CN111644205B - 多酸基有机无机配合物及其制备方法和作为光催化剂在甲苯选择性氧化成苯甲醛中的应用 - Google Patents

多酸基有机无机配合物及其制备方法和作为光催化剂在甲苯选择性氧化成苯甲醛中的应用 Download PDF

Info

Publication number
CN111644205B
CN111644205B CN202010563974.6A CN202010563974A CN111644205B CN 111644205 B CN111644205 B CN 111644205B CN 202010563974 A CN202010563974 A CN 202010563974A CN 111644205 B CN111644205 B CN 111644205B
Authority
CN
China
Prior art keywords
polyacid
based organic
inorganic complex
benzaldehyde
toluene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010563974.6A
Other languages
English (en)
Other versions
CN111644205A (zh
Inventor
李明雪
韩秋霞
李�杰
王子梁
赵俊伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henan University
Original Assignee
Henan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henan University filed Critical Henan University
Priority to CN202010563974.6A priority Critical patent/CN111644205B/zh
Publication of CN111644205A publication Critical patent/CN111644205A/zh
Application granted granted Critical
Publication of CN111644205B publication Critical patent/CN111644205B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/18Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
    • B01J31/1805Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
    • B01J31/181Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
    • B01J31/1815Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • B01J35/39
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/27Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation
    • C07C45/32Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen
    • C07C45/33Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties
    • C07C45/34Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds
    • C07C45/36Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with molecular oxygen of CHx-moieties in unsaturated compounds in compounds containing six-membered aromatic rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues

Abstract

本发明公开了一例多酸基有机无机配合物,其化学式为:K4(H2O)8H26(C26H16N4O4)8[P6W48Fe6O180]·7H2O。本发明配合物在光照条件下,产生光生电子和空穴,空穴促进苄基自由基的形成,电子将氧气还原为超氧自由基促进苯甲醛的形成,实现催化反应的高效选择性。催化过程均为非均相,可以通过离心干燥回收催化剂,实现循环利用而且催化效率并未明显降低,反应仍然保持很高的选择性。该多酸基有机无机配合物材料为我国精细化工在碳氢键活化方面的发展提供了科学基础。

Description

多酸基有机无机配合物及其制备方法和作为光催化剂在甲苯 选择性氧化成苯甲醛中的应用
技术领域
本发明属于多金属氧酸盐化学材料制备技术领域,具体涉及一种多酸基有机无机配合物(其为一例[P6W48Fe6O180]30-阴离子型光催化剂)及其制备方法和作为光催化剂在甲苯选择性氧化成苯甲醛中的应用。
背景技术
初级碳氢键在温和条件下的选择性氧化是学术界和工业界面临的一项重大挑战。这是由于饱和C-H键是惰性的,且热力学稳定性强。该反应环境通常需要高温、高压和额外的助氧化剂。众所周知,苯甲醇、苯甲醛和苯甲酸作为中间体,在防腐剂、香水、染料、药品、溶剂、增塑剂和阻燃剂等生产中具有重要的商业价值。在这些产品中,苯甲醛被认为是最理想的产品。然而,苯甲醛很容易被过度氧化而转化为苯甲酸。目前,苯甲醛是由甲苯侧链氯化得到,然后由二氯甲基化得到。然而,这种方法往往含有氯化副产品,不符合食品和药品的标准等级。因此,开发出在温和条件下获得高选择性、环境友好的目标产物是非常重要和迫切需要的。与传统的热化学方法相比,多相光催化反应以可见光为驱动力,以丰富廉价的分子氧为氧化剂,在温和的条件下很容易生成高活性自由基,选择性激活碳氢键,可能是一种有效的方法。
多金属氧酸盐(POMs)由于具有独特的结构和半导体特性,在光催化领域有着独特的优势,可以在保持相同结构的同时连续接受电子或质子,具有很强的多电子转移能力,因此得到了广泛的应用。在光催化脱氢、共轭加成和氟化反应中,POMs被用作高效的氢原子转移剂(HAT)。此外,POMs可以很容易地通过紫外线激发光还原,由此产生的杂多蓝可以将转移O2还原为O2•−。过渡金属取代的POMs,尤其是铁取代的POMs (POM-Fe),由于其可控的电子结构和高稳定性的氧化还原态显示出比Keggin-type和Dawson-type更好的光催化性能。然而,这些催化剂对紫外线的需求严重阻碍了这些光催化剂的应用。将氧化催化剂和光敏剂结合在一个单一的框架内,将是实现反应中间体之间的相容性和多个催化循环协同提高阳光利用率的有效途径。DPNDI是常用的光敏剂,可以将其用作功能配体与金属或金属氧簇相配位。此外,POMs阴离子与有机配体阳离子之间的静电相互作用可能通过相互作用提高可再使用性和可再循环性。
发明内容
本发明目的是提供一例以光敏剂配体与多金属氧酸盐形成的多酸基有机无机配合物材料,其可以作为光催化剂选择性催化甲苯碳氢键氧化成苯甲醛。
本发明还提供了上述多酸基有机无机配合物的制备方法和其作为光催化剂在甲苯选择性氧化成苯甲醛中的应用。
为实现上述目的,本发明采用如下技术方案:
多酸基有机无机配合物,该多酸基有机无机配合物的化学式为:K4(H2O)8H26(C26H16N4O4)8[P6W48Fe6O180]·7H2O。
本发明提供了上述多酸基有机无机配合物的制备方法,其在水热条件下进行,具体包括如下步骤:
将多酸前驱体K12[α-H2P2W12O48]·24H2O、FeSO4·7H2O和有机配体DPNDI均匀分散于溶剂中,然后调节pH至2.9-3.1,放入烘箱于115-125 ℃反应90-100 h,冷却至室温,析出的橙色棒状晶体即为多酸基有机无机配合物。
上述多酸基有机无机配合物的制备方法中,所述多酸前驱体K12[α-H2P2W12O48]·24H2O、FeSO4·7H2O和有机配体DPNDI的摩尔比为2:10-12:3。
有机配体DPNDI化学名称为N,N-二(4-吡啶甲基)萘二酰亚胺。多酸前驱体K12[α-H2P2W12O48]·24H2O、和有机配体DPNDI可以采用本领域常规方法制备获得。
具体的,所述溶剂为蒸馏水和乙腈组成的混合溶液,进一步优选蒸馏水和乙腈体积比为2:1。
本发明还提供了上述新型多功能材料多酸基有机无机配合物作为光催化剂在甲苯选择性氧化成苯甲醛中的应用。在温和条件下,对本发明所述多酸基有机无机配合物进行光照,以氧气为氧化剂,本发明多酸基有机无机配合物可以高效选择性催化氧化甲苯的C-H键,转化为苯甲醛。本发明对目标化合物多酸基有机无机配合物选择性光催化甲苯的C-H键活化转化为苯甲醛中的应用进行了研究。具体研究步骤如下:
在10 w白光二极管(LED)灯下,在室温、分子O2的环境下进行了甲苯的光催化氧化反应,24小时后苯甲醛的光催化氧化甲苯的选择性>99%。
本发明所述的多酸基有机无机配合物不仅仅是首例基于铁嵌入的三聚Dawson型化合物,更是首例用于光催化活化甲苯的C-H键生成苯甲醛的多酸基有机无机配合物。在光照条件下,该催化剂产生光生电子和空穴,空穴促进甲苯产生苄基自由基和H+,电子将O2还原为超氧自由基O2•–,其进一步将苄基自由基转化为苯甲醛,从而实现此反应的高效选择性。
本发明目标化合物多酸基有机无机配合物的光催化C-H键活化反应性对多金属氧酸盐的催化研究具有重要意义,为多金属氧酸盐作为新的催化剂实现C-H键活化的可行性提供了实验依据。目标化合物多酸基有机无机配合物以分子氧为唯一氧化剂,在温和的条件下高效催化甲苯C-H键的氧化,选择性高。令人高兴的是,本发明多酸基有机-无机配合物在光催化甲苯氧化成苯甲醛的过程中表现出比现有光催化剂更高的选择性。此外,由于稳定性高,多酸基有机-无机配合物可被回收和重复使用至少5次,且转化率和选择性没有显著降低。本发明介绍了光催化反应的机理,以环境友好的分子氧为氧化剂,以可见光为驱动力,使该方法比传统的碳氢键活化策略更具有可持续性和绿色性。和现有技术相比,本发明具有如下优点:
1)本发明提供的目标材料多酸基有机无机配合物是首例基于铁取代的三聚Dawson型结构;
2)本发明多酸基有机-无机配合物通过X-射线单晶衍射准确地了解其结构特征;
3)本发明以发展更高效的光催化剂的可控组装和定向制备为核心目标,合理利用配位导向作用,构建立体结构稳定、性能良好的多功能光反应平台。多酸基有机无机配合物以分子氧为唯一氧化剂,在温和的条件下高效催化甲苯和取代甲苯的嵌段C-H键的氧化,选择性高。而且,我国钨、钼的储量居世界首位,为以后的实际应用提供了发展空间;
4)发展具有高效性、原子经济性和绿色化等特点的合成策略,研究催化体系的反应历程,力争实现光反应的最优反应时间、转化率与选择性;调控“催化位点–底物”之间立体、电子效应匹配,实现光催化反应的立体选择性控制。
附图说明
图1为本发明多酸基有机无机配合物的实验和模拟的PXRD衍射谱;
图2为本发明多酸基有机无机配合物的合成路线;图中a为DPNDI分子;b为阴离子[P6W48Fe6O180]30−;c为多酸基有机无机配合物的结构示意图;
图3为本发明多酸基有机-无机配合物的SEM图像(a)和元素P(b)、W(c)、K(d)、Fe(e)、N(f) 的映射分析图;
图4为本发明多酸基有机无机配合物的UV-vis波谱图;
图5 为本发明多酸基有机无机配合物中元素C 1s(a),N 1s(b),W 4f(c)和Fe 2p(d)的XPS图谱;
图6为本发明多酸基有机无机配合物在0.1 M NaSO4溶液中的肖特基曲线图(a)和O2 •–捕获图谱(b);
图7为本发明多酸基有机无机配合物的循环利用图;
图8 为本发明多酸基有机无机配合物光催化甲苯氧化的机理。
具体实施方法
以下通过具体实施例对本发明作进一步说明,但本发明的保护范围并不局限于此。
实施例1:
多酸基有机无机配合物,其化学式为:K4(H2O)8H26(C26H16N4O4)8[P6W48Fe6O180]·7H2O。
上述多酸基有机无机配合物的制备方法,其将DPNDI、七水合硫酸亚铁和K12[α-H2P2W12O48]·24H2O在水热条件下进行,具体包括如下步骤:
1)制备反应原料DPNDI,具体参照文献(Inorg. Chem., 2009, 48(18): 8659−8661.)方法合成;
2)Dawson型多酸K12[α-H2P2W12O48]·24H2O参照文献 (Inorg. Synth. 27 (1990)104–111.) 方法制备;
3)将K12[α-H2P2W12O48]·24H2O (86.0 mg, 0.02 mmol)、DPNDI (13.6 mg, 0.03mmol) 和FeSO4·7H2O (29.2 mg, 0.10 mmol)与溶剂(溶剂由4 mL蒸馏水和2 mL乙腈混合组成)混合搅拌12 h以分散均匀,获得悬浊液,并用0.5 M盐酸将pH调整至3.0,再将其置于25 mL的聚四氟乙烯釜衬中,放入烘箱于120 ℃反应四天(96h),冷却至室温,析出橙色棒状晶体,晶体过滤、干燥即为目标材料多酸基有机无机配合物。
元素分析结果(%):C208H185Fe6K4N32O227P6W48: C 15.46, H 1.24, N 2.83, Fe2.01, K 0.13, W 54.36; found: C 15.36, H 1.15, N 2.76, Fe 2.06, K 0.17, W54.25. IR (cm–1): 3429 m, 1708 m, 1667 s, 1582 w, 1508 w, 1453 w, 1339 s,1247 m, 1184 w, 1071 m, 948 s, 913 s, 795 s, 762 s, 730 s, 560 w, 515 w。
X-射线单晶衍射测试的结果表明:多酸基有机无机配合物属于单斜晶系,P2(1)n空间群,a = 25.5233(8) Å,b = 40.6618(9) Å,c = 37.1161(9) Å,α = 90.00º,β =98.6870(10)º,γ = 90.00º。其包含一个[P6W48Fe6O180]30−阴离子,8个游离的DPNDI分子(图2中a),4个钾阳离子,8个配位水,26个质子和7个结晶水。价键计算和XPS表征的结果表明:金属钨和铁的价态分别是+6价和+3价。阴离子[P6W48Fe6O180]30−可以看成是一个1个铁
Figure 381405DEST_PATH_IMAGE001
嵌入的Dawson三聚Dawson型。这个三聚的Dawaon结构类似于从经典的Dawson结构{P2W18}中移去4个{WO6}基团三聚形成的(图2中b),其再与DPNDI通过静电作用形成多酸基有机无机配合物(图2中c)。三个{P2W14}分子通过P-O-W/Fe和W-O-W/Fe键连接在一起。该三聚结构的中心可看作是一个类立方烷结构{W6Fe6O18}。在该结构中Fe和W的位置是无序的,在每个位置的占有率分别是0.5。键长和键角分别在74.3(5)-172.7(6)º和3.5520(18)-3.6237(22) Å之间。阴离子[P6W48Fe6O180]30−与其中一个游离DPNDI的萘酰亚胺的活性中心的距离是3.371Å。而且,在[P6W48Fe6O180]30−和个别DPNDI分子之间还存在着氢键。阴离子···π相互作用和C-H···O氢键不仅在形成多酸基有机无机配合物中扮演着重要的角色,而且有利于化合物之间的相互作用促进电子转移。在过去的几十年里,一些铁嵌入的磷钨酸盐已经被大量报道,其中一些缺位的Dawson结构衍生物由于其独特的结构已经在某些领域取得了应用,但是关于铁取代的三聚型Dawson型结构的阴离子还尚未报道。
图1为本发明多酸基有机无机配合物的PXRD谱图。X-射线单晶衍射的模拟图谱与实验的图谱吻合较好,验证了收集的本发明多酸基有机无机配合物的纯净性。利用扫描电镜(SEM)对本发明多酸基有机无机配合物的单晶进行了形貌表征。从图3可以看出,该化合物为棒状晶体(图3);元素映射分析进一步验证了元素P、W、K、Fe、N的存在。本发明多酸基有机-无机配合物的UV-vis光谱在420 nm左右的宽峰,表明了其在光催化方面的潜在应用(见图4);450 ~ 520 nm之间的宽峰归属于端氧(W-Ot)或桥氧(W-Ob-W) O 2p到W 5d电子之间的电荷转移。根据Tauc,得出本发明多酸基有机-无机配合物的键隙约为2.79 eV。
XPS图谱表明了本发明配合物中C、N、W和Fe的存在(图5),该实验峰值由C 1s峰进行校准。在C 1s的光谱中,84.6 eV、285.0 eV、285.8 eV和288.1 eV的四个峰分别对应于DPNDI配体C-H/C-C、C=C、C-N和C=O键(图5中a)。本发明配合物的N 1s谱被划分为399.8 eV、400.7 eV和401.5 eV的三个峰,归属于DPNDI配体的C-N键(图5中b)。W 4f光谱在W6+环境中出现了35.6 eV和37.8 eV的两个峰(图5中c)。Fe 2p在711.8 eV和724.30 eV处出现两个峰,分别对应于Fe3+的2p 3/2和2p 1/2(图5中d)。
为了进一步探索其半导体性质和光催化氧化的可能性,我们在2500、3000和3500Hz的频率下进行了莫特-肖特基测试(图6中a),结果表明其是一种典型的n型半导体。测试结果表明本发明配合物最低未占据分子轨道(LUMO)的位置估计为- 0.57 V vs NHE,然后计算出最高占据分子轨道(HOMO)为2.22 V vs NHE。在可见光下,HOMO的电子被激发到LUMO,类似于VB位置的电子被激发到CB位置。理论上,由于CB的负电势大于标准氧化还原电势(E(O2 •-/O2) = - 0.28 eV),使O2还原为O2 •-是可行的。为检测O2 •-,在氙灯照射下,室温下,在10 mmol甲苯和40 mL DMPO的混合溶液中使用20 mg的本发明配合物进行电子自旋共振(ESR)测量(图6中b)。黑暗和光照下的ESR实验结果进一步证实了O2 •-的存在。在相同条件下,对本发明配合物进行了循环利用实验。可以看出,在五个循环后,选择性和转化率均没有明显的降低(图7)。
本发明进行许多控制实验探索苯甲醛的选择性光催化氧化(见表1)。事实证明:没有本发明多酸基有机无机配合物催化剂,O2或光催化剂并不导致任何转换(表1中的序号1、2、5)。单独的DPNDI在这个过程中也没有发现可观察到的活性(表1中的序号6)。这些结果表明,本发明多酸基有机无机配合物是一个有效的光催化氧化甲苯反应的催化剂。氧气、气体和光照射是不可缺少的。从表1的结果可以看出:随着反应中氧含量的增加,催化活性增加(表1中的序号3、4),进一步凸显了O2的重要性。此外,还进行了淬灭实验,以探索可能参与氧化反应的活性物质。加入三乙醇胺作为空穴牺牲剂时没有产生反应(表1中的序号7),说明在甲苯氧化中空穴是不可缺少的。引入(NH4)2Ce(NO3)6作为电子牺牲剂显著增加了甲苯的转化率(表1中的序号8),进一步证实了空穴在该反应中的重要性。
表1 目标化合物在不同条件下的光催化甲苯转化
Figure DEST_PATH_IMAGE002
a反应条件:催化剂 1 μmol,乙腈 0.5 mL,甲苯 5 μL,H2O 20 μL,10 W 白色LED灯,室温,24 h。b转化率和选择性通过GC-MS和GC确定。c无光源。d10 μL 三乙醇胺作为空穴捕获剂。e10 mg (NH4)2Ce(NO3)6作为电子牺牲剂。
此外,光催化剂的稳定性是一个至关重要的问题。在相同条件下,对本发明多酸基有机无机配合物进行了回收实验。由图7可以看出:经过五次循环后,没有明显的变化和选择性损失。因此,本发明多酸基有机无机配合物是一种稳定的可见光驱动光催化剂,可以在温和的条件下将甲苯氧化成苯甲醛。
根据实验结果,我们推测出了本发明配合物光催化甲苯转化为苯甲醛的反应机理。即在光照条件下,本发明配合物产生光生电子和空穴,空穴促进甲苯产生苄基自由基和H+,电子将O2还原为超氧自由基O2•–,其进一步将苄基自由基转化为苯甲醛,从而实现此反应的高效选择性(见图8)。
综上,本发明多酸基有机无机配合物是将具有良好催化功能的多酸基团,与具有lewis酸性质的过渡金属离子和功能性配体结合获得,其能够实现温和条件下的甲苯C-H键光催化活化,并且具有很高的选择性。其合成路线如下:Fe3+ + POMs + DPNDI → Fe-POMs-DPNDI,其中,Fe3+为过渡金属离子;POMs为Dawson型多酸阴离子,DPNDI为N,N-二(4-吡啶甲基))萘二酰亚胺。本发明多酸基有机无机配合物在光照条件下,产生光生电子和空穴,空穴促进苄基自由基的形成,电子将氧气还原为超氧自由基促进苯甲醛的形成,实现催化反应的高效选择性。催化过程均为非均相,可以通过离心干燥回收催化剂,实现循环利用而且催化效率并未明显降低,反应仍然保持很高的选择性。该多酸基有机无机配合物材料为我国精细化工在碳氢键活化方面的发展提供了科学基础。

Claims (1)

1.多酸基有机无机配合物作为光催化剂在甲苯选择性氧化成苯甲醛中的应用,其特征在于,该配合物的化学式为:K4(H2O)8H26(C26H16N4O4)8[P6W48Fe6O180]·7H2O;
所述多酸基有机无机配合物经下述步骤制备获得:
将多酸前驱体K12[α-H2P2W12O48]·24H2O、FeSO4·7H2O和有机配体DPNDI均匀分散于溶剂中,然后调节pH至2.9-3.1,于115-125 ℃反应90-100 h,冷却至室温,析出的橙色棒状晶体即为多酸基有机无机配合物;所述多酸前驱体K12[α-H2P2W12O48]·24H2O、FeSO4·7H2O和有机配体DPNDI的摩尔比为2:10-12:3。
CN202010563974.6A 2020-06-19 2020-06-19 多酸基有机无机配合物及其制备方法和作为光催化剂在甲苯选择性氧化成苯甲醛中的应用 Active CN111644205B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010563974.6A CN111644205B (zh) 2020-06-19 2020-06-19 多酸基有机无机配合物及其制备方法和作为光催化剂在甲苯选择性氧化成苯甲醛中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010563974.6A CN111644205B (zh) 2020-06-19 2020-06-19 多酸基有机无机配合物及其制备方法和作为光催化剂在甲苯选择性氧化成苯甲醛中的应用

Publications (2)

Publication Number Publication Date
CN111644205A CN111644205A (zh) 2020-09-11
CN111644205B true CN111644205B (zh) 2022-10-04

Family

ID=72344175

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010563974.6A Active CN111644205B (zh) 2020-06-19 2020-06-19 多酸基有机无机配合物及其制备方法和作为光催化剂在甲苯选择性氧化成苯甲醛中的应用

Country Status (1)

Country Link
CN (1) CN111644205B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113198302A (zh) * 2021-04-15 2021-08-03 成都安捷芮环保科技有限公司 治理多种VOCs恶臭废气的SRR自由基簇药剂
CN114292414B (zh) * 2022-01-06 2023-03-24 河南大学 一类缺位型多酸基金属有机框架分子材料及其在光催化选择性还原硝基苯的应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101209421A (zh) * 2006-12-27 2008-07-02 中国科学院福建物质结构研究所 具有可见光光催化活性的杂多酸催化剂及其制备方法和用途
CN103111335A (zh) * 2013-01-11 2013-05-22 长春理工大学 基于Dawson型多钨酸盐的离子晶体型可见光催化剂及其制备方法
CN109126874A (zh) * 2018-09-03 2019-01-04 郑州轻工业学院 双功能性混合型多酸基复合材料及其制备方法和应用
WO2019124154A1 (ja) * 2017-12-22 2019-06-27 Dic株式会社 重合性液晶組成物、光学異方体及びその製造方法
CN110078601A (zh) * 2019-05-31 2019-08-02 上海应用技术大学 多金属氧酸盐高效催化对二甲苯制备对甲基苯甲醛的方法
CN110117219A (zh) * 2019-05-31 2019-08-13 上海应用技术大学 一种甲苯催化制苯甲醛的方法
CN110227556A (zh) * 2019-07-08 2019-09-13 哈尔滨理工大学 一种多酸基铁金属有机杂化材料制备及光催化应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7645907B2 (en) * 2007-03-23 2010-01-12 Exxonmobil Chemical Patents Inc. Transition metal substituted polyoxometalates and process for their preparation
KR100864313B1 (ko) * 2007-05-21 2008-10-20 한국화학연구원 불포화 금속자리를 갖는 다공성 유-무기 혼성체 또는메조세공체의 표면 기능화 및 그의 응용

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101209421A (zh) * 2006-12-27 2008-07-02 中国科学院福建物质结构研究所 具有可见光光催化活性的杂多酸催化剂及其制备方法和用途
CN103111335A (zh) * 2013-01-11 2013-05-22 长春理工大学 基于Dawson型多钨酸盐的离子晶体型可见光催化剂及其制备方法
WO2019124154A1 (ja) * 2017-12-22 2019-06-27 Dic株式会社 重合性液晶組成物、光学異方体及びその製造方法
CN109126874A (zh) * 2018-09-03 2019-01-04 郑州轻工业学院 双功能性混合型多酸基复合材料及其制备方法和应用
CN110078601A (zh) * 2019-05-31 2019-08-02 上海应用技术大学 多金属氧酸盐高效催化对二甲苯制备对甲基苯甲醛的方法
CN110117219A (zh) * 2019-05-31 2019-08-13 上海应用技术大学 一种甲苯催化制苯甲醛的方法
CN110227556A (zh) * 2019-07-08 2019-09-13 哈尔滨理工大学 一种多酸基铁金属有机杂化材料制备及光催化应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Photoactive Metal-Organic Framework for the Reduction of Aryl Halides by the Synergistic Effect of Consecutive Photoinduced Electron-Transfer and Hydrogen-Atom-Transfer Process;Jiachen He, et.al;《ACS Applied Materials & Interfaces》;20191220;第12卷;第1节、补充材料实验部分、图2 *
Understanding and mapping the assembly of a family of trimeric polyoxometalates:transition metal mediated Wells-Dawson (M18)-trimers;Thomas Boyd et.al;《Dalton Transactions》;20100609;第39卷;实验部分 *

Also Published As

Publication number Publication date
CN111644205A (zh) 2020-09-11

Similar Documents

Publication Publication Date Title
Lu et al. Recent advances in Metal-Organic Frameworks-based materials for photocatalytic selective oxidation
Chen et al. Recent advances in titanium metal–organic frameworks and their derived materials: Features, fabrication, and photocatalytic applications
Zou et al. Photocatalytic selective oxidation of benzyl alcohol over ZnTi-LDH: The effect of surface OH groups
Huang et al. Toward visible-light-assisted photocatalytic nitrogen fixation: A titanium metal organic framework with functionalized ligands
Liu et al. Photosensitizing single-site metal− organic framework enabling visible-light-driven CO2 reduction for syngas production
Yang et al. MIL-53 (Fe)-graphene nanocomposites: efficient visible-light photocatalysts for the selective oxidation of alcohols
Du et al. Efficient photocatalytic H2 evolution catalyzed by an unprecedented robust molecular semiconductor {Fe11} nanocluster without cocatalysts at neutral conditions
Ziarati et al. Black hollow TiO2 nanocubes: Advanced nanoarchitectures for efficient visible light photocatalytic applications
Chen et al. Surface modification of g-C3N4 by hydrazine: Simple way for noble-metal free hydrogen evolution catalysts
Jung et al. Interactions between ZnO nanoparticles and amorphous g-C3N4 nanosheets in thermal formation of g-C3N4/ZnO composite materials: The annealing temperature effect
CN111644205B (zh) 多酸基有机无机配合物及其制备方法和作为光催化剂在甲苯选择性氧化成苯甲醛中的应用
CN111848974B (zh) 多酸基金属有机框架材料及其合成方法和在光催化氧化苄胺偶联中的应用
Bai et al. Flower-like Bi2O2CO3-mediated selective oxidative coupling processes of amines under visible light irradiation
Sun et al. Assembly of the first polyoxometalate-based hybrid with [ring+ helix] channels and photocatalytic activity
Jia et al. Photocatalytic coupled redox cycle for two organic transformations over Pd/carbon nitride composites
Shi et al. Bismuth oxyhalide quantum dots modified sodium titanate necklaces with exceptional population of oxygen vacancies and photocatalytic activity
Li et al. Two three-dimensional polyanionic clusters [M (P 4 Mo 6) 2](M= Co, Zn) exhibiting excellent photocatalytic CO 2 reduction performance
Abbasi et al. Synthesis of nanostructured NiO/Co3O4 through thermal decomposition of a bimetallic (Ni/Co) metal-organic framework as catalyst for cyclooctene epoxidation
CN111875546B (zh) 一种海胆状钴基光催化剂在转化co2合成苯并咪唑酮类化合物中的应用
Zhen et al. Atomic‐and Molecular‐Level Functionalizations of Polymeric Carbon Nitride for Solar Fuel Production
Ma et al. Visible-light-driven CO2 reduction with g-C3N4-based composite: Enhancing the activity of manganese catalysts
Tabe et al. Utilization of core-shell nanoparticles to evaluate subsurface contribution to water oxidation catalysis of [CoII (H2O) 2] 1.5 [CoIII (CN) 6] nanoparticles
Qi et al. Alkali metal modified carbon nitride enhance photocatalytic performance for highly selective oxidation of benzyl C (sp3)-H bonds
Gao et al. A highly efficient iron phthalocyanine-intercalated CuFe-LDH catalyst for the selective oxidation of 5-hydroxymethylfurfural to 5-formyl-2-furanic acid
Adhikary et al. Heterogenization of three homogeneous catalysts: a comparative study as epoxidation catalyst

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant