deformation
reflecting surface
main reflecting
horn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010667313.8A
Other languages
English (en)
Other versions
CN111664816B (zh
Inventor
叶骞
黄剑辉
何志壮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Jiaotong University
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN202010667313.8A priority Critical patent/CN111664816B/zh
Publication of CN111664816A publication Critical patent/CN111664816A/zh
Application granted granted Critical
Publication of CN111664816B publication Critical patent/CN111664816B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/06Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring the deformation in a solid

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

本发明公开了一种天线主反射面变形检测方法、校正方法及检测装置。该检测装置包括:喇叭天线,在被测天线的设定近距近场面上的各网格点处采集被测天线的辐射信号;姿态调整机构,控制喇叭天线的空间姿态,使喇叭天线的喇叭口方向对准被测天线的指向;位置调整机构,控制喇叭天线在设定近距近场面上的位置;支撑机构,对姿态调整机构以及位置调整机构进行支撑。本发明根据喇叭天线采集到的辐射信号确定被测天线在其设定近距近场面上的辐射信号的二维强度分布,根据二维强度分布直接计算天线主反射面的变形。本发明降低了测量的难度以及数据处理的复杂度,能够快速的实现对被测天线主反射面变形的检测,进而实现对被测天线主反射面的快速校正。

Description

QTT天线主反射面变形检测方法、校正方法及检测装置
技术领域
本发明涉及QTT天线主反射面变形检测领域,特别是涉及一种QTT天线主反射面变形检测方法、校正方法及检测装置。
背景技术
为保证QTT(QiTai Telescope,奇台射电望远镜)在100GHz以上高频观测时能够达到足够的分辨率,主反射面变形均方根要求要低于0.2mm。由于尺寸和重量巨大,QTT天线受到重力、温度和风载等因素造成的反射面变形复杂多变,不同姿态下重力变形分布差别很大,严重影响天文观测效率。
为了对天线面形误差进行实时修正,国内外的大型射电望远镜诸如TM-65m(天马射电望远镜,上海天文台)、GBT-110m(绿岸望远镜,美国国家天文台)、Effelsberg-100m(艾佛斯伯格望远镜,欧洲天文台)一般都在主反射面下安装有主动面系统,用以对测量出的天线反射面变形做实时补偿和修正。目前,用于望远镜主反射面面型修正的主动面技术已经相当成熟,而在面形快速测量方面的理论和技术还存在较多不足。
现有技术中,天线面形测量领域中广泛使用的方法是射电全息法。射电全息法诊断天线反射面变形本质上是求解出天线的口径场相位,其核心理论有两点:一是天线主反射面变形分布与口径场相位分布之间存在代数关系——变形相位方程,此方程将天线面形测量问题转化成口径场相位测量问题;二是天线的口径场幅相分布和远场幅相分布构成一对傅立叶变换,此原理将口径场的相位测量问题转化成远场幅值和相位的测量问题,简化了测量系统。对于电磁波而言,相位是无法直接探测的。相位的获取一般借助干涉原理通过引入参考天线作为参考信号实现,但是微波干涉对电子设备的要求很高,特别是在高频状态下。考虑到天线的结构,工程上经常使用“相位恢复”的思想,通过测量3组以上的远场强度分布,借助相位恢复算法来求解相位。所以射电全息法,无论是近场全息还是远场全息,在没有参考天线进行干涉测量的情况下都需要测量三组以上的强度分布图,然后应用相位恢复算法重构出天线的口径场相位,进而确定天线的主反射面变形。
例如,用于求解天线测量产生的相位恢复问题的经典傅立叶迭代算法,比如,Misell算法的基本操作流程如下:
(1)算法输入:三组远场强度分布,以及正负离焦产生的相位因子。
(2)第1步:输入一个随机的远场相位,配合对焦远场反变换到对焦口径场。
(3)第2步:对焦口径场配合正离焦相位因子得到正离焦口径场,变换得到正离焦远场并保留相位,以实测正离焦远场强度数据替换计算值,然后反变换得到新的正离焦口径场。
(4)第3步:正离焦口径场配合正负离焦因子得到负离焦口径场,变换得到负离焦远场并保留相位,以实测负离焦远场强度数据替换计算值,然后反变换得到新的负离焦口径场。
(5)第4步:负离焦口径场配合负离焦相位因子得到对焦口径场,变换得到对焦远场并保留相位,以实测对焦远场强度数据替换计算值,然后反变换得到新的对焦口径场。
(6)重复第2~4步,直到算法收敛到满意结果。
(7)收敛性表征:迭代过程中计算得到的远场强度和实测远场强度之间的RMS值。
Misell等以实测强度作为约束的傅立叶迭代算法能够保证一致性的收敛过程,但是收敛往往很快陷入停滞。具体的,以Misell算法为代表的基于变形相位方程的射电全息方法存在以下3点主要缺陷:
(1)目前使用最为悠久广泛的射电全息法,包括相位相关法和相位恢复法,对于大射电望远镜而言难以做到快速测量。若采用相位全息法,需配备参考天线和高精度相关机,在高频测量条件下相关机成本很高;若采用相位恢复法,为保证解的唯一性,至少需采集3组有差异的远场或近场强度分布图,这个过程过于繁琐耗时。实际上,这两种测量方案都需要天线本身做相对于信号源的扫描运动,由于天线体型笨重动作缓慢,这个扫描过程本身就非常耗时。
(2)射电全息法本质是通过测量天线口径面上的相位分布来测定表面变形,其测量精度依赖于频率。天线变形量一般很小,只有高频测量才能得到足够高的分辨率,低频测量将因背景噪声造成较大误差。而在实际调试过程中,一般先安装和调试低频接收机,后续数月甚至数年才逐步安装高频接收机。因此,射电全息法难以保证在低、中、高频条件下都实现高分辨率测量,特别是在天线装配和早期调试阶段。
(3)现在常用的射电全息测量法无法实现高精度全姿态测量。远场射电全息法大多基于同步卫星信标或者遥远的自然天体信号源,测量过程需要天线对准信号源进行二维网格扫描。信标角度范围有限导致其无法进行全姿态测量,即天线的姿态受信号源的方位所限制,因而不能测量出天线在任意姿态角下的主反射面变形分布。近场测量原理上和远场测量并无本质区别,一般是在距离天线数公里远的距离上树立一座很高的塔座,顶部安放一个精密的射电源。近场测量最大的优势是信噪比高,但是同样的,由于信号塔高度有限,同样难以测量出天线处于任意姿态角下的主反射面变形分布。
发明内容
本发明的目的是提供一种QTT天线主反射面变形检测方法、校正方法及检测装置,能够对QTT天线主反射面变形进行快速的检测及校正。
为实现上述目的,本发明提供了如下方案:
一种QTT天线主反射面变形检测方法,包括:
确定被测天线在其设定近距近场面上的辐射信号的二维强度分布;
根据
Figure BDA0002580958270000031
对所述被测天线主射面变形进行第一次求解,其中,δ1为所述被测天线主射面变形的第一次求解结果,x,y分别为所述设定近距近场面上某一位置的横纵坐标,d为所述设定近距近场面与所述被测天线底面之间的距离,L为拉普拉斯算子,F为傅里叶变换,
Figure BDA0002580958270000041
FL为所述被测天线的焦距或等效焦距,A0为所述被测天线主射面未变形时,在所述设定近距近场面上的辐射信号的幅值分布,A为所述被测天线主射面变形后,在所述设定近距近场面上的辐射信号的幅值分布;
根据
Figure BDA0002580958270000042
对所述被测天线主反射面变形进行第k+1次求解,直至得到的所述被测天线主反射面的变形结果达到设定的收敛精度,其中,δk,δk+1分别为所述被测天线主射面变形的第k次、第k+1次求解结果,α为惯性因子,
Figure BDA0002580958270000043
Figure BDA0002580958270000044
本发明还提供了一种QTT天线主反射面变形校正方法,包括:
采用如权利要求1所述的天线主反射面变形检测方法确定被测天线主反射面的变形;
根据
Figure BDA0002580958270000045
计算被测天线促动器的位移校正量l,x,y分别为所述设定近距近场面上某一位置的横纵坐标,FL为所述被测天线的焦距或等效焦距;
控制所述被测天线促动器按所述位移校正量移动。
本发明还提供了一种QTT天线主反射面变形检测装置,包括:
喇叭天线,在被测天线的设定近距近场面上的各网格点处采集所述被测天线的辐射信号;
姿态调整机构,控制所述喇叭天线的空间姿态,使所述喇叭天线的喇叭口方向对准所述被测天线的指向;
位置调整机构,控制所述喇叭天线在所述设定近距近场面上的位置;
支撑机构,对所述姿态调整机构以及所述位置调整机构进行支撑;
根据所述喇叭天线采集到的辐射信号,根据如权利要求1所述的天线主反射面变形检测方法确定所述被测天线主反射面的变形。
可选的,所述姿态调整机构包括多根第一绳索以及与所述第一绳索一一对应的多个第一牵引电机,各所述第一绳索的一端受所述第一牵引电机牵引,各所述第一绳索的另一端与所述喇叭天线的喇叭外侧壁连接,且各所述第一绳索与所述喇叭外侧壁的连接点在外壁圆周上均匀分布,所述外壁圆周的圆心位于所述喇叭天线的中轴线上;所述喇叭天线包括喇叭和喇叭底座。
可选的,所述位置调整机构包括多根第二绳索以及与所述第二绳索一一对应的多个第二牵引电机,各所述第二绳索的一端受所述第二牵引电机牵引,各所述第二绳索的另一端与所述喇叭天线连接,且各所述第二绳索与所述喇叭天线的连接点重合。
可选的,所述支撑机构包括多个姿态调整机构支撑杆,所述姿态调整机构支撑杆的末端通过二自由度滚轮与所述第一绳索连接,所述二自由度滚轮的两个自由度分别为绕自转轴的主动滚动和绕所述姿态调整机构支撑杆的被动旋转;各所述姿态调整机构支撑杆的末端在以设定点为中心的圆周上均匀分布,所述设定点为所述被测天线馈源在所述设定近距近场面上的投影点。
可选的,所述支撑机构包括多个位置调整机构支撑杆,所述位置调整机构支撑杆的末端通过二自由度滚轮与所述第二绳索连接,所述二自由度滚轮的两个自由度分别为绕自转轴的主动滚动和绕所述位置调整机构支撑杆的被动旋转;各所述位置调整机构支撑杆的末端在以设定点为中心的圆周上均匀分布,所述设定点为所述被测天线馈源在所述设定近距近场面上的投影点。
可选的,所述支撑机构安装于所述被测天线的钢架结构上。
可选的,所述第一绳索的数量以及所述姿态调整机构支撑杆的数量均为3。
可选的,所述第二绳索的数量以及所述位置调整机构支撑杆的数量均为3。
根据本发明提供的具体实施例,本发明公开了以下技术效果:本发明提供的QTT天线主反射面变形检测方法及装置,采用喇叭天线在被测天线的某一设定近距近场面上采集被测天线的辐射信号,确定被测天线在该设定近距近场面上辐射信号的二维强度分布,根据本发明提供的信号幅值与主反射面变形之间的关系,确定被测天线主反射面的变形。由于本发明在确定被测天线主反射面的变形时,根据幅值直接计算变形,并没有涉及相位恢复的问题,且由于幅值的测量比相位的测量要简单且稳定,因此降低了测量的难度以及数据处理的复杂度,能够快速的实现对被测天线主反射面变形的检测,进而实现对被测天线主反射面的快速校正。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为QTT天线的基本结构示意图;
图2为QTT天线的工作流程图;
图3为本发明实施例中QTT天线主反射面变形检测方法中函数和变量定义示意图;
图4为本发明实施例中QTT天线主反射面变形检测原理解释图;
图5为本发明实施例中喇叭天线运动轨迹示意图;
图6为本发明实施例中QTT天线主反射面变形检测装置结构示意图;
图7为本发明实施例中绳索与喇叭天线的连接关系示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
为了便于对本发明的理解,首先对QTT天线的结构、工作原理以及主反射面的变形进行介绍。
(1)QTT天线的基本结构
QTT天线的基本结构的示意图如图1所示。底座1上面有一个二维扫描关节2,这个扫描关节2实际上是两组旋转轴互相垂直的大齿轮,允许天线在指向和俯仰两个角度方向上实现精密运动,最终实现对天线指向的高精度操控。天线的本体有三个部分组成:主反射面7(简称主面)、副反射面5(简称副面)和馈源3,它们三者一起构成了一种称为“卡塞格林”的反射式光学望远镜系统。其中,主反射面7由抛物面形状的钢结构面8提供受力支撑,但不是直接固连在钢结构面上。如图1右上角的剖视图所示,主反射面是通过一组促动器6间接连接在钢结构面上。促动器6是一种精密的直线电机,能够根据程序指令做出绝对的位置控制。如图1右下角正视图所示,和一体化固定加工而成的钢架结构面8不同,主反射面7不是整体形式的,而是由许许多多的铝材反射面面板拼接组成。不同的面板共用着相同的角点,在每一个角点上都安装了一台精密促动器6。和面板拼接式的主反射面7不同,天线的副反射面5是一个一体成型的双曲面,通过钢结构副面支撑架4直接固定在钢结构面上。也就是说,副面的面形是整体性地随着自身姿态发生变化的。通过调节副面支撑架4的长度可以宏观上控制副反射面5的位置和姿态。在副反射面5之下是天线的馈源3和接收机系统,作用是收集来自宇宙空间某个方向上的射电波。总而言之,天线尺寸巨大,结构复杂,主反射面变形情况复杂,但是因为安装了精密可控的促动器6,在确定了天线反射面变形之后就可以轻易地将天线的主反射面7调整纠正到理想无变形情况。另外,天线主反射面7的机械结构(相邻面板共用角点共用棱边)也保证了主反射面7的变形是连续且大范围光滑的,不会出现间断,这使得后续对天线变形函数的微分运算能够有理可依,保证计算精度。
(2)QTT天线的工作原理
天线的远场扫描式天文观测原理如图2所示。图2中天线的工作状态是聚焦观测,即天线的馈源接收机位于整个天线光学望远镜系统的焦点处,这样可以将微弱的宇宙射电信号(以人造卫星为例)尽可能地放大并成功采集到。射电望远镜的天文观测一般采用扫描式:
(1)首先驱动天线的二维扫描关节,改变其俯仰角和方位角,使天线对准信号源;
(2)接着打开馈源接收机采集此时的射电波的强度(由于电磁波频率极高,对于强度和相位,目前只能采集到强度信息,无法采集到相位信息),通过一定的积分时间获得较强的信号,这样就完成了对单个指向上的测量;
(3)循环执行上述(1)和(2),通过驱动二维扫描关节不断调整天线的方向角和俯仰角,实现对信号源的二维网格化扫描。这个过程之后将得到对该信号源的二维远场强度分布图。
由于信号源非常遥远,在射电望远镜看来都是一个点源,因此扫描得到的二维远场强度分布图的具体分布形式基本与信号源本身没有关系,而很大程度上取决于天线自身的结构精度和反射面误差。利用这个基本原理,通过测量天线的二维远场强度分布图可以推测出天线本身的反射面变形,这就是目前天线测量领域广泛使用的射电全息法的基本原理。
(3)天线的主反射面变形与成像分辨率
由于微波的衍射作用,射电望远镜观测到的物体实际上是物体图像与天线本身的点扩散函数的卷积。显然,点扩散函数的半宽度越大,卷积带来的模糊作用越强,对物体成的像也就越模糊。点扩散函数实际上也就是天线的对焦远场复数分布。当天线存在较大的主面变形时,点扩散函数的半宽度将变大,从而降低射电望远镜的成像分辨率。当天线主反射面保持为完美抛物面且副反射面位置和姿态保持在完美状态时,天线可实现完美聚焦,从而形成最小的点扩散函数,达到最大的观测分辨率。然而,在实际情况中,由于重力、温度和风阻等环境因素的存在,天线的钢结构面不可避免地发生着复杂的变形。这些变形可以通过促动器传递到天线主反射面上,从而造成天线主反射面发生变形。如前所述,主反射面变形将使得点扩散函数的半宽度增大,也就降低了天线的成像分辨率。因此,为了保证天线在天文观测中始终有较好的成像分辨率,有必要在观测前对天线的变形状态进行检测和补偿,需要同时校正副面和主面的变形。和副反射面相比,天线的主反射面变形是很难确定的,因为主反射面变形本质上是大量(可达数千块)反射面面板变形状态的综合。所以,为了使天线长期保持优良的聚焦状态,就要在天文观测之前测定出主反射面变形分布,即主反射面上每一块小面板的变形状态,然后操作促动器进行变形补偿,即实现了对天线主反射面的形面恢复。
本发明的第一方面提供了一种QTT天线主反射面变形检测方法,如图3所示,首先定义口径场和远场的坐标系系统为(x,y,z),其中(x,y)描述了天线口径面和近距近场面上的某一个特定的位置,z描述了该位置与天线的底部中心点在沿着天线指向方向上的距离。图3所描述的是一个单反射面天线的变量定义,任何双反射面天线都能等效地看作是单反射面天线,只是焦距会发生一定的变化,称为等效焦距。本发明以单反射面天线为例建立模型,双反射面天线等效成单反射面天线之后可以直接使用本发明提出的变形检测方法。如图3所示,定义天线的口径面直径和焦距分别(双反射面天线为等效焦距)为D和FL;定义近距近场面与天线底面之间的距离d,近距近场面与口径面之间的距离为h;定义天线沿着指向方向上主反射面的二维变形函数是δ(x,y);定义被测天线在近距近场面上的强度分布是I(x,y,d);定义天线在主反射面没有变形时近距近场面上采集到的强度分布是I0(x,y,d);定义空气中光速为c,测量所使用的微波的频率为f;定义变形状态为δ(x,y)时主面上促动器位移量为l(x,y)。
本发明提供的QTT天线主反射面变形检测方法包括:
在设定近距近场面上采集被测天线的辐射信号,并确定被测天线在其设定近距近场面上的辐射信号的二维强度分布;
根据
Figure BDA0002580958270000101
对所述被测天线主射面变形进行第一次求解,其中,δ1为所述被测天线主射面变形的第一次求解结果,L为拉普拉斯算子,F为傅里叶变换,
Figure BDA0002580958270000102
A0为所述被测天线主射面未变形时,在所述设定近距近场面上的辐射信号的幅值分布,A为所述被测天线主射面变形后,在所述设定近距近场面上的辐射信号的幅值分布;
根据
Figure BDA0002580958270000103
对所述被测天线主反射面变形进行第k+1次求解,直至得到的所述被测天线主反射面的变形结果达到设定的收敛精度,其中,δk,δk+1分别为所述被测天线主射面变形的第k次、第k+1次求解结果,α为惯性因子,
Figure BDA0002580958270000104
Figure BDA0002580958270000105
本发明提供的检测方法与传统方法完全不同,本发明只需测得单个近距近场强度分布以及事先标定的理想强度分布,便可以确定主反射面的变形,而且,相较于现有技术中的其他方法,变形求解的过程简单易行,提高了检测的效率。
上述求解方法的理论原理如下:
1、建立大型反射面天线的简化几何模型:以天线面板为研究对象,采用向量分析方法建立其空间位置分布与相应馈源所辐射电磁波几何轨迹的精确数学模型。具体分析流程分为3个步骤:
(1)通过几何反射模型推导变形函数下反射微波在一定距离近场上的投影点。无变形下投影点为标准等腰直角三角形,有变形后变成任意三角形。
(2)馈源微波照射在相同照射锥角下能量相同,因此近场投影点三角形能量守恒。区域分形足够密集情况下,近场投影点三角形可以认为是能量均一的。
(3)计算变形前后投影点三角形的面积,取倒数即可得到辐射强度之比。辐射强度和投影点面积有关,投影点面积取决于变形,因此可得变形—幅值方程。
1)变形与投影点方程。如图4所示,在天线主反射面没有发生变形的时候,根据理想抛物面的性质,此时经过馈源发出的微波经过主反射面的反射将平行于天线的指向进行传播,到达近距近场面上的投影点(x,y,d)。当天线的主反射面上存在变形时,显然可以发现此时馈源发出的微波经过主反射面变形区域的反射之后传播方向发生了改变,不再平行于天线的指向,最后在近距近场面上形成了新的偏离了理想位置的投影点(x*,y*,d)。
天线主反射面的面形可以表示为公式(1),其中f(x,y)是理想无变形条件下的抛物面方程,δ(x,y)是未知的待求解的天线轴向主面变形。
Figure BDA0002580958270000111
根据光线的几何反射定律,即入射角等于出射角,省略中间计算过程,最终可以得到投影点方程。如公式(2)所示,投影点方程描述了在馈源发出的微波在近距近场面上的投影点(x*,y*,d)关于主反射面上变形量δ(x,y)的关系。
Figure BDA0002580958270000112
2)投影三角形与能量方程。如图4所示,变形前后投影点形成的三角形发生了变形,因而其面积将发生改变。又因为变形前后馈源辐射能量的辐射角是没有变化的,这意味着变形前后的总能量是没有发生变化的。以近距近场面上的单个三角形网格为例,该三角形区域上变形前后的总能量没有发生变化,而三角形面积是不同的。由于三角形区域相对于天线尺寸来说很小,可以近似的认为在三角形区域上能量密度是均一的,而这个能量密度正是天线的衍射强度。所以,根据能量守恒,变形前后的强度比值等于变形前后的投影三角形面积的反比。注意到一般情况下,天线主反射面的变形是非常微小的,由此产生的投影点偏移也很小,因此可以得到一下关系式。
Figure BDA0002580958270000121
为统一描述,以近距近场幅值分布作为研究对象,变形前后近距近场的幅值分布记为A0(x,y,h)和A(x*,y*,h),那么:
Figure BDA0002580958270000122
3)天线近距近场衍射变形—幅值方程的建立。结合投影点方程和能量守恒原理,可以得到天线变形前后近距近场的幅值之比与主反射面变形函数之间的关系:
Figure BDA0002580958270000123
为简化描述,这里省略了坐标系。对公式(5)进行展开,观察各项的阶次,然后合理舍弃高阶无穷小,最终即得到变形—幅值方程:
Figure BDA0002580958270000124
以上表达式中的大写字母G,U,V都是与天线口径、等效焦距和近距近场面位置有关的系数函数。
Figure BDA0002580958270000131
对于大口径面天线,一般二阶项占据主导,因此可以舍弃一阶项和齐次项,即天线近场幅值相对误差是其反射面变形的泊松方程:
Figure BDA0002580958270000132
4)测量天线在理想无变形情况下的近距近场强度分布。如图5所示,在天线处于或者基本处于无变形状态的时候,控制采集装置,如喇叭接收机沿着设定的路线运动,在每一个直角坐标系中的均匀化节点(x,y,d)处停留一段时间t0。在这一段时间内,喇叭接收机采集强度信号并随时间积分,得到较高信噪比的强度信号,然后除以积分时间t0,得到滤除随机噪声之后的近距近场强度分布,记为I0(x,y,d)。理想无变形情况下的近距近场强度分布事先只标定一次,后续对天线进行面形检测时不需要再重复测定。
5)测量天线的近距近场强度分布。采用和4)中相同的操作流程(积分时间可以是不同的值),采集到有变形情况下的天线近距近场幅值分布A(x,y,d)。
求解的过程分为2个步骤:初始近似解和迭代优化。具体的:
1)初始近似解。注意到公式(8)变形—幅值方程中二阶项占据主导作用,因此只考虑二阶项,寻求初始近似解。这样,从幅值求解变形相当于求解一个泊松方程,采用离散Laplace算子就可以精确求解。
Figure BDA0002580958270000133
上式中,定义的中间变量是FA,含义是变形前后的近距近场强度相对误差;G是与天线口径、等效焦距以及近距近场面与口径面距离有关的系数矩阵,表达式如公式(2)所示;F是傅立叶变换,在这里是二维快速傅立叶变换;F-1是傅立叶逆变换,在这里是二维快速傅立叶逆变换;LN是二阶精度Laplace算子矩阵,格式如下所示。注意这里使用傅立叶变换求解泊松方程,所有数据矩阵应当至少2倍补零。
Figure BDA0002580958270000141
2)构造迭代优化格式。对公式(6)进行变形,结合公式(9),可得如下方程。
Figure BDA0002580958270000142
变形—幅值方程的迭代求解。公式(11)中右端部分涉及到未知的天线主反射面变形δ(x,y),而根据公式(9)求解出的关于δ(x,y)的近似解恰好可以作为初始输入。然后在右端已知的情况下,公式(11)又成为一个泊松方程,求解可得到更加接近真实值的天线主反射面变形δ(x,y)。按照这样的思路,可以得到最终的迭代格式如下。
Figure BDA0002580958270000143
上式中,FA是变形前后的近距近场强度相对误差,参数α是为加速迭代过程而引入的惯性因子,一般可取1~5;迭代过程一般执行10次即可达到较好收敛。
本发明的第二方面提供了一种QTT天线主反射面变形检测装置,该装置包括:
喇叭天线,与被测天线的发射频率配合使用,在被测天线的设定近距近场面上的各网格点处采集所述被测天线的辐射信号;
姿态调整机构,控制所述喇叭天线的空间姿态,使所述喇叭天线的喇叭口方向对准所述被测天线的指向;
位置调整机构,控制所述喇叭天线在所述设定近距近场面上的位置;
支撑机构,对所述姿态调整机构以及所述位置调整机构进行支撑;
实施例中,位置调整机构可以控制喇叭天线在设定的近距近场面上沿图5所示的运动轨迹13采集被测天线在各网格点处的辐射信号,根据喇叭天线采集到的辐射信号确定设定近距近场面上辐射信号的二维强度分布,然后,采用本发明第一方面提供的检测方法直接确定被测天线主反射面的变形,具有结构简单、易于操作的特点,提高了检测效率,实现了对被测天线主反射面变形的快速检测。
如图6和图7所示,在实施例中,所述姿态调整机构可以包括多根第一绳索15以及与所述第一绳索15一一对应的多个第一牵引电机,各所述第一绳索15的一端受所述第一牵引电机牵引,各所述第一绳索15的另一端与所述喇叭天线10的喇叭外侧壁连接,且各所述第一绳索15与所述喇叭外侧壁的连接点在外壁圆周上均匀分布,所述外壁圆周的圆心位于所述喇叭天线10的中轴线上;所述喇叭天线10包括喇叭和喇叭底座。各所述第一绳索15的起点端均由单独的精密电机牵引,通过合理地控制第一绳索15的长度,使喇叭口方向对准被测天线的指向,保证了近场测量数据的准确性。
如图6和图7所示,在实施例中,所述位置调整机构可以包括多根第二绳索14以及与所述第二绳索14一一对应的多个第二牵引电机,各所述第二绳索14的一端受所述第二牵引电机牵引,各所述第二绳索14的另一端与所述喇叭天线10连接,且各所述第二绳索14与所述喇叭天线10的连接点重合。各所述第二绳索14的起点端均由单独的精密电机牵引,通过合理地控制第二绳索14的长度,可以让喇叭天线10停留在特定的位置。
在实施例中,为了实现二维网格化地对被测天线的近距近场强度扫描,通过不间断控制各绳索的长度,使得喇叭天线10沿着图5描绘出的扫描轨迹运动。该运动轨迹是近距近场面9上的一段路径,喇叭天线10在运动过程中与被测天线口径面11的距离是恒定的,且喇叭口朝向始终对准了被测天线的指向。当喇叭天线10经过事先安排的等距均匀的网格点时,其侧面接出的波导线缆16不断采集所收到的辐射信号,最终获得了被测天线在某特定近距近场面9上的二维强度分布图。
如图6所示,在实施例中,所述支撑机构可以包括多个姿态调整机构支撑杆,所述姿态调整机构支撑杆的末端通过二自由度滚轮12与所述第一绳索15连接,所述二自由度滚轮12的两个自由度分别为绕自转轴的主动滚动和绕所述姿态调整机构支撑杆的被动旋转;各所述姿态调整机构支撑杆的末端在以设定点为中心的圆周上均匀分布,所述设定点为所述被测天线馈源在所述设定近距近场面9上的投影点。
如图6所示,在实施例中,所述支撑机构可以包括多个位置调整机构支撑杆,所述位置调整机构支撑杆的末端通过二自由度滚轮12与所述第二绳索14连接,所述二自由度滚轮12的两个自由度分别为绕自转轴的主动滚动和绕所述位置调整机构支撑杆的被动旋转;各所述位置调整机构支撑杆的末端在以设定点为中心的圆周上均匀分布,所述设定点为所述被测天线馈源在所述设定近距近场面9上的投影点。
如图6所示,在实施例中,所述支撑机构可以安装于所述被测天线的钢架结构上,且各支撑杆均垂直于被测天线的口径面11。
作为一种优选的实施方式,所述第一绳索15的数量以及所述姿态调整机构支撑杆的数量可以均为3。作为一种优选的实施方式,所述第二绳索14的数量以及所述位置调整机构支撑杆的数量可以均为3。
在传统的测量方法中,天线需要对某个信号源进行二维网格扫描,扫描过程中天线不断改变其俯仰角和方向角。由于天线本身非常巨大和笨重,动作极其缓慢,因而这个扫描过程要占据非常多的时间。往往在整个天线变形测量的过程中,天线自身的扫描运动过程就要占据总时间的大多数。而采用本发明提供的检测装置时,天线作为发射源保持静止即可,本发明通过绳索并联机构的末端携带的喇叭接收机对天线进行平面近距近场扫描,可以快速的完成扫描过程。而且,由于本发明的绳索并联机构扫描系统是整个集成安装在被测天线上的,因此不再受到信号源的方位的限制,可以很方便地对天线主面变形进行全姿态的扫描,从而得到天线处于任意姿态时的主反射面变形分布。最后,本发明测量的近距近场强度分布,与以往着眼于菲涅尔近场强度分布或者远场强度分布的测量方法相比,近距近场由于距离天线口径面非常近,信号传播距离小,能量发散和损失都非常小,因此能够保证测量过程的高信噪比。
本发明的第三方面提供了一种QTT天线主反射面变形校正方法,该方法包括:
采用本发明第二方面提供的检测装置采集被测天线在设定近距近场面上辐射信号;
采用本发明第一方面提供的天线主反射面变形检测方法确定被测天线主反射面的变形;
根据
Figure BDA0002580958270000171
计算被测天线促动器的位移校正量l,FL为所述被测天线的焦距或等效焦距;
控制所述被测天线促动器按所述位移校正量移动。
促动器位移量l(x,y)和天线主反射面变形δ(x,y)之间的关系。根据图1所示的天线主反射面结构可知,促动器的安装方式是垂直于天线主反射面表面的,本发明定义的变形是沿着天线指向方向的,这两者之间存在一个变换关系。在天线表面变形检测与补偿的过程中,当通过检测方法检测出天线的轴向变形分布δ(x,y)之后,需要通过坐标系换算得到促动器的位移量,从而控制促动器做出相应动作将天线主面恢复成理想抛物面形状。根据简单的几何计算可知,沿天线指向方向的变形分布δ(x,y)与垂直天线表面的法向变形分布l(x,y)之间存在如下公式所示的代数关系:
Figure BDA0002580958270000181
在求解出天线沿指向方向上的主面变形分布之后,可通过上式得到促动器对应位移量(可能需要对促动器位移量l(x,y)进行适当插值),然后通过控制系统控制在(x,y)处的促动器位移-l(x,y),即可将天线复原至理想状态。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

1.一种QTT天线主反射面变形检测方法,其特征在于,包括:
确定被测天线在其设定近距近场面上的辐射信号的二维强度分布;
根据
Figure FDA0002580958260000011
对所述被测天线主射面变形进行第一次求解,其中,δ1为所述被测天线主射面变形的第一次求解结果,x,y分别为所述设定近距近场面上某一位置的横纵坐标,d为所述设定近距近场面与所述被测天线底面之间的距离,L为拉普拉斯算子,F为傅里叶变换,
Figure FDA0002580958260000012
FL为所述被测天线的焦距或等效焦距,A0为所述被测天线主射面未变形时,在所述设定近距近场面上的辐射信号的幅值分布,A为所述被测天线主射面变形后,在所述设定近距近场面上的辐射信号的幅值分布;
根据
Figure FDA0002580958260000013
对所述被测天线主反射面变形进行第k+1次求解,直至得到的所述被测天线主反射面的变形结果达到设定的收敛精度,其中,δk,δk+1分别为所述被测天线主射面变形的第k次、第k+1次求解结果,α为惯性因子,
Figure FDA0002580958260000014
Figure FDA0002580958260000015
2.一种QTT天线主反射面变形校正方法,其特征在于,包括:
采用如权利要求1所述的天线主反射面变形检测方法确定被测天线主反射面的变形;
根据
Figure FDA0002580958260000021
计算被测天线促动器的位移校正量l,x,y分别为所述设定近距近场面上某一位置的横纵坐标,FL为所述被测天线的焦距或等效焦距;
控制所述被测天线促动器按所述位移校正量移动。
3.一种QTT天线主反射面变形检测装置,其特征在于,包括:
喇叭天线,在被测天线的设定近距近场面上的各网格点处采集所述被测天线的辐射信号;
姿态调整机构,控制所述喇叭天线的空间姿态,使所述喇叭天线的喇叭口方向对准所述被测天线的指向;
位置调整机构,控制所述喇叭天线在所述设定近距近场面上的位置;
支撑机构,对所述姿态调整机构以及所述位置调整机构进行支撑;
根据所述喇叭天线采集到的辐射信号,根据如权利要求1所述的天线主反射面变形检测方法确定所述被测天线主反射面的变形。
4.根据权利要求3所述的QTT天线主反射面变形检测装置,其特征在于,所述姿态调整机构包括多根第一绳索以及与所述第一绳索一一对应的多个第一牵引电机,各所述第一绳索的一端受所述第一牵引电机牵引,各所述第一绳索的另一端与所述喇叭天线的喇叭外侧壁连接,且各所述第一绳索与所述喇叭外侧壁的连接点在外壁圆周上均匀分布,所述外壁圆周的圆心位于所述喇叭天线的中轴线上;所述喇叭天线包括喇叭和喇叭底座。
5.根据权利要求3所述的QTT天线主反射面变形检测装置,其特征在于,所述位置调整机构包括多根第二绳索以及与所述第二绳索一一对应的多个第二牵引电机,各所述第二绳索的一端受所述第二牵引电机牵引,各所述第二绳索的另一端与所述喇叭天线连接,且各所述第二绳索与所述喇叭天线的连接点重合。
6.根据权利要求4所述的QTT天线主反射面变形检测装置,其特征在于,所述支撑机构包括多个姿态调整机构支撑杆,所述姿态调整机构支撑杆的末端通过二自由度滚轮与所述第一绳索连接,所述二自由度滚轮的两个自由度分别为绕自转轴的主动滚动和绕所述姿态调整机构支撑杆的被动旋转;各所述姿态调整机构支撑杆的末端在以设定点为中心的圆周上均匀分布,所述设定点为所述被测天线馈源在所述设定近距近场面上的投影点。
7.根据权利要求5所述的QTT天线主反射面变形检测装置,其特征在于,所述支撑机构包括多个位置调整机构支撑杆,所述位置调整机构支撑杆的末端通过二自由度滚轮与所述第二绳索连接,所述二自由度滚轮的两个自由度分别为绕自转轴的主动滚动和绕所述位置调整机构支撑杆的被动旋转;各所述位置调整机构支撑杆的末端在以设定点为中心的圆周上均匀分布,所述设定点为所述被测天线馈源在所述设定近距近场面上的投影点。
8.根据权利要求3-7任一项所述的QTT天线主反射面变形检测装置,其特征在于,所述支撑机构安装于所述被测天线的钢架结构上。
9.根据权利要求6所述的QTT天线主反射面变形检测装置,其特征在于,所述第一绳索的数量以及所述姿态调整机构支撑杆的数量均为3。
10.根据权利要求7所述的QTT天线主反射面变形检测装置,其特征在于,所述第二绳索的数量以及所述位置调整机构支撑杆的数量均为3。
CN202010667313.8A 2020-07-13 2020-07-13 Qtt天线主反射面变形检测方法、校正方法及检测装置 Active CN111664816B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010667313.8A CN111664816B (zh) 2020-07-13 2020-07-13 Qtt天线主反射面变形检测方法、校正方法及检测装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010667313.8A CN111664816B (zh) 2020-07-13 2020-07-13 Qtt天线主反射面变形检测方法、校正方法及检测装置

Publications (2)

Publication Number Publication Date
CN111664816A true CN111664816A (zh) 2020-09-15
CN111664816B CN111664816B (zh) 2021-03-23

Family

ID=72392270

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010667313.8A Active CN111664816B (zh) 2020-07-13 2020-07-13 Qtt天线主反射面变形检测方法、校正方法及检测装置

Country Status (1)

Country Link
CN (1) CN111664816B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112231896A (zh) * 2020-09-18 2021-01-15 西安电子科技大学 一种基于实体模型转化的贴片天线机电分析方法
CN112467385A (zh) * 2020-10-27 2021-03-09 北京空间飞行器总体设计部 一种基站天线共口面rev幅相校正方法
CN113237455A (zh) * 2020-12-25 2021-08-10 西安电子科技大学 带罩反射面天线形变测试装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060269020A1 (en) * 2005-05-25 2006-11-30 Equilateral Technologies Inc. Method and system for generating three-dimensional antenna radiation patterns
CN201037856Y (zh) * 2007-04-28 2008-03-19 佛山市顺德区顺达电脑厂有限公司 天线测量系统及其发射天线结构
CN104063544A (zh) * 2014-06-25 2014-09-24 电子科技大学 近场效应误差分析方法
CN104466428A (zh) * 2014-11-27 2015-03-25 北京环境特性研究所 一种用于近场测试的轻质化缩减尺寸天线
CN105718697A (zh) * 2016-02-02 2016-06-29 西安电子科技大学 面向天线指向大型变形抛物面天线面板移动拟合调整方法
CN105740554A (zh) * 2016-02-02 2016-07-06 西安电子科技大学 一种面向增益的大型变形抛物面天线面板精度调整方法
CN110794222A (zh) * 2019-10-23 2020-02-14 上海霍莱沃电子系统技术股份有限公司 一种天线测试系统及其控制方法
CN111089535A (zh) * 2020-01-09 2020-05-01 上海交通大学 一种射电望远镜天线反射面变形检测方法及系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060269020A1 (en) * 2005-05-25 2006-11-30 Equilateral Technologies Inc. Method and system for generating three-dimensional antenna radiation patterns
CN201037856Y (zh) * 2007-04-28 2008-03-19 佛山市顺德区顺达电脑厂有限公司 天线测量系统及其发射天线结构
CN104063544A (zh) * 2014-06-25 2014-09-24 电子科技大学 近场效应误差分析方法
CN104466428A (zh) * 2014-11-27 2015-03-25 北京环境特性研究所 一种用于近场测试的轻质化缩减尺寸天线
CN105718697A (zh) * 2016-02-02 2016-06-29 西安电子科技大学 面向天线指向大型变形抛物面天线面板移动拟合调整方法
CN105740554A (zh) * 2016-02-02 2016-07-06 西安电子科技大学 一种面向增益的大型变形抛物面天线面板精度调整方法
CN110794222A (zh) * 2019-10-23 2020-02-14 上海霍莱沃电子系统技术股份有限公司 一种天线测试系统及其控制方法
CN111089535A (zh) * 2020-01-09 2020-05-01 上海交通大学 一种射电望远镜天线反射面变形检测方法及系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIANHUI HUANG ET AL.: "Surface deformation recovery algorithm for reflector antennas based on geometric optics", 《OPTICS EXPRESS》 *
付丽 等: "天线面板重力变形的主动控制量计算方法研究", 《天文学报》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112231896A (zh) * 2020-09-18 2021-01-15 西安电子科技大学 一种基于实体模型转化的贴片天线机电分析方法
CN112231896B (zh) * 2020-09-18 2024-02-09 西安电子科技大学 一种基于实体模型转化的贴片天线机电分析方法
CN112467385A (zh) * 2020-10-27 2021-03-09 北京空间飞行器总体设计部 一种基站天线共口面rev幅相校正方法
CN112467385B (zh) * 2020-10-27 2023-11-07 北京空间飞行器总体设计部 一种基站天线共口面rev幅相校正方法
CN113237455A (zh) * 2020-12-25 2021-08-10 西安电子科技大学 带罩反射面天线形变测试装置
CN113237455B (zh) * 2020-12-25 2022-03-04 西安电子科技大学 带罩反射面天线形变测试装置

Also Published As

Publication number Publication date
CN111664816B (zh) 2021-03-23

Similar Documents

Publication Publication Date Title
CN111664816B (zh) Qtt天线主反射面变形检测方法、校正方法及检测装置
CN106444056B (zh) 一种基于三孔径的稀疏光学合成孔径成像装置及其光束合束校正方法
CN103926548B (zh) 一种快速测量射电望远镜反射面精度的方法
CN108879106B (zh) 基于最佳拟合的双反射面天线形面实时调整方法
CN105928467A (zh) 真空低温环境下大型航天器结构变形测量试验系统
CN101713639B (zh) 基于四边形子面板四点支撑的射电望远镜共相检测方法
CN106025550B (zh) 一种以电性能为目标的双反射面天线副面位置调整方法
CN106091966B (zh) 真空低温环境下的热变形测量方法
CN111796248B (zh) 一种激光雷达和毫米波雷达的联合标定方法
CN105116515A (zh) 离轴三反射镜变焦距光学系统的装调方法
CN115202061B (zh) 一种大口径望远镜的主光学系统装调对准方法
CN107036550A (zh) 射电天文望远镜主动反射面边缘传感器系统及其检测方法
CN107727945B (zh) 基于无人机的大型抛物面天线面型精度测试系统
CN109873253B (zh) 基于轴向增益测量的主动反射面面形调整方法
CN109883387B (zh) 在轨零重力状态下大型柔性天线形面的确定方法
CN110907904A (zh) 一种太阳法方位波束宽度修正方法
CN111208514A (zh) 一种曲线运动轨迹SAR的切比雪夫斜距模型和Chirp Scaling成像方法
CN109002567B (zh) 基于实际光学系统装调检测光路的计算机辅助装调方法
CN107491594B (zh) 一种索网天线形面精度计算方法
CN102013576B (zh) 修正型卡塞格伦式天线的副面调整方法
CN113483696A (zh) 一种大尺寸x射线反射镜干涉拼接测量系统及方法
CN109800379B (zh) 星载微波遥感仪器光路建模方法
JP2000201019A (ja) アンテナ測定・調整装置
CN113534436B (zh) 基于七孔径的稀疏合成孔径成像系统及其相位校正方法
CN111089535B (zh) 一种射电望远镜天线反射面变形检测方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant