CN111628772A - High-speed and high-precision time-domain analog-to-digital converter - Google Patents

High-speed and high-precision time-domain analog-to-digital converter Download PDF

Info

Publication number
CN111628772A
CN111628772A CN202010402526.8A CN202010402526A CN111628772A CN 111628772 A CN111628772 A CN 111628772A CN 202010402526 A CN202010402526 A CN 202010402526A CN 111628772 A CN111628772 A CN 111628772A
Authority
CN
China
Prior art keywords
module
interpolation
vtc
time
domain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010402526.8A
Other languages
Chinese (zh)
Other versions
CN111628772B (en
Inventor
刘马良
张晨曦
胡祎喆
朱樟明
杨银堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xidian University
Original Assignee
Xidian University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xidian University filed Critical Xidian University
Priority to CN202010402526.8A priority Critical patent/CN111628772B/en
Publication of CN111628772A publication Critical patent/CN111628772A/en
Application granted granted Critical
Publication of CN111628772B publication Critical patent/CN111628772B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/124Sampling or signal conditioning arrangements specially adapted for A/D converters
    • H03M1/1245Details of sampling arrangements or methods
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/002Provisions or arrangements for saving power, e.g. by allowing a sleep mode, using lower supply voltage for downstream stages, using multiple clock domains or by selectively turning on stages when needed
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/34Analogue value compared with reference values
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/50Analogue/digital converters with intermediate conversion to time interval
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

本发明公开了一种高速高精度时间域模数转换器,包括:Flash模块(1),用于产生参考电压;VTC模块(2),连接所述Flash模块(1),用于对输入电压信号VIN进行采样并根据所述参考电压对所述输入电压信号VIN进行处理,得到第一时间信号;内插模块(3),连接所述VTC模块(2),用于细分所述第一时间信号,得到第二时间信号;时间域比较器模块(4),连接所述内插模块(3),用于对所述第二时间信号进行比较并输出温度计码;数字译码模块(5),连接所述时间域比较器模块(4),用于将所述温度计码转换成二进制码并输出。本发明提供的时间域模数转换器提高了ADC的速度降低了功耗,并且使得速度和功耗可控。

Figure 202010402526

The invention discloses a high-speed and high-precision time-domain analog-to-digital converter, comprising: a Flash module (1) for generating a reference voltage; a VTC module (2) for connecting to the Flash module (1) for adjusting an input voltage The signal VIN is sampled and the input voltage signal VIN is processed according to the reference voltage to obtain a first time signal; an interpolation module (3), connected to the VTC module (2), is used to subdivide the first time signal a time signal to obtain a second time signal; a time domain comparator module (4), connected to the interpolation module (3), for comparing the second time signal and outputting a thermometer code; a digital decoding module (5) ), connected to the time domain comparator module (4), for converting the thermometer code into binary code and outputting it. The time domain analog-to-digital converter provided by the invention improves the speed of the ADC, reduces the power consumption, and makes the speed and power consumption controllable.

Figure 202010402526

Description

高速高精度时间域模数转换器High-speed and high-precision time-domain analog-to-digital converter

技术领域technical field

本发明属于集成电路技术领域,具体涉及一种高速高精度时间域模数转换器。The invention belongs to the technical field of integrated circuits, and in particular relates to a high-speed and high-precision time-domain analog-to-digital converter.

背景技术Background technique

模数转换器(Analog to DigitalConverter,ADC),是把经过与标准量(或参考量)比较处理后的模拟量转换成以二进制数值表示的离散信号的转换器。随着集成电路技术的发展,对ADC的采样率和转换精度提出了更高的要求。在实际中,时间域ADC就是一种能够实现超高速ADC的新型ADC架构。An analog-to-digital converter (Analog to Digital Converter, ADC) is a converter that converts an analog quantity processed by comparison with a standard quantity (or reference quantity) into a discrete signal represented by a binary value. With the development of integrated circuit technology, higher requirements are put forward for the sampling rate and conversion accuracy of ADC. In practice, the time-domain ADC is a new ADC architecture that enables ultra-high-speed ADCs.

传统的时间域ADC主要采用环形振荡器,将输入电压直接量化为一个时间信号。Traditional time-domain ADCs mainly use ring oscillators to directly quantize the input voltage into a time signal.

然而,随着采样速率的提高,环形振荡器的振荡频率直接影响了ADC的精度和速度;且由于采样周期的限制,最大输入电压信号所量化的时间必须小于ADC的量化周期,这样就对输入信号幅度和ADC的速度造成了限制。However, with the increase of the sampling rate, the oscillation frequency of the ring oscillator directly affects the accuracy and speed of the ADC; and due to the limitation of the sampling period, the quantization time of the maximum input voltage signal must be less than the quantization period of the ADC. The signal amplitude and the speed of the ADC create limitations.

发明内容SUMMARY OF THE INVENTION

为了解决现有技术中存在的上述问题,本发明提供了一种高速高精度时间域模数转换器。本发明要解决的技术问题通过以下技术方案实现:In order to solve the above problems existing in the prior art, the present invention provides a high-speed and high-precision time-domain analog-to-digital converter. The technical problem to be solved by the present invention is realized by the following technical solutions:

一种高速高精度时间域模数转换器,包括:A high-speed, high-precision time-domain analog-to-digital converter, comprising:

Flash模块,用于产生参考电压;Flash module, used to generate reference voltage;

VTC模块,连接所述Flash模块,用于对输入电压信号VIN进行采样并根据所述参考电压对所述输入电压信号VIN进行处理,得到第一时间信号;The VTC module is connected to the Flash module for sampling the input voltage signal VIN and processing the input voltage signal VIN according to the reference voltage to obtain a first time signal;

内插模块,连接所述VTC模块,用于细分所述第一时间信号,得到第二时间信号;an interpolation module, connected to the VTC module, for subdividing the first time signal to obtain a second time signal;

时间域比较器模块,连接所述内插模块,用于对所述第二时间信号进行比较并输出温度计码;a time domain comparator module, connected to the interpolation module, for comparing the second time signal and outputting a thermometer code;

数字译码模块,连接所述时间域比较器模块,用于将所述温度计码转换成二进制码并输出。The digital decoding module is connected to the time domain comparator module, and is used for converting the thermometer code into binary code and outputting it.

在本发明的一个实施例中,所述Flash模块包括两个Flash子模块,每个所述Flash子模块包括依次串联的电阻R0~Rn,所述电阻R0的一端连接参考电压HVREF,所述电阻Rn的一端连接参考电压LVREF,所述电阻Ri与Ri+1的公共端作为输出端连接所述VTC模块,其中,所述电阻R0~Rn的阻值满足R0=Rn=Rj/2,0≤i<n,0<j<n,i、j、n均为整数。In an embodiment of the present invention, the Flash module includes two Flash sub-modules, each of the Flash sub-modules includes resistors R0 to Rn connected in series in sequence, one end of the resistor R0 is connected to the reference voltage HVREF, and the resistor R0 is connected to the reference voltage HVREF. One end of Rn is connected to the reference voltage LVREF, and the common end of the resistors Ri and Ri+1 is used as an output end to connect to the VTC module, wherein the resistances of the resistors R0 to Rn satisfy R0=Rn=Rj/2, 0≤ i<n, 0<j<n, i, j, and n are all integers.

在本发明的一个实施例中,所述VTC模块包括两个与所述Flash子模块对应连接的VTC子模块,每个所述VTC子模块包括n个VTC单元,其中,每个所述VTC单元的的输入端对应连接所述电阻Ri与Ri+1的公共端,每个所述VTC单元的的输出端连接所述内插模块。In an embodiment of the present invention, the VTC module includes two VTC sub-modules correspondingly connected to the Flash sub-module, each of the VTC sub-modules includes n VTC units, wherein each of the VTC units The input end of the VTC unit is correspondingly connected to the common end of the resistors Ri and Ri+1, and the output end of each VTC unit is connected to the interpolation module.

在本发明的一个实施例中,所述VTC单元包括电容C、第一开关Φ1、第二开关Φ2、第三开关Φ3、第四开关Φ4、电流源IX以及第一反相器INV1,其中,In an embodiment of the present invention, the VTC unit includes a capacitor C, a first switch Φ1, a second switch Φ2, a third switch Φ3, a fourth switch Φ4, a current source IX and a first inverter INV1, wherein,

所述电容C的一端通过所述第一开关Φ1连接电压输入端VIN,所述电容C的另一端通过所述第二开关Φ2连接参考电压输入端VREF;One end of the capacitor C is connected to the voltage input terminal VIN through the first switch Φ1, and the other end of the capacitor C is connected to the reference voltage input terminal VREF through the second switch Φ2;

所述第三开关Φ3连接电压端VCOM以及所述电容C和所述第一开关Φ1的公共端;The third switch Φ3 is connected to the voltage terminal VCOM and the common terminal of the capacitor C and the first switch Φ1;

所述电流源IX通过所述第四开关Φ4连接所述电容C和所述第二开关Φ2的公共端;The current source IX is connected to the common terminal of the capacitor C and the second switch Φ2 through the fourth switch Φ4;

所述第一反相器INV1的输入端连接所述电容C、所述第二开关Φ2以及所述第四开关Φ4的公共端,所述反相器INV的输出端作为所述VTC单元的输出端连接所述内插模块。The input terminal of the first inverter INV1 is connected to the common terminal of the capacitor C, the second switch Φ2 and the fourth switch Φ4, and the output terminal of the inverter INV is used as the output of the VTC unit The terminal is connected to the plug-in module.

在本发明的一个实施例中,所述内插模块包括两个与所述VTC子模块对应连接的内插子模块,每个所述内插子模块包括n-1个内插单元,其中,每个所述内插单元的输入端对应连接相邻两个所述VTC单元的输出端,所述内插单元的输出端连接所述时间域比较器模块。In an embodiment of the present invention, the interpolation module includes two interpolation sub-modules correspondingly connected to the VTC sub-module, and each of the interpolation sub-modules includes n-1 interpolation units, wherein, The input end of each of the interpolation units is correspondingly connected to the output ends of two adjacent VTC units, and the output end of the interpolation unit is connected to the time domain comparator module.

在本发明的一个实施例中,所述内插单元包括m个级联的内插子单元,第一级内插子单元的输入端连接对应连接相邻两个所述VTC单元的输出端,第m级内插子单元的输出端连接所述时间域比较器模块;其中,第m级内插子单元包括2m+1个内插电路,m≥1。In an embodiment of the present invention, the interpolation unit includes m cascaded interpolation subunits, and the input end of the first level interpolation subunit is connected to the output ends of the two adjacent VTC units correspondingly, The output end of the mth level interpolation subunit is connected to the time domain comparator module; wherein, the mth level interpolation subunit includes 2 m +1 interpolation circuits, and m≧1.

在本发明的一个实施例中,所述内插电路包括第二反相器INV2和第三反相器INV3,其中,所述第二反相器INV2的输出端和所述第三反相器INV3的输出端相连。In an embodiment of the present invention, the interpolation circuit includes a second inverter INV2 and a third inverter INV3, wherein the output end of the second inverter INV2 and the third inverter The output of INV3 is connected.

在本发明的一个实施例中,所述时间域比较器模块包括若干个时间域比较器,每个所述时间域比较器的输入端对应连接所述内插电路的输出端。In an embodiment of the present invention, the time-domain comparator module includes several time-domain comparators, and an input terminal of each time-domain comparator is correspondingly connected to an output terminal of the interpolation circuit.

在本发明的一个实施例中,所述时间域比较器包括D触发器DFF,其中,所述D触发器的输入端和时钟信号输出端分别对应连接所述内插电路的输出端。In an embodiment of the present invention, the time domain comparator includes a D flip-flop DFF, wherein the input terminal of the D flip-flop and the clock signal output terminal are respectively connected to the output terminal of the interpolation circuit.

本发明的有益效果:Beneficial effects of the present invention:

1、本发明提供的高速高精度时间域模数转换器将flash结构中的传统的比较器利用新型的VTC结构替代,提高了速度降低了功耗,并且使得速度和功耗可控;1. The high-speed and high-precision time-domain analog-to-digital converter provided by the present invention replaces the traditional comparator in the flash structure with a new type of VTC structure, improves the speed and reduces the power consumption, and makes the speed and power consumption controllable;

2、本发明提供的高速高精度时间域模数转换器采用内插模块进一步提高了ADC的精度。2. The high-speed and high-precision time-domain analog-to-digital converter provided by the present invention further improves the accuracy of the ADC by using an interpolation module.

以下将结合附图及实施例对本发明做进一步详细说明。The present invention will be further described in detail below with reference to the accompanying drawings and embodiments.

附图说明Description of drawings

图1是本发明实施例提供的一种高速高精度时间域ADC的结构示意图;1 is a schematic structural diagram of a high-speed and high-precision time-domain ADC provided by an embodiment of the present invention;

图2是本发明实施例提供的时间域ADC的电路结构图;2 is a circuit structure diagram of a time domain ADC provided by an embodiment of the present invention;

图3是本发明实施例提供的单个VTC单元的结构示意图;3 is a schematic structural diagram of a single VTC unit provided by an embodiment of the present invention;

图4是本发明实施例提供的一种VTC单元的实际应用电路结构图;4 is a schematic diagram of a practical application circuit of a VTC unit provided by an embodiment of the present invention;

图5是本发明实施例提供的具有两级内插子单元的内插单元电路图;5 is a circuit diagram of an interpolation unit with two-level interpolation subunits provided by an embodiment of the present invention;

图6是本发明实施例提供的时间域比较器电路图;6 is a circuit diagram of a time domain comparator provided by an embodiment of the present invention;

图7是本发明实施例提供的VX节点仿真波形图。FIG. 7 is a VX node simulation waveform diagram provided by an embodiment of the present invention.

具体实施方式Detailed ways

下面结合具体实施例对本发明做进一步详细的描述,但本发明的实施方式不限于此。The present invention will be described in further detail below with reference to specific embodiments, but the embodiments of the present invention are not limited thereto.

实施例一Example 1

请参见图1,图1是本发明实施例提供的一种高速高精度时间域ADC的结构示意图,包括:Please refer to FIG. 1. FIG. 1 is a schematic structural diagram of a high-speed and high-precision time-domain ADC provided by an embodiment of the present invention, including:

Flash模块1,用于产生参考电压;Flash module 1, used to generate reference voltage;

VTC模块2,连接所述Flash模块1,用于对输入电压信号进行采样并根据所述参考电压对所述输入电压进行处理,得到第一时间信号;The VTC module 2 is connected to the Flash module 1 for sampling the input voltage signal and processing the input voltage according to the reference voltage to obtain a first time signal;

内插模块3,连接所述VTC模块2,用于细分所述第一时间信号,得到第二时间信号;an interpolation module 3, connected to the VTC module 2, for subdividing the first time signal to obtain a second time signal;

时间域比较器模块4,连接所述内插模块3,用于对所述第二时间信号进行比较并输出温度计码;a time domain comparator module 4, connected to the interpolation module 3, for comparing the second time signal and outputting a thermometer code;

数字译码模块5,连接所述时间域比较器模块4,用于将所述温度计码转换成二进制码并输出。The digital decoding module 5 is connected to the time domain comparator module 4, and is used for converting the thermometer code into binary code and outputting it.

进一步地,所述Flash模块1包括两个Flash子模块,每个所述Flash子模块包括依次串联的电阻R0~Rn,所述电阻R0的一端连接参考电压HVREF,所述电阻Rn的一端连接参考电压LVREF,所述电阻Ri与Ri+1的公共端作为输出端连接所述VTC模块2,其中,所述电阻R0~Rn的阻值满足R0=Rn=Rj/2,0≤i<n,0<j<n,i、j、n均为整数。Further, the Flash module 1 includes two Flash sub-modules, each of the Flash sub-modules includes resistors R0 to Rn connected in series in sequence, one end of the resistor R0 is connected to the reference voltage HVREF, and one end of the resistor Rn is connected to the reference voltage voltage LVREF, the common terminal of the resistors Ri and Ri+1 is used as an output terminal to connect the VTC module 2, wherein the resistances of the resistors R0 to Rn satisfy R0=Rn=Rj/2, 0≤i<n, 0<j<n, i, j, and n are all integers.

在本实施例中,选取n=16,则由两个Flash子模块产生16对差分参考电压VREFN0~VREFN15和VREFP0~VREFP15。具体地,请参见图2,图2是本发明实施例提供的时间域ADC的电路结构图。In this embodiment, if n=16, 16 pairs of differential reference voltages VREFN0-VREFN15 and VREFP0-VREFP15 are generated by two Flash sub-modules. Specifically, please refer to FIG. 2 , which is a circuit structure diagram of a time domain ADC provided by an embodiment of the present invention.

在本实施例中,所述VTC(Voltage to Time Converter,电压时间转换)模块2包括两个与所述Flash子模块对应连接的VTC子模块,每个所述VTC子模块包括n个VTC单元,其中,每个所述VTC单元的的输入端对应连接所述电阻Ri与Ri+1的公共端,每个所述VTC单元的的输出端连接所述内插模块3。In this embodiment, the VTC (Voltage to Time Converter, voltage-to-time conversion) module 2 includes two VTC sub-modules correspondingly connected to the Flash sub-module, and each of the VTC sub-modules includes n VTC units, Wherein, the input end of each of the VTC units is correspondingly connected to the common end of the resistors Ri and Ri+1, and the output end of each of the VTC units is connected to the interpolation module 3 .

在本实施例中,两个Flash子模块产生16对参考电压,相应的,两个VTC子模块均设置16个VTC单元,其分别与参考电压VREFN0~VREFN15以及VREFP0~VREFP15对应连接。In this embodiment, the two Flash sub-modules generate 16 pairs of reference voltages. Correspondingly, the two VTC sub-modules are provided with 16 VTC units, which are respectively connected to the reference voltages VREFN0-VREFN15 and VREFP0-VREFP15.

进一步地,请参见图3,图3是本发明实施例提供的单个VTC单元的结构示意图,包括:所述VTC单元包括电容C、第一开关Φ1、第二开关Φ2、第三开关Φ3、第四开关Φ4、电流源IX以及第一反相器INV1,其中,Further, please refer to FIG. 3, which is a schematic structural diagram of a single VTC unit provided by an embodiment of the present invention, including: the VTC unit includes a capacitor C, a first switch Φ1, a second switch Φ2, a third switch Φ3, a Four switches Φ4, current source IX and first inverter INV1, wherein,

所述电容C的一端通过所述第一开关Φ1连接电压输入端VIN,所述电容C的另一端通过所述第二开关Φ2连接参考电压输入端VREF;One end of the capacitor C is connected to the voltage input terminal VIN through the first switch Φ1, and the other end of the capacitor C is connected to the reference voltage input terminal VREF through the second switch Φ2;

所述第三开关Φ3连接电压端VCOM以及所述电容C和所述第一开关Φ1的公共端;The third switch Φ3 is connected to the voltage terminal VCOM and the common terminal of the capacitor C and the first switch Φ1;

所述电流源IX通过所述第四开关Φ4连接所述电容C和所述第二开关Φ2的公共端;The current source IX is connected to the common terminal of the capacitor C and the second switch Φ2 through the fourth switch Φ4;

所述第一反相器INV1的输入端连接所述电容C、所述第二开关Φ2以及所述第四开关Φ4的公共端,所述反相器INV的输出端作为所述VTC单元的输出端连接所述内插模块3。The input terminal of the first inverter INV1 is connected to the common terminal of the capacitor C, the second switch Φ2 and the fourth switch Φ4, and the output terminal of the inverter INV is used as the output of the VTC unit The terminal is connected to the plug-in module 3 .

具体地,两个VTC子模块包括16个VTC单元,每个VTC单元包括1个惨开电压输入端VREF,16对参考电压输入端VREF对应连接16对参考电压VREFN0~VREFN15和VREFP0~VREFP15,输入电压信号VIN和VIP分别经过两个VTC子模块后输出16对时间信号,也即第一时间信号,其中一对可以表示为to0~to15。Specifically, the two VTC sub-modules include 16 VTC units, each VTC unit includes one open voltage input terminal VREF, and 16 pairs of reference voltage input terminals VREF are correspondingly connected to 16 pairs of reference voltages VREFN0 to VREFN15 and VREFP0 to VREFP15. The voltage signals VIN and VIP respectively pass through the two VTC sub-modules and output 16 pairs of time signals, that is, the first time signals, one of which can be represented as to0 to to15.

在本实施例中,VTC单元的电路工作原理如下:In this embodiment, the circuit working principle of the VTC unit is as follows:

首先Φ1和Φ2导通,输入信号VIN(被采样信号)和flash电阻阵列产生的VREF参考电压联通电容两侧,此时电容左右两端的电压分别为VIN和VREF;接着Φ1和Φ2断开,Φ3和Φ4导通,电容左侧电压快速变为VCOM,由于电容上的电荷不能突变,所以VX节点的电压也会快速改变VIN-VCOM,变化为VREF-(VIN-VCOM),此时VX节点的电压变化为VCOM+(VREF-VIN)。在电流源IX的作用下,VX节点电压从VCOM+(VREF-VIN)均匀下降产生斜坡电压,当电压下降越过反相器INV的反转阈值电压时,VTC就会输出一个向上的电压信号。值得一提的是,这里电流源IX可以控制斜坡电压信号的斜率,VCOM可以控制斜坡信号的下降起点,VCOM和IX协调可控制斜坡信号是否越过反相器阈值电压。相较于传统的VTC结构,此结构即简单又增加了可控性,可和flash结构结合,可同时起到采样电路,比较器,和VTC的作用,对提高ADC速度,降低ADC功耗起到十分积极作用。First, Φ1 and Φ2 are turned on, the input signal VIN (sampled signal) and the VREF reference voltage generated by the flash resistor array are connected to both sides of the capacitor. At this time, the voltages at the left and right ends of the capacitor are VIN and VREF respectively; then Φ1 and Φ2 are disconnected, and Φ3 And Φ4 is turned on, and the voltage on the left side of the capacitor quickly becomes VCOM. Since the charge on the capacitor cannot be abruptly changed, the voltage of the VX node will also quickly change from VIN-VCOM to VREF-(VIN-VCOM). At this time, the voltage of the VX node The voltage change is VCOM+(VREF-VIN). Under the action of the current source IX, the VX node voltage drops uniformly from VCOM+ (VREF-VIN) to generate a ramp voltage. When the voltage drops across the inversion threshold voltage of the inverter INV, VTC will output an upward voltage signal. It is worth mentioning that the current source IX can control the slope of the ramp voltage signal, VCOM can control the falling starting point of the ramp signal, and the coordination between VCOM and IX can control whether the ramp signal crosses the inverter threshold voltage. Compared with the traditional VTC structure, this structure is simple and increases the controllability. It can be combined with the flash structure to function as a sampling circuit, a comparator, and a VTC at the same time, which can improve the speed of the ADC and reduce the power consumption of the ADC. to a very positive effect.

进一步地,请参见图4,图4是本发明实施例提供的一种VTC单元的实际应用电路结构图,其中,第一开关Φ1、第二开关Φ2、第三开关Φ3和第四开关Φ4的导通与关断均由晶体管实现,电流源IX由Cascode(共源共栅结构)电流源实现。本实施例提供的VTC单元易于电路实现,方便用户选择。Further, please refer to FIG. 4, FIG. 4 is a circuit structure diagram of a practical application of a VTC unit provided by an embodiment of the present invention, wherein the first switch Φ1, the second switch Φ2, the third switch Φ3 and the fourth switch Φ4 Both turn-on and turn-off are realized by transistors, and the current source IX is realized by a Cascode (cascode structure) current source. The VTC unit provided in this embodiment is easy to implement in a circuit and is convenient for users to choose.

本实施例提供的高速高精度时间域ADC利用flash ADC技术速度快的优点,将flash结构中的传统的比较器利用新型的VTC结构替代,提高了速度降低了功耗,并且使得速度和功耗可控。本发明通过将输入信号电平与flash电阻阵列的输出参考电压进行做差,再将误差抬高输入共模电压值,打开电流源进行放电产生起点不同的斜坡信号。斜坡信号的斜率由电流源控制,改变电流大小可以改变有效斜坡电压的个数。这里将反相器变为一种超高速比较器,斜坡信号不经过反相器翻转电平的信号不会造成后续电路的变化,这种方式不仅大大提高了电路的速度而且还大幅度减小了电路的功耗。The high-speed and high-precision time-domain ADC provided by this embodiment takes advantage of the fast speed of the flash ADC technology, and replaces the traditional comparator in the flash structure with a new VTC structure, which improves the speed and reduces the power consumption, and makes the speed and power consumption. Controllable. The invention makes the difference between the input signal level and the output reference voltage of the flash resistor array, raises the error to the input common mode voltage value, and opens the current source for discharging to generate ramp signals with different starting points. The slope of the ramp signal is controlled by the current source, and changing the current size can change the number of valid ramp voltages. Here, the inverter is turned into an ultra-high-speed comparator. The signal whose ramp signal does not go through the inverter to flip the level will not cause changes in the subsequent circuit. This method not only greatly improves the speed of the circuit, but also greatly reduces the power consumption of the circuit.

此外,VTC模块利用电荷泵技术,通过控制开关的导通和关断,操作电容上的电压,实现输入电压、参考电压和共模电压的数学运算,完成输入电压和电阻阵列输出参考电压的比较。不同输入电压会产生充电起始点不同的一簇时间信号,进而通过反相器产生不同脉宽的输出信号,完成电压信号到时间信号的转换。此外通过控制电流源的放电电流大小还可以控制输出端产生的斜坡信号的斜率,进而控制ADC的功耗和采样率。In addition, the VTC module utilizes the charge pump technology to operate the voltage on the capacitor by controlling the on and off of the switch to realize the mathematical operation of the input voltage, reference voltage and common-mode voltage, and complete the comparison between the input voltage and the output reference voltage of the resistor array. . Different input voltages will generate a cluster of time signals with different charging starting points, and then output signals with different pulse widths will be generated through the inverter to complete the conversion from voltage signals to time signals. In addition, by controlling the discharge current of the current source, the slope of the ramp signal generated at the output can be controlled, thereby controlling the power consumption and sampling rate of the ADC.

进一步地,所述内插模块3包括两个与所述VTC子模块对应连接的内插子模块,每个所述内插子模块包括n-1个内插单元,其中,每个所述内插单元的输入端对应连接相邻两个所述VTC单元的输出端,所述内插单元的输出端连接所述时间域比较器模块4。Further, the interpolation module 3 includes two interpolation sub-modules correspondingly connected with the VTC sub-modules, each of the interpolation sub-modules includes n-1 interpolation units, wherein each of the interpolation sub-modules The input end of the interpolation unit is correspondingly connected to the output ends of two adjacent VTC units, and the output end of the interpolation unit is connected to the time domain comparator module 4 .

具体地,本实施例中每个内插子模块包括15个内插单元。Specifically, in this embodiment, each interpolation sub-module includes 15 interpolation units.

进一步地,所述内插单元包括m个级联的内插子单元,第一级内插子单元的输入端连接对应连接相邻两个所述VTC单元的输出端,第m级内插子单元的输出端连接所述时间域比较器模块4;其中,第m级内插子单元包括2m+1个内插电路,m≥1。Further, the interpolation unit includes m cascaded interpolation subunits, the input end of the first-level interpolation subunit is connected to the output ends of the adjacent two VTC units correspondingly, and the mth-level interpolation subunit is connected. The output end of the unit is connected to the time domain comparator module 4; wherein, the m-th level interpolation subunit includes 2 m +1 interpolation circuits, where m≧1.

具体地,内插子单元的电路原理如下:Specifically, the circuit principle of the interpolation subunit is as follows:

首先两输入信号经过一次内插得到在两输入信号中间的内插信号,在通过输入信号经过反向器的信号与第一次内插得到的中间信号再进行第二次内插,至此得到5个等间隔的输出信号,再经过第三次、第四次……可以得到9、17……个等间隔输出信号。First, the two input signals are interpolated once to obtain the interpolated signal in the middle of the two input signals, and then the second interpolation is performed between the signal passing through the input signal through the inverter and the intermediate signal obtained by the first interpolation, and thus 5 9, 17... output signals at equal intervals can be obtained after the third and fourth times....

在本实施例中,采用2级内插子单元的级联方式,则两输入信号经过两次内插得到5个等间隔输出信号。请参见图5,图5是本发明实施例提供的具有两级内插子单元的内插单元电路图,其中,V1~V5表示经过内插后输出的5个等间隔信号,则VTC模块的16对第一时间信号经过内插模块的细量化后,输出15组共61对差分信号,也即第二时间信号。In this embodiment, a cascaded manner of 2-level interpolation subunits is adopted, so that two input signals are interpolated twice to obtain 5 equally spaced output signals. Please refer to FIG. 5. FIG. 5 is a circuit diagram of an interpolation unit with two-stage interpolation subunits provided by an embodiment of the present invention, wherein V1 to V5 represent five equally spaced signals output after interpolation, then 16 of the VTC module After the first time signal is refined by the interpolation module, a total of 61 pairs of differential signals in 15 groups are output, that is, the second time signal.

进一步地,所述内插电路包括第二反相器INV2和第三反相器INV3,其中,所述第二反相器INV2的输出端和所述第三反相器INV3的输出端相连。Further, the interpolation circuit includes a second inverter INV2 and a third inverter INV3, wherein the output end of the second inverter INV2 is connected to the output end of the third inverter INV3.

本实施例将VTC量化出的较宽的时间信号通过内插电路进行细分,以此来提高整体ADC的精度。In this embodiment, the wider time signal quantized by the VTC is subdivided by an interpolation circuit, so as to improve the accuracy of the overall ADC.

进一步地,所述时间域比较器模块4包括若干个时间域比较器,每个所述时间域比较器的输入端对应连接所述内插电路的输出端。Further, the time domain comparator module 4 includes several time domain comparators, and the input end of each of the time domain comparators is correspondingly connected to the output end of the interpolation circuit.

具体地,在本实施例中,由两个内插子模块输出61对差分信号,则需要61个时间域比较器。Specifically, in this embodiment, 61 pairs of differential signals are output by two interpolation sub-modules, and 61 time-domain comparators are required.

在本实施例中,时间域比较器可以采用D触发器来实现。具体地,请参见图6,图6是本发明实施例提供的时间域比较器电路图,所述时间域比较器包括D触发器DFF,其中,所述D触发器的输入端和时钟信号输出端分别对应连接所述内插电路的输出端。In this embodiment, the time domain comparator can be implemented by using a D flip-flop. Specifically, please refer to FIG. 6. FIG. 6 is a circuit diagram of a time domain comparator provided by an embodiment of the present invention. The time domain comparator includes a D flip-flop DFF, wherein the input terminal of the D flip-flop and the clock signal output terminal are They are respectively connected to the output ends of the interpolation circuit.

具体地,时间域差分信号DN、DP分别接到D触发器的输入端和时钟信号端,当DN的上升沿超前DP上升沿时,因为此D触发器为时钟上升沿触发器件,所以DN上升沿到来时DP仍为低电平,故D触发器的输出DOUT为低电平,反之DP的上升沿超前DN,DOUT为一高电平,如此实现时间域比较器的功能。比较器模块的总体输出为一温度计码。Specifically, the time domain differential signals DN and DP are respectively connected to the input terminal of the D flip-flop and the clock signal terminal. When the rising edge of DN is ahead of the rising edge of DP, because the D flip-flop is a device that is triggered by the rising edge of the clock, DN rises When the edge comes, DP is still low level, so the output DOUT of the D flip-flop is low level, otherwise the rising edge of DP leads DN, and DOUT is a high level, thus realizing the function of the time domain comparator. The overall output of the comparator module is a thermometer code.

最后通过数字译码模块将温度计码译为二进制码作为ADC的整体输出。Finally, the thermometer code is decoded into binary code through the digital decoding module as the overall output of the ADC.

在本实施例中,时间域差分信号DN、DP即为上级内插模块输出的多个内插信号V1、V2……。In this embodiment, the time domain differential signals DN, DP are multiple interpolation signals V1, V2, . . . output by the upper-level interpolation module.

本实施例通过时间域比较器来判断对应差分时间信号的相位关系,通过比较时间信号的相位关系进而得出其电压关系,进而确定输入信号电压值所属的电压区间,再通过数字译码模块输出对应的数字码,完成模拟信号到数字信号的转化,实现ADC的功能。In this embodiment, the time domain comparator is used to determine the phase relationship of the corresponding differential time signal, and the voltage relationship is obtained by comparing the phase relationship of the time signal, and then the voltage interval to which the voltage value of the input signal belongs is determined, and then the output signal is output through the digital decoding module. The corresponding digital code completes the conversion of analog signals to digital signals and realizes the function of ADC.

实施例二Embodiment 2

为了进一步说明本发明的效果,下面对上述实施例一中图2提供的时间域ADC进行仿真实验。请参见图7,图7是本发明实施例提供的VX节点仿真波形图。In order to further illustrate the effect of the present invention, a simulation experiment is performed on the time domain ADC provided in FIG. 2 in the first embodiment above. Referring to FIG. 7, FIG. 7 is a VX node simulation waveform diagram provided by an embodiment of the present invention.

在本实施例中,为了更清楚的观察,只取了VTC16个输出中斜坡信号在反相器阈值电压附近的6个输出。由图7的仿真波形可知,在Φ3(或者Φ4)相位期间除vo4和vo5之外,其余斜坡信号均不会在Φ3相位越过反相器阈值电压,相应的反相器输出也只有to4和to5在Φ3相位发生电平翻转。Φ3相位期间,to4上面的信号全为低电平,to5下面的信号全为高电平。至此,此VTC电路产生了与输入信号密切相关的01跳变点和一个时间信号,01跳变点的产生可以在其后面加入温度计码译码电路进行译码,组成完整的ADC电路,产生量化的数字码;产生的时间信号可以在后面加入时间域的内插电路,进行进一步的细量化,实现更高精度的ADC。值得一提的是本发明提出的新型VTC结构对于实现更高精度的ADC有十分积极的作用,首先它结合flash结构进行了初步的量化得到的4位量化数字码,其次此结构可筛选“有用信号”,可将输入信号量化为一个很宽的时间信号,这大大提高了整体ADC的精度上限,而且降低了电路功耗。In this embodiment, for clearer observation, only 6 outputs of the 16 outputs of the VTC whose ramp signals are near the threshold voltage of the inverter are taken. It can be seen from the simulation waveform in Figure 7 that, except for vo4 and vo5 during the Φ3 (or Φ4) phase, the other ramp signals will not cross the inverter threshold voltage in the Φ3 phase, and the corresponding inverter outputs are only to4 and to5. Level inversion occurs at the Φ3 phase. During the phase of Φ3, the signals above to4 are all low levels, and the signals below to5 are all high levels. So far, the VTC circuit has generated the 01 jump point and a time signal that are closely related to the input signal. The generation of the 01 jump point can be decoded by adding a thermometer code decoding circuit behind it to form a complete ADC circuit to generate quantization. The generated time signal can be added to the interpolation circuit in the time domain later for further refinement to achieve a higher-precision ADC. It is worth mentioning that the new VTC structure proposed by the present invention has a very positive effect on the realization of higher-precision ADCs. First, it combines the flash structure to perform preliminary quantization to obtain a 4-bit quantized digital code. Signal”, which quantizes the input signal into a wide time signal, which greatly increases the upper limit of the overall ADC accuracy and reduces circuit power consumption.

以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。The above content is a further detailed description of the present invention in combination with specific preferred embodiments, and it cannot be considered that the specific implementation of the present invention is limited to these descriptions. For those of ordinary skill in the technical field of the present invention, without departing from the concept of the present invention, some simple deductions or substitutions can be made, which should be regarded as belonging to the protection scope of the present invention.

Claims (9)

1. A high-speed, high-accuracy time-domain analog-to-digital converter, comprising:
a Flash module (1) for generating a reference voltage;
the VTC module (2) is connected with the Flash module (1) and is used for sampling an input voltage signal VIN and processing the input voltage signal VIN according to the reference voltage to obtain a first time signal;
the interpolation module (3) is connected with the VTC module (2) and is used for subdividing the first time signal to obtain a second time signal;
the time domain comparator module (4) is connected with the interpolation module (3) and is used for comparing the second time signal and outputting a thermometer code;
and the digital decoding module (5) is connected with the time domain comparator module (4) and is used for converting the thermometer code into a binary code and outputting the binary code.
2. The high-speed high-precision time-domain analog-to-digital converter according to claim 1, wherein the Flash module (1) comprises two Flash sub-modules, each Flash sub-module comprises resistors R0-Rn connected in series in sequence, one end of the resistor R0 is connected with a reference voltage HVREF, one end of the resistor Rn is connected with a reference voltage LVREF, a common end of the resistors R0-Rn +1 is used as an output end to be connected with the VTC module (2), wherein the resistances of the resistors R0-Rn satisfy the relationship that R0 ═ Rn ═ Rj/2, i is greater than or equal to0 and less than n, j is greater than or equal to0 and less than n, and i, j and n are integers.
3. A high-speed high-precision time domain analog-to-digital converter according to claim 2, wherein the VTC module (2) comprises two VTC sub-modules connected with the Flash sub-module, each VTC sub-module comprises n VTC units, wherein an input terminal of each VTC unit is connected with a common terminal of the resistors Ri and Ri +1, and an output terminal of each VTC unit is connected with the interpolation module (3).
4. A high-speed high-precision time-domain analog-to-digital converter according to claim 3, characterized in that the VTC unit comprises a capacitor C, a first switch Φ 1, a second switch Φ 2, a third switch Φ 3, a fourth switch Φ 4, a current source IX, and a first inverter INV1, wherein,
one end of the capacitor C is connected with a voltage input end VIN through the first switch phi 1, and the other end of the capacitor C is connected with a reference voltage input end VREF through the second switch phi 2;
the third switch Φ 3 is connected to a voltage terminal VCOM and a common terminal of the capacitor C and the first switch Φ 1;
the current source IX is connected with the common terminal of the capacitor C and the second switch phi 2 through the fourth switch phi 4;
the input end of the first inverter INV1 is connected with the common end of the capacitor C, the second switch Φ 2 and the fourth switch Φ 4, and the output end of the inverter INV is used as the output end of the VTC unit and is connected with the interpolation module (3).
5. A high-speed high-precision time-domain analog-to-digital converter according to claim 4, characterized in that the interpolation module (3) comprises two interpolation sub-modules connected with the VTC sub-module, each of the interpolation sub-modules comprises n-1 interpolation units, wherein the input end of each interpolation unit is connected with the output end of two adjacent VTC units, and the output end of the interpolation unit is connected with the time-domain comparator module (4).
6. A high-speed high-precision time-domain analog-to-digital converter according to claim 5, wherein the interpolation unit comprises m cascaded interpolation sub-units, wherein the input end of the first-stage interpolation sub-unit is connected with the output end of the corresponding adjacent two VTC units, and the output end of the m-th-stage interpolation sub-unit is connected with the time-domain comparator module (4); wherein the m-th order interpolation subunit comprises 2m+1 interpolation circuits, m ≧ 1.
7. The high speed, high precision time domain analog to digital converter of claim 6, wherein the interpolation circuit comprises a second inverter INV2 and a third inverter INV3, wherein an output of the second inverter INV2 is connected to an output of the third inverter INV 3.
8. A high-speed high-precision time-domain analog-to-digital converter according to claim 6, wherein said time-domain comparator module (4) comprises a plurality of time-domain comparators, and the input end of each of said time-domain comparators is correspondingly connected with the output end of said interpolation circuit.
9. The high-speed high-precision time-domain analog-to-digital converter according to claim 8, wherein the time-domain comparator comprises a D flip-flop DFF, wherein an input end and a clock signal output end of the D flip-flop are respectively connected to an output end of the interpolation circuit.
CN202010402526.8A 2020-05-13 2020-05-13 High-speed high-precision time domain analog-to-digital converter Active CN111628772B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010402526.8A CN111628772B (en) 2020-05-13 2020-05-13 High-speed high-precision time domain analog-to-digital converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010402526.8A CN111628772B (en) 2020-05-13 2020-05-13 High-speed high-precision time domain analog-to-digital converter

Publications (2)

Publication Number Publication Date
CN111628772A true CN111628772A (en) 2020-09-04
CN111628772B CN111628772B (en) 2023-09-29

Family

ID=72270921

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010402526.8A Active CN111628772B (en) 2020-05-13 2020-05-13 High-speed high-precision time domain analog-to-digital converter

Country Status (1)

Country Link
CN (1) CN111628772B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112702062A (en) * 2020-12-28 2021-04-23 华南理工大学 Multi-bit analog-to-digital converter capable of effectively reducing power consumption
CN113556122A (en) * 2021-06-08 2021-10-26 西安电子科技大学 High-speed high-linearity voltage-time converter applied to time domain analog-to-digital converter

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1232320A (en) * 1997-12-16 1999-10-20 马约翰 Improved Digital Temperature Compensated Voltage Controlled Oscillator
WO2002065643A2 (en) * 2001-02-09 2002-08-22 Broadcom Corporation Capacitive folding circuit for use in a folding/interpolating analog-to-digital converter
US7557746B1 (en) * 2007-12-13 2009-07-07 Nxp B.V. Time domain interpolation scheme for flash A/D converters
CN103957005A (en) * 2014-04-30 2014-07-30 华为技术有限公司 Time-digital converter, full-digital phase-locked loop circuit and method
CN104348486A (en) * 2014-11-13 2015-02-11 复旦大学 Single-stage folding interpolation assembly line type analog-digital converter with redundancy bit
WO2016029858A1 (en) * 2014-08-28 2016-03-03 Mediatek Inc. Hybrid analog-to-digital converter using digital slope analog-to-digital converter and related hybrid analog-to-digital conversion method thereof
JP2016160840A (en) * 2015-03-02 2016-09-05 日立オートモティブシステムズ株式会社 Rotation detection abnormality diagnosing device and method, and rotation position control apparatus using the former
KR20180023261A (en) * 2016-08-25 2018-03-07 한국과학기술원 Offset Calibration-Applied Analog-to-Digital Data Converter and Offset Calibration Method
CN107907878A (en) * 2017-11-08 2018-04-13 零八电子集团有限公司 The method that high accuracy obtains fmcw radar distance measure
CN109581333A (en) * 2018-11-17 2019-04-05 天津大学 Laser radar reading circuit based on the reconstruct of pulse echo ultra-high speed sampling
CN110212866A (en) * 2019-04-29 2019-09-06 西安电子科技大学 A kind of low-power consumption three-stage operational amplifier driving heavy load capacitor
CN110401447A (en) * 2019-06-10 2019-11-01 西安电子科技大学 A Time-Domain ADC Structure of MDAC Type Without Operation Amplifier

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1232320A (en) * 1997-12-16 1999-10-20 马约翰 Improved Digital Temperature Compensated Voltage Controlled Oscillator
WO2002065643A2 (en) * 2001-02-09 2002-08-22 Broadcom Corporation Capacitive folding circuit for use in a folding/interpolating analog-to-digital converter
US7557746B1 (en) * 2007-12-13 2009-07-07 Nxp B.V. Time domain interpolation scheme for flash A/D converters
CN101897121A (en) * 2007-12-13 2010-11-24 Nxp股份有限公司 Time domain interpolation scheme for flash A/D converters
CN103957005A (en) * 2014-04-30 2014-07-30 华为技术有限公司 Time-digital converter, full-digital phase-locked loop circuit and method
WO2016029858A1 (en) * 2014-08-28 2016-03-03 Mediatek Inc. Hybrid analog-to-digital converter using digital slope analog-to-digital converter and related hybrid analog-to-digital conversion method thereof
CN104348486A (en) * 2014-11-13 2015-02-11 复旦大学 Single-stage folding interpolation assembly line type analog-digital converter with redundancy bit
JP2016160840A (en) * 2015-03-02 2016-09-05 日立オートモティブシステムズ株式会社 Rotation detection abnormality diagnosing device and method, and rotation position control apparatus using the former
KR20180023261A (en) * 2016-08-25 2018-03-07 한국과학기술원 Offset Calibration-Applied Analog-to-Digital Data Converter and Offset Calibration Method
CN107907878A (en) * 2017-11-08 2018-04-13 零八电子集团有限公司 The method that high accuracy obtains fmcw radar distance measure
CN109581333A (en) * 2018-11-17 2019-04-05 天津大学 Laser radar reading circuit based on the reconstruct of pulse echo ultra-high speed sampling
CN110212866A (en) * 2019-04-29 2019-09-06 西安电子科技大学 A kind of low-power consumption three-stage operational amplifier driving heavy load capacitor
CN110401447A (en) * 2019-06-10 2019-11-01 西安电子科技大学 A Time-Domain ADC Structure of MDAC Type Without Operation Amplifier

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
KENICHI OHHATA: "Low-Power, High-Speed Time-Based Subranging ADCs", 《2018 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ISPACS)》 *
KENICHI OHHATA: "Low-Power, High-Speed Time-Based Subranging ADCs", 《2018 INTERNATIONAL SYMPOSIUM ON INTELLIGENT SIGNAL PROCESSING AND COMMUNICATION SYSTEMS (ISPACS)》, 5 December 2019 (2019-12-05), pages 1 - 11 *
刘素娟;张特;陈建新;: "新型双声道音频Σ-ΔDAC小面积插值滤波器的设计实现", 电子与信息学报, no. 03 *
王开;刘郁林;张先玉;: "基于压缩感知理论的超宽带信道估计", 计算机仿真, no. 06 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112702062A (en) * 2020-12-28 2021-04-23 华南理工大学 Multi-bit analog-to-digital converter capable of effectively reducing power consumption
CN112702062B (en) * 2020-12-28 2023-02-07 华南理工大学 A Multi-Bit Analog-to-Digital Converter with Efficient Power Consumption Reduction
CN113556122A (en) * 2021-06-08 2021-10-26 西安电子科技大学 High-speed high-linearity voltage-time converter applied to time domain analog-to-digital converter
CN113556122B (en) * 2021-06-08 2023-03-10 西安电子科技大学 High-speed and high-linearity voltage-to-time converters for time-domain analog-to-digital converters

Also Published As

Publication number Publication date
CN111628772B (en) 2023-09-29

Similar Documents

Publication Publication Date Title
US6784824B1 (en) Analog-to-digital converter which is substantially independent of capacitor mismatch
CN107493104B (en) Continuous approximation scratchpad analog-to-digital converter and analog-to-digital signal conversion method
CN109936369B (en) A Hybrid SAR-VCO ADC
CN110401450B (en) Neural network circuit
CN106817131A (en) High-speed flow line-SAR ADC based on dynamic ring formula operational amplifier
CN111628772B (en) High-speed high-precision time domain analog-to-digital converter
CN109347480B (en) A successive approximation analog-to-digital converter with capacitor splitting structure and switching method thereof
CN110768674A (en) Analog-to-digital conversion device, equipment and conversion method
CN113014263A (en) Successive approximation ADC (analog to digital converter) capacitor array and switch logic circuit
CN113014264A (en) Analog-digital converter with multi-mode selection
CN106788345B (en) Ramp signal generator using resistance structure
CN106656190A (en) Successive approximation type analog-digital conversion circuit and method thereof
CN111801894A (en) Digital to Analog Converter System
EP3462619B1 (en) Digital to analog converter
US6501412B2 (en) Analog-to-digital converter including a series of quantizers interconnected in cascade
CN107579738A (en) analog-to-digital conversion device
Zahrai et al. A low-power hybrid ADC architecture for high-speed medium-resolution applications
EP1540565B1 (en) Switched capacitor system, method, and use
CN107171671B (en) A two-stage multi-bit quantizer and analog-to-digital converter
CN116054833A (en) Analog-to-digital conversion circuit
CN116318161B (en) Multi-step monoslope analog-to-digital conversion circuit and control method for image sensor
CN117614454A (en) Single-channel difference quantized high-speed N-bit TDC based on capacitor array
CN116192148A (en) Successive approximation type analog-to-digital converter and pulse wave collector
CN116248119A (en) Digital-to-analog conversion circuit, chip and electronic equipment for PWM conversion analog output
CN214675121U (en) A multi-mode selection analog-to-digital converter

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant