CN111662051A - 一种无铅水泥基压电复合材料及制备方法与应用 - Google Patents

一种无铅水泥基压电复合材料及制备方法与应用 Download PDF

Info

Publication number
CN111662051A
CN111662051A CN202010401285.5A CN202010401285A CN111662051A CN 111662051 A CN111662051 A CN 111662051A CN 202010401285 A CN202010401285 A CN 202010401285A CN 111662051 A CN111662051 A CN 111662051A
Authority
CN
China
Prior art keywords
cement
composite material
lead
piezoelectric composite
based piezoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010401285.5A
Other languages
English (en)
Other versions
CN111662051B (zh
Inventor
祝瑜
张召才
刘仁俊
李宗津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University of Technology
Original Assignee
Henan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University of Technology filed Critical Henan University of Technology
Priority to CN202010401285.5A priority Critical patent/CN111662051B/zh
Publication of CN111662051A publication Critical patent/CN111662051A/zh
Application granted granted Critical
Publication of CN111662051B publication Critical patent/CN111662051B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/04Portland cements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C5/00Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • C04B28/06Aluminous cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/60After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only artificial stone
    • C04B41/61Coating or impregnation
    • C04B41/65Coating or impregnation with inorganic materials
    • C04B41/69Metals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/092Forming composite materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/09Forming piezoelectric or electrostrictive materials
    • H10N30/093Forming inorganic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/852Composite materials, e.g. having 1-3 or 2-2 type connectivity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8536Alkaline earth metal based oxides, e.g. barium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00991Uses not provided for elsewhere in C04B2111/00 for testing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/10Compositions or ingredients thereof characterised by the absence or the very low content of a specific material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明属于压电材料技术领域,具体为一种无铅水泥基压电复合材料及制备方法与应用。该复合材料是由水泥、HfxZryO2、BaTiO3陶瓷颗粒组成,以助磨剂为介质,球磨混合均匀后,加水,充分搅拌后,压制成型,养护、干燥,再经极化、老化后即可用于制备传感器。本发明的压电复合材料不仅易极化,具有良好的压电响应,与建筑材料具有良好的相容性,而且由于不含铅,对环境无污染,是一种用于土木、交通工程的传感器制备的优异材料。

Description

一种无铅水泥基压电复合材料及制备方法与应用
技术领域
本发明属于压电材料领域,具体为一种无铅水泥基压电复合材料及制备方法与应用。
背景技术
20世纪50年代发展起来的锆钛酸铅(PZT)压电陶瓷,由于其压电性能优异,得到了广泛的应用,在世界压电铁电材料市场占90%以上份额。但是,PZT压电陶瓷含有大量的铅(Pb),其原料中氧化铅的占比可高达70%,这些铅基压电陶瓷在制备、使用、回收和废弃的过程中,都会给环境和人类带来损害。随着社会可持续发展观念的深入和人们对自然生存环境的关注,一场压电陶瓷无铅化的发展浪潮正席卷全球压电铁电材料领域。
钛酸钡(BaTiO3)作为一种成熟可靠的无铅压电材料,具有优异的压电性能和介电性能。所制备的水泥基压电复合材料不仅压电性能优异、精度较高,而且对环境友好,具有广泛的应用前景和发展空间。但是由于BaTiO3的居里温度较低(TC≈80℃),导致以纯相BaTiO3为压电功能体的水泥基压电复合材料在较高温度下不再具有压电响应,这一缺陷大大限制住了其在混凝土结构工程中的应用。
氧化锆-氧化铪固溶体(HfxZryO2)不仅具有居里温度高、压电性能优异、剩余极化强度大、漏电流小,而且不会污染环境。当Hf:Zr为1:1左右,HfxZryO2压电性最强。
发明内容
本发明的目的是提供一种无铅水泥基压电复合材料及制备方法与应用。该复合材料是由水泥、氧化锆-氧化铪固溶体(HfxZryO2)、钛酸钡(BaTiO3)陶瓷颗粒组成,以助磨剂为介质,球磨混合均匀后,加水,充分搅拌后,压制成型,养护、干燥,再经极化、老化后即可用于制备传感器。本发明的压电复合材料不仅易极化,具有良好的压电响应,与建筑材料具有良好的相容性,而且由于不含铅,对环境无污染,是一种用于土木、交通工程的传感器制备的优异材料。
为实现上述目的,本发明采用的技术方案为:
一种无铅水泥基压电复合材料,包括以下质量百分比的组分:水泥10~50%,HfxZryO2和BaTiO3 50~90%,其中,HfxZryO2和BaTiO3中HfxZryO2占0.1~90%,BaTiO3占10~99.9%。
进一步,所述HfxZryO2中,0≤x≤1,0≤y≤1。
进一步,所述水泥为硅酸盐水泥、普通硅酸盐水泥、硫铝酸盐水泥中的一种或多种。
一种无铅水泥基压电复合材料的制备方法,为:首先按照质量比将HfxZryO2、BaTiO3、水泥混合均匀,在助磨剂的条件下,球磨10~30分钟后干燥得到混合粉体;然后向混合粉体中加一定量的水,混合均匀,得到混合料;然后将混合料压制成特定形状,在湿度100%的环境中水化1~28天,干燥即得无铅水泥基压电复合材料。
进一步,所述助磨剂为无水乙醇、丙酮、乙二醇中的一种。
进一步,所述加入水的重量为水泥、HfxZryO2和BaTiO3重量之和的5~12%。
进一步,所述HfxZryO2可掺杂少量金属离子提高其压电性能。
进一步,所述金属离子为Sn4+、Ge4+、Al3+、Zn2+、Ti4+、Y3+、Mn4+、Ce4+、Ni3+中的一种。
上述制备方法制备的无铅水泥基压电复合材料用于土木、交通工程的传感器的制备。具体为:将无铅水泥基压电复合材料体两面涂银电极,在硅油中用高压直流电源极化,老化后即得到一种无铅水泥基压电复合材料制备的产品,该产品可用于混凝土结构的健康状况和服役状态的检测。
与现有技术相比,本发明的有益效果为:
1、本发明利用具有高居里温度、优异压电性能的HfxZryO2与低居里温度的BaTiO3配合使用,用作压电复合材料的原料,且与水泥制备水泥基压电复合材料,克服了传统含铅压电复合材料的污染问题,解决了无铅压电复合材料的高温下压电响应差的问题。
2、本发明的压电复合材料不仅易极化,具有良好的压电响应,与建筑材料具有良好的相容性,而且由于不含铅,对环境无污染,是一种用于土木、交通工程的传感器制备的优异材料。
具体实施方式
下面结合实施例对本发明作进一步的详细说明。
实施例1
本实施例的一种无铅水泥基压电复合材料的制备方法,具体为:
(1)将10g Hf0.5Zr0.5O2、10g BaTiO3和5g硅酸盐水泥干法混合均匀,以乙醇作为助磨剂,球磨混合20分钟后,干燥使乙醇挥发,得混合粉体;
(2)向步骤(1)所得的混合粉体中加水,加水量为混合粉体重量的5%,均匀混合,将混合料在50MPa压力下压制成圆片状,放入湿度100%的环境中水化48小时后,干燥,得水泥基压电复合材料。
干燥后,圆片两面涂银电极,在6kV直流电压下在硅油中极化30分钟,极化温度为120℃;将极化后的圆片包覆锡箔,在60℃中放置12小时老化。
所得到的无铅水泥基压电复合材料的压电应变常数为50 pC/N。
实施例2
本实施例的一种无铅水泥基压电复合材料的制备方法,具体为:
(1)将5g HfO2、15g BaTiO3和10g硫铝酸盐水泥干法混合均匀,以乙二醇作为助磨剂,球磨混合20分钟后,干燥使乙二醇挥发,得混合粉体;
(2)向步骤(1)所得的混合粉体中加水,加水量为混合粉体重量的8%,均匀混合,将混合料在30MPa压力下压制成圆片状,放入湿度100%的环境中水化24小时后,干燥,得水泥基压电复合材料。
干燥后,圆片两面涂银电极,在4kV直流电压下在硅油中极化20分钟,极化温度为110℃;将极化后的圆片包覆锡箔,在60℃中放置12小时老化。
所得到的无铅水泥基压电复合材料的压电应变常数为55 pC/N。
实施例3
本实施例的一种无铅水泥基压电复合材料的制备方法,具体为:
(1)将3g ZrO2、12g BaTiO3和8g普通硅酸盐水泥干法混合均匀,以乙醇作为助磨剂,球磨混合30分钟后,干燥使乙醇挥发,得混合粉体;
(2)向步骤(1)所得的混合粉体中加水,加水量为混合粉体重量的7%,均匀混合,将混合料在40MPa压力下压制成圆片状,放入湿度100%的环境中水化24小时后,干燥,得水泥基压电复合材料。
干燥后,圆片两面涂银电极,在5kV直流电压下在硅油中极化25分钟,极化温度为120℃;将极化后的圆片包覆锡箔,在60℃中放置12小时老化。
所得到的无铅水泥基压电复合材料的压电应变常数为40 pC/N。
实施例4
本实施例的一种无铅水泥基压电复合材料的制备方法,具体为:
(1)将16g HfO2、2g BaTiO3和2g硅酸盐水泥干法混合均匀,以乙二醇作为助磨剂,球磨混合20分钟后,干燥使乙二醇挥发,得混合粉体;
(2)向步骤(1)所得的混合粉体中加水,加水量为混合粉体重量的5%,均匀混合,将混合料在50MPa压力下压制成圆片状,放入湿度100%的环境中水化48小时后,干燥,得水泥基压电复合材料。
干燥后,圆片两面涂银电极,在6kV直流电压下在硅油中极化30分钟,极化温度为120℃;将极化后的圆片包覆锡箔,在60℃中放置12小时老化。
所得到的无铅水泥基压电复合材料的压电应变常数为63pC/N。
实施例5
本实施例的一种无铅水泥基压电复合材料的制备方法,具体为:
(1)将16g Hf0.5Zr0.5O2、2g BaTiO3和2g硅酸盐水泥干法混合均匀,以乙醇作为助磨剂,球磨混合20分钟后,干燥使乙醇挥发,得混合粉体;
(2)向步骤(1)所得的混合粉体中加水,加水量为混合粉体重量的5%,均匀混合,将混合料在50MPa压力下压制成圆片状,放入湿度100%的环境中水化48小时后,干燥,得水泥基压电复合材料。
干燥后,圆片两面涂银电极,在6kV直流电压下在硅油中极化30分钟,极化温度为120℃;将极化后的圆片包覆锡箔,在60℃中放置12小时老化。
所得到的无铅水泥基压电复合材料的压电应变常数为75 pC/N。
实施例6
本实施例的一种无铅水泥基压电复合材料的制备方法,具体为:
(1)将16g (Hf Ti) 0.5Zr0.5O2(HfxZryO2掺杂少量金属Ti离子)、2g BaTiO3和2g硅酸盐水泥干法混合均匀,以乙醇作为助磨剂,球磨混合20分钟后,干燥使乙醇挥发,得混合粉体;
(2)向步骤(1)所得的混合粉体中加水,加水量为混合粉体重量的5%,均匀混合,将混合料在50MPa压力下压制成圆片状,放入湿度100%的环境中水化48小时后,干燥,得水泥基压电复合材料。
干燥后,圆片两面涂银电极,在6kV直流电压下在硅油中极化30分钟,极化温度为120℃;将极化后的圆片包覆锡箔,在60℃中放置12小时老化。
所得到的无铅水泥基压电复合材料的压电应变常数为78 pC/N。
实施例7
本实施例的一种无铅水泥基压电复合材料的制备方法,具体为:
(1)将16g xHfO2·yZrO2·zZnO2(HfxZryO2掺杂少量金属Zn离子,x+y+z=1)、2g BaTiO3和2g硅酸盐水泥干法混合均匀,以乙醇作为助磨剂,球磨混合20分钟后,干燥使乙醇挥发,得混合粉体;
(2)向步骤(1)所得的混合粉体中加水,加水量为混合粉体重量的5%,均匀混合,将混合料在50MPa压力下压制成圆片状,放入湿度100%的环境中水化48小时后,干燥,得水泥基压电复合材料。
干燥后,圆片两面涂银电极,在6kV直流电压下在硅油中极化30分钟,极化温度为120℃;将极化后的圆片包覆锡箔,在60℃中放置12小时老化。
所得到的无铅水泥基压电复合材料的压电应变常数为82 pC/N。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (9)

1.一种无铅水泥基压电复合材料,其特征在于,该复合材料包括以下质量百分比的组分:水泥10~50%,HfxZryO2和BaTiO3 50~90%,其中,HfxZryO2和BaTiO3中HfxZryO2占0.1~90%,BaTiO3占10~99.9%。
2.根据权利要求1所述的无铅水泥基压电复合材料,其特征在于,所述HfxZryO2中,0≤x≤1,0≤y≤1。
3.根据权利要求1所述的无铅水泥基压电复合材料,其特征在于,所述水泥为硅酸盐水泥、普通硅酸盐水泥、硫铝酸盐水泥中的一种或多种。
4.一种无铅水泥基压电复合材料的制备方法,其特征在于,该制备方法为:首先按照质量比将HfxZryO2、BaTiO3、水泥混合均匀,在助磨剂的条件下,球磨10~30分钟后干燥得到混合粉体;然后向混合粉体中加一定量的水,混合均匀,得到混合料;然后将混合料压制成特定形状,在湿度100%的环境中水化1~28天,干燥即得无铅水泥基压电复合材料。
5.根据权利要求1所述的无铅水泥基压电复合材料的制备方法,其特征在于,所述助磨剂为无水乙醇、丙酮、乙二醇中的一种。
6.根据权利要求1所述的无铅水泥基压电复合材料的制备方法,其特征在于,所述加入水的重量为水泥、HfxZryO2和BaTiO3重量之和的5~12%。
7.根据权利要求1所述的无铅水泥基压电复合材料的制备方法,其特征在于,所述HfxZryO2掺杂金属离子提高其压电性能。
8.根据权利要求1所述的无铅水泥基压电复合材料的制备方法,其特征在于,所述金属离子为Sn4+、Ge4+、Al3+、Zn2+、Ti4+、Y3+、Mn4+、Ce4+、Ni3+中的一种。
9.权利要求1至8任一项所述的无铅水泥基压电复合材料用于土木或交通工程的传感器的制备。
CN202010401285.5A 2020-05-13 2020-05-13 一种无铅水泥基压电复合材料及制备方法与应用 Active CN111662051B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010401285.5A CN111662051B (zh) 2020-05-13 2020-05-13 一种无铅水泥基压电复合材料及制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010401285.5A CN111662051B (zh) 2020-05-13 2020-05-13 一种无铅水泥基压电复合材料及制备方法与应用

Publications (2)

Publication Number Publication Date
CN111662051A true CN111662051A (zh) 2020-09-15
CN111662051B CN111662051B (zh) 2022-05-17

Family

ID=72383415

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010401285.5A Active CN111662051B (zh) 2020-05-13 2020-05-13 一种无铅水泥基压电复合材料及制备方法与应用

Country Status (1)

Country Link
CN (1) CN111662051B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111410492A (zh) * 2020-03-06 2020-07-14 河南理工大学 一种MXene衍生钙钛矿水泥基压电复合材料及制备方法与应用
CN111620611A (zh) * 2020-05-13 2020-09-04 河南理工大学 一种碳增效无铅水泥基压电复合材料及制备方法与应用
CN113248247A (zh) * 2021-06-23 2021-08-13 上海大学 一种三元压电陶瓷及其制备方法和应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101054278A (zh) * 2007-04-11 2007-10-17 山东大学 碳增效锆钛酸铅/水泥压电复合材料及其制备方法
US20080237531A1 (en) * 2007-03-27 2008-10-02 Tdk Corporation Piezoelectric ceramic composition
CN101531490A (zh) * 2009-04-16 2009-09-16 山东大学 碳纳米管/锆钛酸铅/水泥压电复合材料及其制备方法
CN103626445A (zh) * 2013-11-29 2014-03-12 中国科学院新疆理化技术研究所 一种无铅高温水泥基压电复合材料及其合成方法
CN103626446A (zh) * 2013-11-29 2014-03-12 中国科学院新疆理化技术研究所 一种无铅水泥基压电复合材料及其制备方法
US20140290339A1 (en) * 2013-03-28 2014-10-02 Robert Bosch Gmbh Sensor Element and Method for Detecting a Gas
US20160052826A1 (en) * 2013-03-29 2016-02-25 Ngk Spark Plug Co., Ltd. Unleaded piezoelectric ceramic composition, piezoelectric element using same, device, and method for manufacturing unleaded piezoelectric ceramic composition
US20180240803A1 (en) * 2017-02-23 2018-08-23 SK Hynix Inc. Ferroelectric memory device and method of manufacturing the same
CN108689711A (zh) * 2018-06-13 2018-10-23 合肥工业大学 一种热稳定型铌酸钠基无铅压电陶瓷及其制备方法
CN111370576A (zh) * 2020-03-18 2020-07-03 电子科技大学 一种利用PLD制备Al掺杂Hf0.5Zr0.5O2铁电薄膜电容器的方法
CN111620611A (zh) * 2020-05-13 2020-09-04 河南理工大学 一种碳增效无铅水泥基压电复合材料及制备方法与应用

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080237531A1 (en) * 2007-03-27 2008-10-02 Tdk Corporation Piezoelectric ceramic composition
CN101054278A (zh) * 2007-04-11 2007-10-17 山东大学 碳增效锆钛酸铅/水泥压电复合材料及其制备方法
CN101531490A (zh) * 2009-04-16 2009-09-16 山东大学 碳纳米管/锆钛酸铅/水泥压电复合材料及其制备方法
US20140290339A1 (en) * 2013-03-28 2014-10-02 Robert Bosch Gmbh Sensor Element and Method for Detecting a Gas
US20160052826A1 (en) * 2013-03-29 2016-02-25 Ngk Spark Plug Co., Ltd. Unleaded piezoelectric ceramic composition, piezoelectric element using same, device, and method for manufacturing unleaded piezoelectric ceramic composition
CN103626445A (zh) * 2013-11-29 2014-03-12 中国科学院新疆理化技术研究所 一种无铅高温水泥基压电复合材料及其合成方法
CN103626446A (zh) * 2013-11-29 2014-03-12 中国科学院新疆理化技术研究所 一种无铅水泥基压电复合材料及其制备方法
US20180240803A1 (en) * 2017-02-23 2018-08-23 SK Hynix Inc. Ferroelectric memory device and method of manufacturing the same
CN108689711A (zh) * 2018-06-13 2018-10-23 合肥工业大学 一种热稳定型铌酸钠基无铅压电陶瓷及其制备方法
CN111370576A (zh) * 2020-03-18 2020-07-03 电子科技大学 一种利用PLD制备Al掺杂Hf0.5Zr0.5O2铁电薄膜电容器的方法
CN111620611A (zh) * 2020-05-13 2020-09-04 河南理工大学 一种碳增效无铅水泥基压电复合材料及制备方法与应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
J MÜLLER,ET AL.: "Ferroelectricity in Simple Binary ZrO2 and HfO2", 《NANO LETTERS》 *
RATTIYAKORN RIANYOI,ET AL.: "Microstructure and electrical properties of 0-3 connectivity barium titanate−Portland cement composite with 40% barium titanate content", 《FERROELECTRICS LETTERS SECTION》 *
张东等: "水泥基压电机敏复合材料的可行性分析和研究", 《建筑材料学报》 *
王振等: "HfO_2含量对铌锑锆钛酸铅压电陶瓷性能的影响", 《电子元件与材料》 *
邱宇等: "Al掺杂浓度对Hf0.5Zr0.5O2薄膜铁电性能的影响", 《材料导报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111410492A (zh) * 2020-03-06 2020-07-14 河南理工大学 一种MXene衍生钙钛矿水泥基压电复合材料及制备方法与应用
CN111620611A (zh) * 2020-05-13 2020-09-04 河南理工大学 一种碳增效无铅水泥基压电复合材料及制备方法与应用
CN113248247A (zh) * 2021-06-23 2021-08-13 上海大学 一种三元压电陶瓷及其制备方法和应用

Also Published As

Publication number Publication date
CN111662051B (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
CN111662051B (zh) 一种无铅水泥基压电复合材料及制备方法与应用
CN104291817B (zh) 高居里温度的pzt压电陶瓷材料及其制备方法
US11895923B2 (en) Lead-free piezoelectric ceramic sensor material and a preparation method thereof
CN103626445B (zh) 一种无铅高温水泥基压电复合材料及其合成方法
CN109796205B (zh) 一种铋层状结构钛钽酸铋高温压电陶瓷材料及其制备方法
CN107117965B (zh) 掺杂改性的铌镍酸铅-锆钛酸铅压电陶瓷及其制备方法
CN103626446B (zh) 一种无铅水泥基压电复合材料及其制备方法
CN109485413B (zh) 一种窄带隙钛酸铋钠-镍钛酸钡铁电材料及其制备方法和用途
CN103058651A (zh) 一种改性的钛酸钡基无铅正温度系数电阻材料及其制备方法
CN116573936B (zh) 一种阴离子改性的压电陶瓷及其制备方法
CN105198411A (zh) 大应变低驱动电场弛豫-铁电复合无铅压电陶瓷及其制备方法
CN111925208A (zh) 一种铌酸锂钠基无铅压电陶瓷及其制备方法
CN107032790A (zh) 一种应用于能量收集器件的高机电转换复相压电陶瓷材料及制备方法
CN110156459A (zh) 一种基于BiAlO3掺杂BaTiO3无铅压电陶瓷储能电容器的制备方法
CN113979748A (zh) 一种铌酸钠钾基无铅压电陶瓷及其制备方法
CN111410473B (zh) 一种MXene/PZT水泥基压电复合材料及制备方法与应用
CN103204679A (zh) 一种低温烧结且老化率低的pzt压电陶瓷材料及其制备方法
CN109020539B (zh) 碱激发粉煤灰矿渣压电片及其制备方法
CN106699177A (zh) 一种具有高发电特性的无铅压电能量收集材料及其制备方法
CN102718482A (zh) 压电陶瓷材料及其制备方法、压电发电振子
CN107021754B (zh) 分散剂改性弛豫型铌镍锆钛酸铅压电陶瓷及其制备方法
CN108727021B (zh) 一种压电能量收集用兼具宽组分窗口与高换能系数陶瓷材料及制备
CN105732029A (zh) 一种玻璃相掺杂的锆钛酸钡钙基无铅压电陶瓷材料及其低温烧结制备工艺
CN104150898A (zh) 一种可低温烧结的无铅压电陶瓷材料及其制备方法
CN111410492B (zh) 一种MXene衍生钙钛矿水泥基压电复合材料及制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant