CN111650172A - 基于碳量子点荧光机制的稀土元素定性和定量检测方法 - Google Patents
基于碳量子点荧光机制的稀土元素定性和定量检测方法 Download PDFInfo
- Publication number
- CN111650172A CN111650172A CN202010692456.4A CN202010692456A CN111650172A CN 111650172 A CN111650172 A CN 111650172A CN 202010692456 A CN202010692456 A CN 202010692456A CN 111650172 A CN111650172 A CN 111650172A
- Authority
- CN
- China
- Prior art keywords
- rare earth
- carbon quantum
- nitrogen
- solution
- quantum dot
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
- G01N21/643—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes" non-biological material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/08—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
- C09K11/65—Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing carbon
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/6428—Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
- G01N2021/6432—Quenching
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Immunology (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Optics & Photonics (AREA)
- Pathology (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Molecular Biology (AREA)
- Composite Materials (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
本发明基于碳量子点荧光机制的稀土元素定性和定量检测方法属于稀土元素检测领域,以叶酸为例,采用一步水热法合成氮掺杂碳量子点,合成的氮掺杂碳量子点具有高量子转化效率的发射蓝光的能带结构,其表电负性又使其与带正电稀土离子可以很好结合,配置的氮掺杂碳量子点溶液可以和不同种类的稀土结合,使合成的氮掺杂碳量子点本身发射的荧光谱线红移和淬灭,其中,荧光淬灭的变化可以定量分析稀土含量,而红移现象又可应用于稀土定性区分,由此可将稀土分为两大类,第一组稀土离子Y3+,La3+,Lu3+与NCDs结合使NCDs荧光发射峰明显红移,而在第二类稀土Pr3+,Nd3+,Sm3+,Eu3+,Gd3+,Tb3+,Dy3+没有类似现象。
Description
技术领域
本发明属于稀土元素检测领域,特别是涉及一种基于碳量子点荧光机制的稀土元素定性和定量检测方法。
背景技术
稀土元素包含了元素周期表中的第21号钪元素、39号钇元素以及57-71号的镧系元素。稀土元素素有“新材料之母”以及“工业维生素”的美称,是一种21世纪非常重要的战略性元素,稀土已经成为我们国家经济发展必不可少的资源,稀土元素便在医药、生命科学、磁共振成像(MRI)、可再生能源、能量储存、激光新材料、新能源、及光学器件等方面广泛使用。由于稀土元素在地壳中浓度较低,因此稀土元素的采矿、提取和提纯需要解决许多涉及能效和环境影响问题,使稀土离子的检测分析至关重要。稀土离子检测常用的方法有X-射线荧光光谱法、电感耦合等离子体原子发射光谱法和电感耦合等离子体质谱法等,其中ICP-MS方法最为常见,但操作不方便、且成本比较高。
碳元素是自然界中含量最为丰富元素之一,其在自然中有很多同素异形体,比如三维的(3D)金刚石、无定型碳、二维的(2D))石墨烯片、一维的(1D)碳纳米管、碳纤维以及零维的(0D)富勒烯和碳量子点等。碳纳米材料的尺寸范围在100nm内、且具有一般纳米材料的表面效应、小尺度效应、量子尺度效应和量子隧道效应。因此碳纳米材料常具有传统碳材料所不具有的物理和化学特性,使得小尺度的碳材料在光、电、磁、催化以及生物、医药方面有更加广泛的应用。在近二十年的科学研究中,零维的碳纳米材料因为其本身尺度效应而被受关注。碳量子点(CQDs)主要是碳原子以SP2或者SP3杂化碳骨架、尺寸分布在0-20nm之间、且具有特异光学性质的准球形碳颗粒。从广义上说,碳量子点包括石墨烯量子点、碳纳米颗粒以及聚合物量子点。其中,石墨烯量子点是具有典型石墨烯晶体结构、且尺寸小于10nm以下的、具有单层或者几层的碳核结构,碳纳米颗粒是具有球形或者准球形的、尺寸小于10nm以内的、有晶体结构或者不具有晶格结构的碳纳米点,而聚合物点通常是聚合物经过脱水或碳化形成的交联晶体结构聚合体。鉴于碳量子点具有量子点的尺寸效应、量子限域效应、量子隧道效应和表面效应,碳量子点在合适的光照射下有明亮的荧光效应。本发明即借助碳量子点利用荧光法分析稀土元素。
发明内容
为了解决现有技术存在的问题,本发明提出一种基于碳量子点荧光机制的稀土元素定性和定量检测方法,本发明特别的是指利用叶酸在水热条件下经过多次过滤和渗析得到氮掺杂碳量子点,配制的氮掺杂碳量子点溶液本身在激发光下产生特定波长的荧光,该荧光可以定性区分和定量分析稀土溶液的元素物种和浓度。
为解决上述技术问题,本发明保护的技术方案为:一种基于碳量子点荧光机制的稀土元素定性和定量检测方法,按照以下步骤进行:
步骤1)将叶酸固体分散在超纯水中,剧烈搅拌2小时,使其均匀分散在超纯水中形成稳定的悬浊液,叶酸与超纯水的比例是0.5-10g/ml;
步骤2)将步骤1)中产生的叶酸溶液转移到聚四氟乙烯水热反应釜中,在120-180℃加热2-10小时,水热反应后,反应釜自然冷却到室温;
步骤3)等待反应釜中的固-液浊液变成黄色透明溶液后,用0.45μM的过滤膜过滤除去大分子的碳化不溶物和未反应完全的叶酸杂质,再用0.22μM的过滤膜除去部分大分子的颗粒;
步骤4)将步骤3)产生过滤后的溶液转移到分子截留量为500-5000的透析袋中透析2-10小时,进一步除去小分子残留物;
步骤5)将透析袋内的稀溶液经旋转蒸发仪将其浓缩,浓缩后的溶液再经冻干干燥即可得黄色固体粉末,即为氮掺杂碳量子点固形物,获得的氮掺杂碳量子点固形物的实际尺度是10-20nm;
步骤6)将氮掺杂碳量子点固形物分散在超纯水中,剧烈搅拌10分钟-1小时,即可得到用于稀土荧光检测的氮掺杂碳量子点溶液;
步骤7)将配制的氮掺杂碳量子点溶液滴加到稀土样品溶液中,或将稀土样品溶液滴加到氮掺杂碳量子点溶液中形成混合液;
步骤8)将步骤7)中的混合液在任意普通的荧光检测仪上进行检测,采用的激发光优选的波段是小于300nm,实际可以在200nm-400nm之间,测量前需要对本发明产生的量子点的荧光特性进行标定,标定的方法是利用已知稀土元素及其浓度的稀土标准液混合配置的氮掺杂碳量子点溶液;
步骤9)步骤7)的混合液的荧光淬灭变化对照步骤8)涉及的标准液数据即可定量分析未知稀土样品中稀土含量;对照氮掺杂碳量子点溶液荧光谱线,红移10-30nm之间的稀土样品中必含有稀土离子Y3+,La3+,Lu3+,没有红移现象的稀土样品中必含有Pr3+,Nd3+,Sm3+,Eu3+,Gd3+,Tb3+,Dy3+,依此,未知稀土的定性区分和定量分析完成。
进一步的,步骤1)中的叶酸可用分子中含有碳-氮键的有机化合物替代,包括胺类,氮杂环,腈,硝基化合物,以及含有C-O-N的化合物,包括硝酸酯、亚硝酸酯。
与现有技术相比,本发明的氮掺杂碳量子点具有高量子转化效率的发射蓝光的能带结构,其表电负性又使其与带正电稀土离子可以很好结合,配置的氮掺杂碳量子点溶液可以和不同种类的稀土结合,使合成的氮掺杂碳量子点本身发射的荧光谱线红移和淬灭,其中,荧光淬灭的变化可以定量分析稀土含量,而红移现象又可应用于稀土定性区分。经过实验验证,本发明可以快速准确的对稀土元素进行定性、定量的检测。
附图说明
下面结合附图对本发明做进一步详细的说明。
图1是氮掺杂碳量子点溶液的电子显微镜的测试图。
图2为Nano Measure软件对图1中的NCDs的粒径分布进行粒径尺寸统计图。
图3为在NCDs溶液中加入不同稀土元素后溶液的荧光发射峰对比图。
图4为在NCDs溶液中加入不同稀土元素后溶液的发射光谱图。
图5为NCDs溶液加入浓度的钐离子后的荧光强度,加入不同的Sm3+(0-10μM)的NCDs溶液的发射波长和钐离子浓度的变化关系图。
具体实施方式
为使本发明的目的、特征和优点能够明显易懂,下面结合附图对本发明的具体实施方式做详细说明。
称量100mg的叶酸固体分散在100mL的超纯水中,剧烈搅拌2小时,使其均匀分散在超纯水中形成稳定的悬浊液。将搅拌后的混合溶液转移到100mL的聚四氟乙烯水热反应釜中,于180℃加热6小时。水热反应后,反应釜自然冷却到室温,观察反应釜中的溶液已从固-液浊液变成黄色透明溶液。后继步骤是先用0.45μM的过滤膜过滤除去大分子的碳化不溶物和未反应完全的叶酸杂质,再用0.22μM的过滤膜除去部分大分子的颗粒,最后将过滤后的溶液转移到分子截留量为1000的透析袋中透析10小时以进一步除去小分子残留物。将透析袋内的稀溶液经旋转蒸发仪将其浓缩,浓缩后的溶液再经冻干干燥即可得黄色固体粉末,命名为NCDs。
如图1所示,由电子显微镜的测试图可见,本发明用一步水热法制备出的水溶液中可以有效分散,粒径分布均匀,且在电镜视图可观测范围内没有发现粒子团聚的现象,说明水热合成法得到的碳量子点具有很好的水溶性及分散性。如图2所示用Nano Measure软件对图1中的NCDs的粒径分布进行粒径尺寸统计,结果表明,NCDs的尺寸均匀分布在10-20nm之间,且符合高斯正态分布,平均粒径为13nm.
在NCDs溶液中分别加入100μM的稀土(Y3+,La3+,Pr3+,Nd3+,Sm3+,Eu3+,Gd3+,Tb3+,Dy3 +,Ho3+,Er3+,Tm3+,Yb3+,Lu3+)后的溶液的荧光发射峰发生了不一样的变化,从而通过不同的荧光现象可以区分稀土离子。从图3中可以看出空白的NCDs溶液的荧光强度最大。当加入第一组稀土离子(Y3+,La3+,Lu3+)时,NCDs溶液有微弱的荧光淬灭,但是发射峰发生了明显的红移现象,发射光谱从原来的440nm红移到458nm,图3中波峰从高到低依次为(La3+)、(Y3+)、(Lu3+)。当加入第二组稀土离子(Pr3+,Nd3+,Sm3+,Eu3+,Gd3+,Tb3+,Dy3+,Ho3+,Er3+,Tm3+,Yb3+),NCDs溶液的荧光淬灭更加明显,但是荧光发射峰位置没有明显变化,
图5所示,在NCDs溶液加入浓度的钐离子(0-30μM)后的荧光强度,加入不同的Sm3+(0-10μM)的NCDs溶液的发射波长和钐离子浓度的变化关系。
经过实验验证,配置的氮掺杂碳量子点溶液可以和不同种类的稀土结合,使合成的氮掺杂碳量子点本身发射的荧光谱线红移和淬灭,荧光淬灭的变化可以定量分析稀土含量,而红移现象又可应用于稀土定性区分。
上面结合附图对本发明方案的实施例作了详细说明,但是本发明并不限于上述实施例,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下做出各种变化。
Claims (2)
1.基于碳量子点荧光机制的稀土元素定性和定量检测方法,其特征在于,按照以下步骤进行:
步骤1)将叶酸固体分散在超纯水中,剧烈搅拌2小时,使其均匀分散在超纯水中形成稳定的悬浊液,叶酸与超纯水的比例是0.5-10g/ml;
步骤2)将步骤1)中产生的叶酸溶液转移到聚四氟乙烯水热反应釜中,在120-180℃加热2-10小时,水热反应后,反应釜自然冷却到室温;
步骤3)等待反应釜中的固-液浊液变成黄色透明溶液后,用0.45μM的过滤膜过滤除去大分子的碳化不溶物和未反应完全的叶酸杂质,再用0.22μM的过滤膜除去部分大分子的颗粒;
步骤4)将步骤3)产生过滤后的溶液转移到分子截留量为500-5000的透析袋中透析2-10小时,进一步除去小分子残留物;
步骤5)将透析袋内的稀溶液经旋转蒸发仪将其浓缩,浓缩后的溶液再经冻干干燥即可得黄色固体粉末,即为氮掺杂碳量子点固形物,获得的氮掺杂碳量子点固形物的实际尺度是10-20nm;
步骤6)将氮掺杂碳量子点固形物分散在超纯水中,剧烈搅拌10分钟-1小时,即可得到用于稀土荧光检测的氮掺杂碳量子点溶液;
步骤7)将配制的氮掺杂碳量子点溶液滴加到稀土样品溶液中,或将稀土样品溶液滴加到氮掺杂碳量子点溶液中形成混合液;
步骤8)将步骤7)中的混合液在任意普通的荧光检测仪上进行检测,采用的激发光优选的波段是小于300nm,实际可以在200nm-400nm之间,测量前需要对本发明产生的量子点的荧光特性进行标定,标定的方法是利用已知稀土元素及其浓度的稀土标准液混合配置的氮掺杂碳量子点溶液;
步骤9)步骤7)的混合液的荧光淬灭变化对照步骤8)涉及的标准液数据即可定量分析未知稀土样品中稀土含量;对照氮掺杂碳量子点溶液荧光谱线,红移10-30nm之间的稀土样品中必含有稀土离子Y3+,La3+,Lu3+,没有红移现象的稀土样品中必含有Pr3+,Nd3+,Sm3+,Eu3+,Gd3+,Tb3+,Dy3+,依此,未知稀土的定性区分和定量分析完成。
2.根据权利要求1所述的基于碳量子点荧光机制的稀土元素定性和定量检测方法,其特征在于:步骤1)中的叶酸可用分子中含有碳-氮键的有机化合物替代,包括胺类,氮杂环,腈,硝基化合物,以及含有C-O-N的化合物,包括硝酸酯、亚硝酸酯。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010692456.4A CN111650172A (zh) | 2020-07-17 | 2020-07-17 | 基于碳量子点荧光机制的稀土元素定性和定量检测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010692456.4A CN111650172A (zh) | 2020-07-17 | 2020-07-17 | 基于碳量子点荧光机制的稀土元素定性和定量检测方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111650172A true CN111650172A (zh) | 2020-09-11 |
Family
ID=72346377
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010692456.4A Pending CN111650172A (zh) | 2020-07-17 | 2020-07-17 | 基于碳量子点荧光机制的稀土元素定性和定量检测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111650172A (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114507786A (zh) * | 2021-12-30 | 2022-05-17 | 中国科学院广州能源研究所 | 利用量子点辅助超级电容器解离、浓缩和原位监测低浓赋存稀土稀贵元素的方法 |
CN114736671A (zh) * | 2022-03-22 | 2022-07-12 | 深圳大学 | 一种稀土配位的氮掺杂碳点双荧光探针及其制备与应用 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110020241A1 (en) * | 2008-08-06 | 2011-01-27 | Konica Minolta Medical & Graphic, Inc. | Fluorescent labeling agent containing quantum dots |
US20140255822A1 (en) * | 2013-03-07 | 2014-09-11 | Rutgers, The State University Of New Jersey | Polymer-derived catalysts and methods of use thereof |
CN104845618A (zh) * | 2015-05-25 | 2015-08-19 | 福州大学 | 一种氮掺杂荧光碳量子点及其制备方法和应用 |
CN105836739A (zh) * | 2016-05-12 | 2016-08-10 | 安徽大学 | 一种多元素掺杂石墨烯量子点的制备方法 |
CN107903894A (zh) * | 2017-12-27 | 2018-04-13 | 重庆文理学院 | 一种利用柏壳合成氮掺杂碳量子点的方法 |
CN109097034A (zh) * | 2018-08-29 | 2018-12-28 | 济南大学 | 一种以棉秆皮为碳源镧掺杂碳量子点复合材料的制备方法 |
-
2020
- 2020-07-17 CN CN202010692456.4A patent/CN111650172A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110020241A1 (en) * | 2008-08-06 | 2011-01-27 | Konica Minolta Medical & Graphic, Inc. | Fluorescent labeling agent containing quantum dots |
US20140255822A1 (en) * | 2013-03-07 | 2014-09-11 | Rutgers, The State University Of New Jersey | Polymer-derived catalysts and methods of use thereof |
CN104845618A (zh) * | 2015-05-25 | 2015-08-19 | 福州大学 | 一种氮掺杂荧光碳量子点及其制备方法和应用 |
CN105836739A (zh) * | 2016-05-12 | 2016-08-10 | 安徽大学 | 一种多元素掺杂石墨烯量子点的制备方法 |
CN107903894A (zh) * | 2017-12-27 | 2018-04-13 | 重庆文理学院 | 一种利用柏壳合成氮掺杂碳量子点的方法 |
CN109097034A (zh) * | 2018-08-29 | 2018-12-28 | 济南大学 | 一种以棉秆皮为碳源镧掺杂碳量子点复合材料的制备方法 |
Non-Patent Citations (2)
Title |
---|
SHENGNAN WANG ET AL: "Highly fluorescent nitrogen-doped carbon dots for the determination and the differentiation of the rare earth element ions", 《TALANTA》 * |
王胜楠: "基于多种碳源地碳量子点荧光机制对稀土元素定性区分和定量分析研究", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅰ辑》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114507786A (zh) * | 2021-12-30 | 2022-05-17 | 中国科学院广州能源研究所 | 利用量子点辅助超级电容器解离、浓缩和原位监测低浓赋存稀土稀贵元素的方法 |
CN114507786B (zh) * | 2021-12-30 | 2023-06-09 | 中国科学院广州能源研究所 | 利用量子点辅助超级电容器解离、浓缩和原位监测低浓赋存稀贵元素的方法 |
CN114736671A (zh) * | 2022-03-22 | 2022-07-12 | 深圳大学 | 一种稀土配位的氮掺杂碳点双荧光探针及其制备与应用 |
CN114736671B (zh) * | 2022-03-22 | 2023-07-04 | 深圳大学 | 一种稀土配位的氮掺杂碳点双荧光探针及其制备与应用 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Latief et al. | A facile green synthesis of functionalized carbon quantum dots as fluorescent probes for a highly selective and sensitive detection of Fe3+ ions | |
Hou et al. | A novel one-pot route for large-scale preparation of highly photoluminescent carbon quantum dots powders | |
Rao et al. | Efficient synthesis of highly fluorescent carbon dots by microreactor method and their application in Fe3+ ion detection | |
Chen et al. | Self-exothermic reaction prompted synthesis of single-layered graphene quantum dots at room temperature | |
Wu et al. | Preparation of photoluminescent carbon nanodots by traditional Chinese medicine and application as a probe for Hg 2+ | |
Fan et al. | A green solid-phase method for preparation of carbon nitride quantum dots and their applications in chemiluminescent dopamine sensing | |
Hoan et al. | Luminescence of lemon‐derived carbon quantum dot and its potential application in luminescent probe for detection of Mo6+ ions | |
Wang et al. | Highly fluorescent nitrogen-doped carbon dots for the determination and the differentiation of the rare earth element ions | |
Nemati et al. | A ratiometric probe based on Ag2S quantum dots and graphitic carbon nitride nanosheets for the fluorescent detection of Cerium | |
CN103160279A (zh) | 一种功能性碳点及其制备和应用 | |
CN111650172A (zh) | 基于碳量子点荧光机制的稀土元素定性和定量检测方法 | |
Hu et al. | Oxygen-driven, high-efficiency production of nitrogen-doped carbon dots from alkanolamines and their application for two-photon cellular imaging | |
CN102602924A (zh) | 微波辐射法制备双色石墨烯量子点的方法 | |
Zhang et al. | Monodisperse lanthanide oxyfluorides LnOF (Ln= Y, La, Pr–Tm): morphology controlled synthesis, up-conversion luminescence and in vitro cell imaging | |
CN106348281A (zh) | 一种水热制备双荧光石墨烯量子点的方法 | |
Feng et al. | Microwave-assisted synthesis of nitrogen-rich carbon dots as effective fluorescent probes for sensitive detection of Ag+ | |
Tian et al. | Carbon dot-silica composite nanoparticle: an excitation-independent fluorescence material with tunable fluorescence | |
Xu et al. | Preparation and application of solvent‐modulated self‐doped N–S multicolour fluorescence carbon quantum dots | |
Hao et al. | Synthesis of blue fluorescent carbon dots and their application in detecting mercury and iodine based on “off–on” mode | |
Wang et al. | Tunable multicolour S/N co‐doped carbon quantum dots synthesized from waste foam and application to detection of Cr3+ ions | |
Zhan et al. | Green synthesis of fluorescence carbon nanoparticles from yum and application in sensitive and selective detection of ATP | |
Patidar et al. | Fluorescent carbon nanoparticles obtained from charcoal via green methods and their application for sensing Fe3+ in an aqueous medium | |
CN109632752B (zh) | 通过荧光碳点识别多种金属离子的方法及检测器 | |
Tian et al. | Comparison between terbium-doped carbon dots and terbium-functionalized carbon dots: Characterization, optical properties, and applications in anthrax biomarker detection | |
Chen et al. | Water‐Soluble, Monodisperse, Lanthanide‐Doped Y (Gd) VO4 Nanocrystals as Promising Multimodal Bioprobe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20200911 |