CN111612264B - 考虑水利电力综合的龙头水库水电群交易优化方法 - Google Patents

考虑水利电力综合的龙头水库水电群交易优化方法 Download PDF

Info

Publication number
CN111612264B
CN111612264B CN202010467149.6A CN202010467149A CN111612264B CN 111612264 B CN111612264 B CN 111612264B CN 202010467149 A CN202010467149 A CN 202010467149A CN 111612264 B CN111612264 B CN 111612264B
Authority
CN
China
Prior art keywords
power
water
electricity
station
electric quantity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010467149.6A
Other languages
English (en)
Other versions
CN111612264A (zh
Inventor
路亮
江栗
周泓
蔡绍荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Branch of State Grid Corp
Original Assignee
Southwest Branch of State Grid Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Branch of State Grid Corp filed Critical Southwest Branch of State Grid Corp
Priority to CN202010467149.6A priority Critical patent/CN111612264B/zh
Publication of CN111612264A publication Critical patent/CN111612264A/zh
Application granted granted Critical
Publication of CN111612264B publication Critical patent/CN111612264B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Systems or methods specially adapted for specific business sectors, e.g. utilities or tourism
    • G06Q50/06Electricity, gas or water supply

Abstract

本发明公开了考虑水利电力综合的龙头水库水电群交易优化方法,属于水电集群调度领域,考虑了剩余水电集群发电能力和受端市场的购电交易需求,并结合特高压直流通道、交流通道的利用率及输电损耗,并综合考虑弃水情况和航运灌溉需水量,形成了完善的综合考虑水利电力的龙头水库的水电集群交易优化方案,并且本方案中的公式均使用未知字母给出普适性公式,可以根据实际生产中的情况直接带入数据计算得出方案,具有普适性,且方便、简单、实操性强。

Description

考虑水利电力综合的龙头水库水电群交易优化方法
技术领域
本发明属于水电集群调度领域,涉及考虑水利电力综合的龙头水库水电群交易优化方法。
背景技术
目前,国内针对梯级水电的相关研究已初步开展,但是主要围绕的是梯级水电运行过程中的各类协调优化调度方法展开了研究。
专利[1]提出了采用一种梯级水电“虚拟抽蓄电站”的调度方法,以实际与目标调峰功率偏差最小和梯级水电耗水量最小为调度目标,构建梯级水电“虚拟抽蓄电站”调度目标函数进行求解优化调度,以期实现电力系统的短期调度计划;
专利[2]公开了一种梯级水电系统发电调度自适应优化方法与系统,用以提高梯级水电系统的整体发电效益;
专利[3]提出了一种基于电量控制的梯级水电短期调峰模型及求解方法,可使梯级水电在满足日优化电量、出力爬坡、出力波动控制需求的同时,充分发挥了梯级水电站群的调峰作用;
专利[4]公开了一种巨型梯级水电系统的多目标调度并行降维方法;
专利[5]提出了一种考虑调峰调频需求的多能源协调优化调度方法;
专利[6]提出了一种基于随机安全域的梯级水电鲁棒优化调度方法,该方法对预调度方案的鲁棒可行性进行判定,通过反馈修正协调优化最终获得具有鲁棒性的调度方案;
专利[7]公开了一种基于实时反馈的梯级水电水位控制的多时段潮流优化方法,构建了水库水位与电网运行相协调的多时段最优潮流控制方法,基于实时反馈实现了将复杂的非线性条件线性化处理的效果,大大提升了梯级水电运行效率;
专利[8]提出了一种涉及一种梯级水电参与省内和西电东送市场组合交易策略优化方法,为新电力环境下我国西南地区大规模梯级水电站群的调度运行管理提供有益支持;
专利[9]提出了一种市场环境下梯级水电站中长期调度与检修双层优化方法,以中长期调度中间结果为边界条件,以最小检修损失为优化目标,将检修损失优化结果与中长期发电收益归并为总收益,从而实现联合优化;
专利[10]提供了基于调节性能的水风光电站群协同组合划分方法及系统,提升了多种电源协同运行优化的精细度,有利于含有多种类型电源的复杂电力系统的调度优化,对于提高清洁能源开发利用具有重要意义,具有重要的推广使用价值;
专利[11]提供了一种考虑非恒定耦合约束的水电群调度方法;专利[12]提出了一种考虑水流延时连续变化的梯级水电站日优化调度方法;
专利[13]提出了一种巨型水电站动态投产下跨流域梯级水电站群长期运行方法;
专利[14]提出了一种一种考虑水流延时连续变化的梯级水电站日优化调度方法,这种方法相较于前面的调度方法具有水流延时描述细致、模型精确、收敛效果好、实用性强等优点;
专利[15]提出了一种复杂约束限制下的梯级水电站群实时优化调度方法,其将日前发电计划纳入实时调度算法中,以梯级水电系统总蓄能最大作为优化目标,满足实时调度的安全性、时效性、实用性、经济性的要求。
专利[16]提出了一种多尺度电力市场条件下的梯级水电中期发电计划制定方法,统筹考虑了梯级水电站在传统非市场条件下面临的上下游复杂约束问题及多尺度市场带来的多市场电价、履约耦合、市场风险等新问题,能较好地引导梯级水电发电过程响应市场价格变化、通过市场优化提高整体收益并规避市场风险;
专利[17]提出了一种梯级水电参与省内和西电东送市场组合交易策略优化方法,为新电力环境下我国西南地区大规模梯级水电站群的调度运行管理提供有益支持;
专利[18]提出了一种市场环境下梯级水电站中长期调度与检修双层优化方法;
专利[19]提出了一种基于梯级水电站耦合关系的日前市场出清机制,实现上、下游电站的联合出清,解决下游电站中标电量与可发电流量匹配失衡问题。
专利[20]本发明公开了一种基于三层宏观组网约束的中压配网精准规划方法,通过空间上的全局统筹和时间上的远近协调强化规划的目标导向和利旧原则,提升规划方案的可操作性、科学性和精准性。
专利[21]公开了一种基于GIS信息数据的电力走廊规划方法,减少因外送通道规划建设滞后,水电出现大量弃水,经济效益损失严重的问题,确保绿色环保的水电顺利送出,创造持续可靠的经济效益、生态效益和社会效益。
上述专利[1-15]基本侧重于梯级水电的运行侧,着重于梯级水电站之间的协调调度问题;专利[16-19]则侧重于电力市场侧,着重于上下游的水电站如何参与电力市场的竞争以及出清价格的确定等方面的问题;专利[20-21]虽然涉及到网架规划的问题,但专利[20-21]主要是针对精准配电网的规划方法,其对于分区电量平衡类的大区域协调规划问题未有涉及,更没有针对龙头水库建设的长时间动态过程展开分析,以及建立相适应的评估方案和评价体系。
因此考虑水利电力综合的龙头水库水电群交易优化方法亟待研究。
发明内容
本发明的目的在于:提供了考虑水利电力综合的龙头水库水电群交易优化方法,考虑了剩余水电集群发电能力和受端市场的购电交易需求,并结合特高压直流通道、交流通道的利用率及输电损耗,并综合考虑弃水情况和航运灌溉需水量,形成了完善的综合考虑水利电力的龙头水库的水电集群交易优化方案,解决了目前没有完善的考虑水利电力综合的龙头水库水电群交易优化方法以形成完善的水电集群交易优化方案的问题。
本发明采用的技术方案如下:
一种考虑市场交易的龙头水库水电集群运行优化方法,首先考虑市场化交易,主要包括依次进行的以下步骤:
S1:分析龙头水库投产后,水电集群发电能力;
S2:根据来水预测,分别安排国调、网调、省调水电站年度发电计划,并按受电地区分解年度计划;
S3:根据负荷预测,确定省内负荷分月用电需求,包括最大用电负荷和统调用电量;
S4:依据本省机组发电计划以及国调、网调机组留本省发电计划和本省负荷预测,及断面限制,进行省内电力电量平衡分析;
S5:根据省内电力电量平衡结果,确定省调水电机组丰水期外送电能力;
S6:确定跨区直流通道及跨省交流断面功率限额;
S7:针对每条跨区特高压直流通道,依次安排国调机组送出政府间中长期送电协议计划的电力和电量;
S8:针对每条跨区超高压直流通道,安排跨区水火风光丰枯互济年度计划;
S9:针对每个跨省超高压交流断面,安排国调、网调机组外送电力和电量,安排政府间协议电量;
S10:在国调机组送电计划基础上,丰期该类通道按功率限额,安排区域内清洁能源外送;区域间的超高压互济直流,丰期按30%功率限额,安排省内清洁能源外送;省间的交流断面,丰期按满功率,排省内清洁能源外送;
然后考虑市场化临时交易过程,主要包括依次进行的以下步骤:
T1:对剩余的水电集群发电能力及通道空间,开展日前及月度、日前或日内市场化电量交易;
T2:是否有受端负荷提出市场化购电需求?若是,转下一步,若否,转T9;
T3:根据受端市场提出的购电交易需求,确定受端所需的电力和电量;
T4:所有特高压直流通道是否都满送?若否转下一步,若是转T6;
T5:选择利用率最低的特高压直流通道安排该笔交易;
T6:选择输电损耗最小的交流通道安排该笔交易;
T7:根据发电能力,得到该通道下能响应该笔交易的水电站列表;
T8:上述水电站列表中是否有电站存在弃水?若是则转T9,若否则转T10;
T9:将该笔交易分配给弃水最严重的电站;
T10:综合考虑航运、灌溉需水量,从上述水电站列表中,确定响应该交易的水电站;
T11:完成一次市场化交易;
T12:水电集群发电能力是否用尽?若是则结束,若否转T1。
进一步地,所述步骤S1中分析龙头水库投产后,水电集群发电能力,主要包括预想出力、保证出力和年发电量指标,具体方法为:
将电站A第i个月丰、平、枯水年预想出力表示为:AbuAntPowA,i、NorAntPowA,i、DryAntPowA,i,其中,i=1,2,3,…,12;
将电站A第i个月,丰、平、枯水年平均出力表示为:DryAntPowA,i、NorAvgPowA,i、DryAvgPowA,i
将电站A第i个月,丰、平、枯水年发电量表示为:AbuGenCapA,i、NorGenCapA,i、DryGenCapA,i
则电站A丰、平、枯水年年发电量为:
由公式1-1、1-2、1-3得出电站A的丰、平、枯水年年发电量。
进一步地,所述步骤S2针对研究目标年,电站A第i个月的最大出力、平均出力、扣除厂用电及电厂内部线损等损耗后的发电量分别表示为:
MaxPowA,i、AvgPowA,i、GenCapA,i,其中,i=1,2,3,…,12;
送省外的平均出力和电量分别表示为:SendAvgPowA,i,SendGenCapA,i
留本省的平均出力和电量分别表示为:StayAvgPowA,i,StayGenCapA,i
则对所有月份i满足约束:
SendGenCapA,i+StayGenCapA,i=GenCapA,i (1-4)
其中,i=1,2,3,…,12;
研究目标年,电站A年发电量为:
研究目标年全年电站A送省外电量为:
研究目标年全年电站A年留省内电量为:
进一步地,所述步骤S6中确定跨区直流通道及跨省交流断面功率限额的方法为:
对于第k条跨区特高压直流通道的送电能力表示为UHVDCPowLimk,其中,k=1,2,3,…,s,本区域共有s条跨区特高压直流外送通道;
对于第k条跨区超高压直流通道的送电能力表示为EHVDCPowLimk,其中,k=1,2,3,…,u。本区域共有u条跨区超高压直流外送通道;
对于第k个跨省交流断面的送电能力表示为EHVACSecPowLimk,其中,k=1,2,3,…,v。区域内共有v个跨省交流断面;
则对第k条外送通道,省调的外送空间为
ProPowLimk=UHVDCPowLimk-NatDCPowk-RegDCPowk(1-8)
其中,k=1,2,3,…,s,NatDCPowk和RegDCPowk分别表示国调和网调经过第i条高压直流外送的电力,
则在第i个月,省调高峰时段最大外送空间为:
其中,Vari表示受外在因素影响导致第i个月外送能力的变化,i=1,2,3,…,12,Coek表示外部因素影响,交直流输电线路限功率运行系数,其中,为提高算法运行效率,直流通道以线路为单位进行控制,交流通道以断面为单位进行控制。
进一步地,所述步骤S7中针对每条跨区特高压直流通道,依次安排国调机组送出政府间中长期送电协议计划的电力和电量的方法为:
将第i个月经第k条跨区特高压直流通道送出的区域内清洁能源电力和电量分别表示为:SCUDCHydPowi,k和SCUDCHydCapi,k,则平均意义上有
SCUDCHydPowi,k=SCUDCHydCapi,k×10000/Moni/24 (1-10)
其中Moni是第i个月的天数;
将第i个月第k条特高压直流上安排的电力和电量分别记为UHVDCPowi,k和UHVDCCapi,k,则依次安排国调机组送出、政府间中长期送电协议计划的电力和电量后,有
UHVDCPowi,k=NatDCPowi,k+GovAgrDCPowi,k+SCUDCHydPowi,k (1-11)
UHVDCCapi,k=NatDCCapi,k+GovAgrDCCapi,k+SCUDCHydCapi,k (1-12)
其中,NatDCPowi,k和NatDCCapi,k为第i个月,对应第k条特高压直流的优先安排的国调水电站的发电电力和电量,GovAgrDCPowi,k和GovAgrDCCapi,k为第i个月,对应第k条特高压直流的优先安排的政府间协议的电力和电量。
进一步地,所述步骤S8中针对每条跨区超高压直流通道,安排跨区水火风光丰枯互济年度计划的方法为:
将第i个月经第k条跨区超高压直流通道送出的区域内清洁能源电力和电量分别表示为:SCEDCHydPowi,k和SCEDCHydCapi,k,则平均意义上有
SCEDCHydPowi,k=SCEDCHydCapi,k×10000/Moni/24 (1-13)
其中Moni是第i个月的天数;
将第i个月经第k条跨区超高压直流通道跨区水火风光丰枯互济受入电力和电量分别表示为NorToSouPowi,k和NorToSouCapi,k,跨区水火风光丰枯互济送出电力和电量分别为SouToNorPowi,k、SouToNorCapi,k,则第i个月经第k条跨区超高压直流通道送出的电力和电量分别为:
EHVDCSendPowi,k=SouToNorPowi,k+SCEDCHydPowi,k (1-14)
EHVDCSendPowi,k=SouToNorCapi,k+SCEDCHydCapi,k (1-15)
则第i个月经第k条跨区超高压直流通道受入的电力和电量分别为:
EHVDCRecPowi,k=NorToSouPowi,k (1-16)
EHVDCRecPowi,k=NorToSouCapi,k (1-17)。
进一步地,所述步骤S9中针对每个跨省超高压交流断面,安排国调、网调机组外送电力和电量,安排政府间协议电量的方法为:
将第i个月经第k个跨省交流断面送出的区域内清洁能源电力和电量分别表示为为SCEACHydPowi,k和SCEACHydCapi,k,则有:
SCEACHydPowi,k=SCEACHydCapi,k×10000/Moni/24 (1-18)
其中,Moni是第i个月的天数;
则第i个月经第k个跨省交流断面输送的电力和电量分别为:
ACSectPowi,k=NatACPowi,k+RegACPowi,k+GovAgrACPowi,k+SCEACHydPowi,k (1-19)
ACSectCapi,k=NatACCapi,k+RegACCapi,k+GovAgrACCapi,k+SCEACHydCapi,k (1-20)
其中,NatACPowi,k和NatACCapi,k分别为第i个月经第k个跨省交流断面输送的国调机组的电力和电量;RegACPowi,k和RegACCapi,k分别为第i个月经第k个跨省交流断面输送的网调机组的电力和电量;GovAgrACPowi,k和GovAgrACCapi,k分别为第i个月经第k个跨省交流断面输送的政府间协议的电力和电量。
进一步地,所述步骤T5中对于没有达到输送功率限额的特高压直流通道,按通道利用率从低到高进行排序,选择利用率最低的通道,安排该笔交易;
所述步骤T7具体为:
将时间t到t+Δt时刻,市场化交易受端负荷中心所提出的电力电量需求分别命名为:MarkRecRegPowt,t+Δt和MarkRecRegCapt,t+Δt,其中t表示时间;
则对于任意电站A,从t到t+Δt时刻,若满足:
电力:MarkRecRegPowt,t+Δt+max(PlanGenPowA,t,PlanGenPowA,t+Δt)<InsCapA (2-1)
电量:
则将该电站加入响应该笔交易的水电站列表中。
进一步地,所述步骤T9具体为:
对于任意电站A,从t到t+Δt时刻,弃水电量为:
AbaCap(A,t,t+Δt)=ThePowGenCap(A,level,inVol-outVol,t,t+Δt)-ActPowGenCap(A,t,t+Δt) (2-3)
取maxA baCap(A,t,t+Δt)所对应的电站A,即得到弃水量最严重的电站;
其中,AbaCap(A,t,t+Δt)表示电站A从时间t到t+Δt时刻的弃水电量;
ThePowGenCap(A,level,inVol-outVol,t,t+Δt)表示表示电站A,从t到t+Δt时刻,在水位为level时,对应入库流量inVol和出口流量为outVol时的理论发电量;ActPowGenCap(A,t,t+Δt)表示表示电站A,从t到t+Δt时刻的实际发电量。
进一步地,所述步骤T10具体为:
水电站发电需求:
HdyStaDemA,t
α(ActWatLevA,t-PowTheWatLevA,t)+β(ActWatLevA,t-ShipTheWatLevA,t)+
γ(ActWatLevA,t-IrrTheWatLevA,t) (2-4)
选择电站A,使其满足max H dyStaDemA,t作为相应该需求的水电站;
其中,HdyStaDemA,t表示电站A在t时刻的发电需求迫切程度评价指标,ActWatLevA,t和PowTheWatLevA,t分别表示根据发电计划,电站A在t时刻实际水位和发电理论水位;ShipTheWatLevA,t表示满足航运安排的电站A在t时刻的航运理论水位;IrrTheWatLevA,t表示满足灌溉需求电站A在t时刻D灌溉理论水位,α,β,γ为系数,取值为0到1之间。
所述步骤T12中判断水电集群发电能力是否用尽的方法为:
若该水电集群共有T个水电站,则
若公式2-5左边小于右边,则该水电集群发电能力未用尽,若公式2-5左边等于右边,则该水电集群发电能力用尽,其中,HydStaPowj,t表示t时刻第j个水电站的发电出力,HydStaInsCapj,t表示t时刻第j个水电站的装机容量。
根据受端负荷的市场化购电需求,有很多情况需要考虑,我们首先判断特高压直流通道是否满送,若否则选择利用率最低的特高压直流通道进行交易,若否再考虑能响应该笔的水电站,在考虑水电站时,首先考虑弃水,若有电站有弃水,为了避免浪费,选择弃水最严重的发电站,若是,则再考虑航运灌溉需水量,进行进一步判定,最后完成该次市场化交易。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
1.本发明考虑水利电力综合的龙头水库水电群交易优化方法,考虑了剩余水电集群发电能力和受端市场的购电交易需求,并结合特高压直流通道、交流通道的利用率及输电损耗,并综合考虑弃水情况和航运灌溉需水量,形成了完善的综合考虑水利电力的龙头水库的水电集群交易优化方案;
2.本发明考虑水利电力综合的龙头水库水电群交易优化方法,考虑了剩余水电集群发电能力和受端市场的购电交易需求,并结合特高压直流通道、交流通道的利用率及输电损耗,并综合考虑弃水情况和航运灌溉需水量,形成了完善的综合考虑水利电力的龙头水库的水电集群交易优化方案,本方案中的公式均使用未知字母给出普适性公式,可以根据实际生产中的情况直接带入数据计算得出方案,具有普适性,且方便、简单、实操性强。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图,其中:
图1是本发明第一部分的原理框图;
图2是本发明的另一种部分的原理框图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明,即所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,术语“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
下面结合实施例对本发明的特征和性能作进一步的详细描述。
实施例一
本发明较佳实施例提供的一种,考虑水利电力综合的龙头水库水电群交易优化方法,主要包括依次进行的以下步骤:
一种考虑市场交易的龙头水库水电集群运行优化方法,首先考虑市场化交易,主要包括依次进行的以下步骤:
S1:分析龙头水库投产后,水电集群发电能力;
S2:根据来水预测,分别安排国调、网调、省调水电站年度发电计划,并按受电地区分解年度计划;
S3:根据负荷预测,确定省内负荷分月用电需求,包括最大用电负荷和统调用电量;
S4:依据本省机组发电计划以及国调、网调机组留本省发电计划和本省负荷预测,及断面限制,进行省内电力电量平衡分析;
S5:根据省内电力电量平衡结果,确定省调水电机组丰水期外送电能力;
S6:确定跨区直流通道及跨省交流断面功率限额;
S7:针对每条跨区特高压直流通道,依次安排国调机组送出政府间中长期送电协议计划的电力和电量;
S8:针对每条跨区超高压直流通道,安排跨区水火风光丰枯互济年度计划;
S9:针对每个跨省超高压交流断面,安排国调、网调机组外送电力和电量,安排政府间协议电量;
S10:在国调机组送电计划基础上,丰期该类通道按功率限额,安排区域内清洁能源外送;区域间的超高压互济直流,丰期按30%功率限额,安排省内清洁能源外送;省间的交流断面,丰期按满功率,排省内清洁能源外送;
然后考虑市场化临时交易过程,主要包括依次进行的以下步骤:
T1:对剩余的水电集群发电能力及通道空间,开展日前及月度、日前或日内市场化电量交易;
T2:是否有受端负荷提出市场化购电需求?若是,转下一步,若否,转T9;
T3:根据受端市场提出的购电交易需求,确定受端所需的电力和电量;
T4:所有特高压直流通道是否都满送?若否转下一步,若是转T6;
T5:选择利用率最低的特高压直流通道安排该笔交易;
T6:选择输电损耗最小的交流通道安排该笔交易;
T7:根据发电能力,得到该通道下能响应该笔交易的水电站列表;
T8:上述水电站列表中是否有电站存在弃水?若是则转T9,若否则转T10;
T9:将该笔交易分配给弃水最严重的电站;
T10:综合考虑航运、灌溉需水量,从上述水电站列表中,确定响应该交易的水电站;
T11:完成一次市场化交易;
T12:水电集群发电能力是否用尽?若是则结束,若否转T1。
实施例二
在实施例一的基础上,所述步骤S1中分析龙头水库投产后,水电集群发电能力,主要包括预想出力、保证出力和年发电量指标,具体方法为:
将电站A第i个月丰、平、枯水年预想出力表示为:AbuAntPowA,i、NorAntPowA,i、DryAntPowA,i,其中,i=1,2,3,…,12;
将电站A第i个月,丰、平、枯水年平均出力表示为:DryAntPowA,i、NorAvgPowA,i、DryAvgPowA,i
将电站A第i个月,丰、平、枯水年发电量表示为:AbuGenCapA,i、NorGenCapA,i、DryGenCapA,i
则电站A丰、平、枯水年年发电量为:
由公式1-1、1-2、1-3得出电站A的丰、平、枯水年年发电量。
进一步地,所述步骤S2针对研究目标年,电站A第i个月的最大出力、平均出力、扣除厂用电及电厂内部线损等损耗后的发电量分别表示为:
MaxPowA,i、AvgPowA,i、GenCapA,i,其中,i=1,2,3,…,12;
送省外的平均出力和电量分别表示为:SendAvgPowA,i,SendGenCapA,i
留本省的平均出力和电量分别表示为:StayAvgPowA,i,StayGenCapA,i
则对所有月份i满足约束:
SendGenCapA,i+StayGenCapA,i=GenCapA,i (1-4)
其中,i=1,2,3,…,12;
研究目标年,电站A年发电量为:
研究目标年全年电站A送省外电量为:
研究目标年全年电站A年留省内电量为:
进一步地,所述步骤S6中确定跨区直流通道及跨省交流断面功率限额的方法为:
对于第k条跨区特高压直流通道的送电能力表示为UHVDCPowLimk,其中,k=1,2,3,…,s,本区域共有s条跨区特高压直流外送通道;
对于第k条跨区超高压直流通道的送电能力表示为EHVDCPowLimk,其中,k=1,2,3,…,u。本区域共有u条跨区超高压直流外送通道;
对于第k个跨省交流断面的送电能力表示为EHVACSecPowLimk,其中,k=1,2,3,…,v。区域内共有v个跨省交流断面;
则对第k条外送通道,省调的外送空间为
ProPowLimk=UHVDCPowLimk-NatDCPowk-RegDCPowk (1-8)
其中,k=1,2,3,…,s,NatDCPowk和RegDCPowk分别表示国调和网调经过第i条高压直流外送的电力,
则在第i个月,省调高峰时段最大外送空间为:
其中,Vari表示受外在因素影响导致第i个月外送能力的变化,i=1,2,3,…,12,Coek表示外部因素影响,交直流输电线路限功率运行系数,其中,为提高算法运行效率,直流通道以线路为单位进行控制,交流通道以断面为单位进行控制。
进一步地,所述步骤S7中针对每条跨区特高压直流通道,依次安排国调机组送出政府间中长期送电协议计划的电力和电量的方法为:
将第i个月经第k条跨区特高压直流通道送出的区域内清洁能源电力和电量分别表示为:SCUDCHydPowi,k和SCUDCHydCapi,k,则平均意义上有
SCUDCHydPowi,k=SCUDCHydCapi,k×10000/Moni/24 (1-10)
其中Moni是第i个月的天数;
将第i个月第k条特高压直流上安排的电力和电量分别记为UHVDCPowi,k和UHVDCCapi,k,则依次安排国调机组送出、政府间中长期送电协议计划的电力和电量后,有
UHVDCPowi,k=NatDCPowi,k+GovAgrDCPowi,k+SCUDCHydPowi,k (1-11)
UHVDCCapi,k=NatDCCapi,k+GovAgrDCCapi,k+SCUDCHydCapi,k (1-12)
其中,NatDCPowi,k和NatDCCapi,k为第i个月,对应第k条特高压直流的优先安排的国调水电站的发电电力和电量,GovAgrDCPowi,k和GovAgrDCCapi,k为第i个月,对应第k条特高压直流的优先安排的政府间协议的电力和电量。
进一步地,所述步骤S8中针对每条跨区超高压直流通道,安排跨区水火风光丰枯互济年度计划的方法为:
将第i个月经第k条跨区超高压直流通道送出的区域内清洁能源电力和电量分别表示为:SCEDCHydPowi,k和SCEDCHydCapi,k,则平均意义上有
SCEDCHydPowi,k=SCEDCHydCapi,k×10000/Moni/24 (1-13)
其中Moni是第i个月的天数;
将第i个月经第k条跨区超高压直流通道跨区水火风光丰枯互济受入电力和电量分别表示为NorToSouPowi,k和NorToSouCapi,k,跨区水火风光丰枯互济送出电力和电量分别为SouToNorPowi,k、SouToNorCapi,k,则第i个月经第k条跨区超高压直流通道送出的电力和电量分别为:
EHVDCSendPowi,k=SouToNorPowi,k+SCEDCHydPowi,k (1-14)
EHVDCSendPowi,k=SouToNorCapi,k+SCEDCHydCapi,k (1-15)
则第i个月经第k条跨区超高压直流通道受入的电力和电量分别为:
EHVDCRecPowi,k=NorToSouPowi,k (1-16)
EHVDCRecPowi,k=NorToSouCapi,k (1-17)。
进一步地,所述步骤S9中针对每个跨省超高压交流断面,安排国调、网调机组外送电力和电量,安排政府间协议电量的方法为:
将第i个月经第k个跨省交流断面送出的区域内清洁能源电力和电量分别表示为为SCEACHydPowi,k和SCEACHydCapi,k,则有:
SCEACHydPowi,k=SCEACHydCapi,k×10000/Moni/24 (1-18)
其中,Moni是第i个月的天数;
则第i个月经第k个跨省交流断面输送的电力和电量分别为:
ACSectPowi,k=NatACPowi,k+RegACPowi,k+GovAgrACPowi,k+SCEACHydPowi,k (1-19)
ACSectCapi,k=NatACCapi,k+RegACCapi,k+GovAgrACCapi,k+SCEACHydCapi,k (1-20)
其中,NatACPowi,k和NatACCapi,k分别为第i个月经第k个跨省交流断面输送的国调机组的电力和电量;RegACPowi,k和RegACCapi,k分别为第i个月经第k个跨省交流断面输送的网调机组的电力和电量;GovAgrACPowi,k和GovAgrACCapi,k分别为第i个月经第k个跨省交流断面输送的政府间协议的电力和电量。
进一步地,所述步骤T5中对于没有达到输送功率限额的特高压直流通道,按通道利用率从低到高进行排序,选择利用率最低的通道,安排该笔交易;
所述步骤T7具体为:
将时间t到t+Δt时刻,市场化交易受端负荷中心所提出的电力电量需求分别命名为:MarkRecRegPowt,t+Δt和MarkRecRegCapt,t+Δt,其中t表示时间;
则对于任意电站A,从t到t+Δt时刻,若满足:
电力:MarkRecRegPowt,t+Δt+max(PlanGenPowA,t,PlanGenPowA,t+Δt)<InsCapA (2-1)
电量:
则将该电站加入响应该笔交易的水电站列表中。
进一步地,所述步骤T9具体为:
对于任意电站A,从t到t+Δt时刻,弃水电量为:
AbaCap(A,t,t+Δt)=ThePowGenCap(A,level,inVol-outVol,t,t+Δt)-ActPowGenCap(A,t,t+Δt) (2-3)
取maxA baCap(A,t,t+Δt)所对应的电站A,即得到弃水量最严重的电站;
其中,AbaCap(A,t,t+Δt)表示电站A从时间t到t+Δt时刻的弃水电量;
ThePowGenCap(A,level,inVol-outVol,t,t+Δt)表示表示电站A,从t到t+Δt时刻,在水位为level时,对应入库流量inVol和出口流量为outVol时的理论发电量;
ActPowGenCap(A,t,t+Δt)表示表示电站A,从t到t+Δt时刻的实际发电量。
进一步地,所述步骤T10具体为:
水电站发电需求:
HdyStaDemA,t
α(ActWatLevA,t-PowTheWatLevA,t)+β(ActWatLevA,t-ShipTheWatLevA,t)+
γ(ActWatLevA,t-IrrTheWatLevA,t) (2-4)
选择电站A,使其满足maxHdyStaDemA,t作为相应该需求的水电站;
其中,HdyStaDemA,t表示电站A在t时刻的发电需求迫切程度评价指标,ActWatLevA,t和PowTheWatLevA,t分别表示根据发电计划,电站A在t时刻实际水位和发电理论水位;ShipTheWatLevA,t表示满足航运安排的电站A在t时刻的航运理论水位;IrrTheWatLevA,t表示满足灌溉需求电站A在t时刻D灌溉理论水位,α,β,γ为系数,取值为0到1之间。
所述步骤T12中判断水电集群发电能力是否用尽的方法为:
若该水电集群共有T个水电站,则
/>
若公式2-5左边小于右边,则该水电集群发电能力未用尽,若公式2-5左边等于右边,则该水电集群发电能力用尽,其中,HydStaPowj,t表示t时刻第j个水电站的发电出力,HydStaInsCapj,t表示t时刻第j个水电站的装机容量。
根据受端负荷的市场化购电需求,有很多情况需要考虑,我们首先判断特高压直流通道是否满送,若否则选择利用率最低的特高压直流通道进行交易,若否再考虑能响应该笔的水电站,在考虑水电站时,首先考虑弃水,若有电站有弃水,为了避免浪费,选择弃水最严重的发电站,若是,则再考虑航运灌溉需水量,进行进一步判定,最后完成该次市场化交易。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明的保护范围,任何熟悉本领域的技术人员在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种考虑水利电力综合的龙头水库水电群交易优化方法,其特征在于:首先考虑市场化交易,包括依次进行的以下步骤:
S1:分析龙头水库投产后,水电集群发电能力;
S2:根据来水预测,分别安排国调、网调、省调水电站年度发电计划,并按受电地区分解年度计划;
S3:根据负荷预测,确定省内负荷分月用电需求,包括最大用电负荷和统调用电量;
S4:依据本省机组发电计划以及国调、网调机组留本省发电计划和本省负荷预测,及断面限制,进行省内电力电量平衡分析;
S5:根据省内电力电量平衡结果,确定省调水电机组丰水期外送电能力;
S6:确定跨区直流通道及跨省交流断面功率限额;
S7:针对每条跨区特高压直流通道,依次安排国调机组送出政府间中长期送电协议计划的电力和电量;
S8:针对每条跨区超高压直流通道,安排跨区水火风光丰枯互济年度计划;
S9:针对每个跨省超高压交流断面,安排国调、网调机组外送电力和电量,安排政府间协议电量;
S10:在国调机组送电计划基础上,丰水期特高压直流通道按功率限额,安排区域内清洁能源外送;区域间的超高压互济直流,丰水期按30%功率限额,安排省内清洁能源外送;省间的交流断面,丰水期按满功率,安排省内清洁能源外送;
然后考虑市场化临时交易过程,包括依次进行的以下步骤:
T1:对剩余的水电集群发电能力及通道空间,开展日前及月度、日前或日内市场化电量交易;
T2:是否有受端负荷提出市场化购电需求?若是,转下一步,若否,转T9;
T3:根据受端市场提出的购电交易需求,确定受端所需的电力和电量;
T4:所有特高压直流通道是否都满送?若否转下一步,若是转T6;
T5:选择利用率最低的特高压直流通道安排交易;
T6:选择输电损耗最小的交流通道安排交易;
T7:根据发电能力,得到该通道下能响应交易的水电站列表;
T8:上述水电站列表中是否有电站存在弃水?若是则转T9,若否则转T10;
T9:将交易分配给弃水最严重的电站;
T10:综合考虑航运、灌溉需水量,从上述水电站列表中,确定响应交易的水电站;
T11:完成一次市场化交易;
T12:水电集群发电能力是否用尽?若是则结束,若否转T1。
2.根据权利要求1所述的考虑水利电力综合的龙头水库水电群交易优化方法,其特征在于:所述步骤S1中分析龙头水库投产后,水电集群发电能力,包括预想出力、保证出力和年发电量指标,具体方法为:
将电站A第i个月丰、平、枯水年预想出力表示为:、/>,其中,i=1,2,3,…,12;
将电站A第i个月,丰、平、枯水年平均出力表示为:、/>
将电站A第i个月,丰、平、枯水年发电量表示为:、/>、/>
则电站A丰、平、枯水年年发电量为:
(1-1)
(1-2)
(1-3)
由公式1-1、1-2、1-3得出电站A的丰、平、枯水年年发电量。
3.根据权利要求1所述的考虑水利电力综合的龙头水库水电群交易优化方法,其特征在于:所述步骤S2针对研究目标年,电站A第i个月的最大出力、平均出力、扣除厂用电及电厂内部线损损耗后的发电量分别表示为:
、/>、/>,其中,i=1,2,3,…,12;
送省外的平均出力和电量分别表示为:,/>
留本省的平均出力和电量分别表示为:,/>
则对所有月份i满足约束:
(1-4)
其中,i=1,2,3,…,12;
研究目标年,电站A年发电量为:
(1-5)
研究目标年全年电站A送省外电量为:
(1-6)
研究目标年全年电站A年留省内电量为:
(1-7)。
4.根据权利要求1所述的考虑水利电力综合的龙头水库水电群交易优化方法,其特征在于:所述步骤S6中确定跨区直流通道及跨省交流断面功率限额的方法为:
对于第k条跨区特高压直流通道的送电能力表示为,其中,k= 1,2,3,…,s,本区域共有s条跨区特高压直流外送通道;
对于第k条跨区超高压直流通道的送电能力表示为,其中,k= 1,2,3,…,u,本区域共有u条跨区超高压直流外送通道;
对于第k个跨省交流断面的送电能力表示为,其中,k= 1,2,3,…,v,区域内共有v个跨省交流断面;
则对第k条外送通道,省调的外送空间为
(1-8)
其中,k= 1,2,3,…,s,和/>分别表示国调和网调经过第i条高压直流外送的电力,
则在第i个月,省调高峰时段最大外送空间为:
(1-9)
其中,表示受外在因素影响导致第i个月外送能力的变化,i=1,2,3,…,12,/>表示外部因素影响,交直流输电线路限功率运行系数,其中,为提高算法运行效率,直流通道以线路为单位进行控制,交流通道以断面为单位进行控制。
5.根据权利要求1所述的考虑水利电力综合的龙头水库水电群交易优化方法,其特征在于:所述步骤S7中针对每条跨区特高压直流通道,依次安排国调机组送出政府间中长期送电协议计划的电力和电量的方法为:
将第i个月经第k条跨区特高压直流通道送出的区域内清洁能源电力和电量分别表示为:和/>,则平均意义上有(1-10)
其中是第i个月的天数;
将第i个月第k条特高压直流上安排的电力和电量分别记为,则依次安排国调机组送出、政府间中长期送电协议计划的电力和电量后,有
(1-11)
(1-12)
其中,和/>为第i个月,对应第k条特高压直流的优先安排的国调水电站的发电电力和电量,/>和/>为第i个月,对应第k条特高压直流的优先安排的政府间协议的电力和电量。
6.根据权利要求1所述的考虑水利电力综合的龙头水库水电群交易优化方法,其特征在于:所述步骤S8中针对每条跨区超高压直流通道,安排跨区水火风光丰枯互济年度计划的方法为:
将第i个月经第k条跨区超高压直流通道送出的区域内清洁能源电力和电量分别表示为:和/>,则平均意义上有
(1-13)
其中是第i个月的天数;
将第i个月经第k条跨区超高压直流通道跨区水火风光丰枯互济受入电力和电量分别表示为和/>,跨区水火风光丰枯互济送出电力和电量分别为/>、/>,则第i个月经第k条跨区超高压直流通道送出的电力和电量分别为:
(1-14)
(1-15)
则第i个月经第k条跨区超高压直流通道受入的电力和电量分别为:
(1-16)
(1-17)。
7.根据权利要求1所述的考虑水利电力综合的龙头水库水电群交易优化方法,其特征在于:所述步骤S9中针对每个跨省超高压交流断面,安排国调、网调机组外送电力和电量,安排政府间协议电量的方法为:
将第i个月经第k个跨省交流断面送出的区域内清洁能源电力和电量分别表示为为和/>,则有:
(1-18)
其中,是第i个月的天数;
则第i个月经第k个跨省交流断面输送的电力和电量分别为:
(1-19)
(1-20)
其中,和/>分别为第i个月经第k个跨省交流断面输送的国调机组的电力和电量;/>和/>分别为第i个月经第k个跨省交流断面输送的网调机组的电力和电量;/>和/>分别为第i个月经第k个跨省交流断面输送的政府间协议的电力和电量。
8.根据权利要求1所述的考虑水利电力综合的龙头水库水电群交易优化方法,其特征在于:所述步骤T5中对于没有达到输送功率限额的特高压直流通道,按通道利用率从低到高进行排序,选择利用率最低的通道,安排交易;
所述步骤T7具体为:
将时间t到时刻,市场化交易受端负荷中心所提出的电力电量需求分别命名为:
和/>,其中t表示时间;
则对于任意电站A,从t到时刻,若满足:
电力:(2-1)
电量:(2-2)
其中,表示电站A的装机容量,/>表示电站A在t时刻的可发电量;
则将该电站加入响应交易的水电站列表中。
9.根据权利要求1所述的考虑水利电力综合的龙头水库水电群交易优化方法,其特征在于:所述步骤T9具体为:
对于任意电站A,从t到时刻,弃水电量为:
(2-3)
所对应的电站A,即得到弃水量最严重的电站;
其中,表示电站A从时间t到/>时刻的弃水电量;表示表示电站A,从t到/>时刻,在水位为/>时,对应入库流量/>和出口流量为/>时的理论发电量;表示表示电站A,从t到/>时刻的实际发电量。
10.根据权利要求1所述的考虑水利电力综合的龙头水库水电群交易优化方法,其特征在于:所述步骤T10具体为:
水电站发电需求:
(2-4)
选择电站A,使其满足作为相应该需求的水电站;
其中,表示电站A在t时刻的发电需求迫切程度评价指标,/>和/>分别表示根据发电计划,电站A在t时刻实际水位和发电理论水位;表示满足航运安排的电站A在t时刻的航运理论水位;/>表示满足灌溉需求电站A在t时刻D灌溉理论水位,/>,/>,/>为系数,取值为0到1之间;
所述步骤T12中判断水电集群发电能力是否用尽的方法为:
若该水电集群共有S个水电站,则
(2-5)
若公式2-5左边小于右边,则该水电集群发电能力未用尽,若公式2-5左边等于右边,则该水电集群发电能力用尽,其中,表示t时刻第j个水电站的发电出力,表示t时刻第j个水电站的装机容量。
CN202010467149.6A 2020-05-28 2020-05-28 考虑水利电力综合的龙头水库水电群交易优化方法 Active CN111612264B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010467149.6A CN111612264B (zh) 2020-05-28 2020-05-28 考虑水利电力综合的龙头水库水电群交易优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010467149.6A CN111612264B (zh) 2020-05-28 2020-05-28 考虑水利电力综合的龙头水库水电群交易优化方法

Publications (2)

Publication Number Publication Date
CN111612264A CN111612264A (zh) 2020-09-01
CN111612264B true CN111612264B (zh) 2023-09-29

Family

ID=72200213

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010467149.6A Active CN111612264B (zh) 2020-05-28 2020-05-28 考虑水利电力综合的龙头水库水电群交易优化方法

Country Status (1)

Country Link
CN (1) CN111612264B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113964866B (zh) * 2021-10-27 2024-02-20 黄河勘测规划设计研究院有限公司 一种单元式多能互补清洁能源基地构建方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104598991A (zh) * 2014-12-27 2015-05-06 西安交通大学 考虑外送电交易、跨省跨区联络线交易与安全约束的机组组合获取方法
CN109492861A (zh) * 2018-09-27 2019-03-19 昆明电力交易中心有限责任公司 一种梯级水电站群中期电量交易计划分解方法
CN110400232A (zh) * 2019-06-28 2019-11-01 云南电网有限责任公司 考虑电网断面约束的水电站群月度交易计划电量分解方法
CN111126657A (zh) * 2019-11-11 2020-05-08 西安交通大学 交流互联电网省间清洁电能峰谷丰枯互济的电力交易模式

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9865024B2 (en) * 2013-03-15 2018-01-09 Open Access Technology International, Inc. Systems and methods of determining optimal scheduling and dispatch of power resources

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104598991A (zh) * 2014-12-27 2015-05-06 西安交通大学 考虑外送电交易、跨省跨区联络线交易与安全约束的机组组合获取方法
CN109492861A (zh) * 2018-09-27 2019-03-19 昆明电力交易中心有限责任公司 一种梯级水电站群中期电量交易计划分解方法
CN110400232A (zh) * 2019-06-28 2019-11-01 云南电网有限责任公司 考虑电网断面约束的水电站群月度交易计划电量分解方法
CN111126657A (zh) * 2019-11-11 2020-05-08 西安交通大学 交流互联电网省间清洁电能峰谷丰枯互济的电力交易模式

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
电力市场环境下大规模水电站群月度交易电量分解与校核方法;程雄 等;中国电机工程学报;第40卷(第8期);第2514-2522页 *

Also Published As

Publication number Publication date
CN111612264A (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
WO2021244000A1 (zh) 一种区域能源综合体虚拟聚合系统及方法
CN103942728B (zh) 梯级水电站群日发电计划编制方法
WO2013177923A1 (zh) 风光储联合发电系统日前优化调度方法
CN105375507A (zh) 雾霾环境下虚拟电厂的电力两级交互优化调度系统
CN108306288B (zh) 一种基于需求侧响应的微网社区分布式能量分配方法
CN104077635A (zh) 一种基于光伏发电系统的电动汽车充电站充电优化方法
CN104063808A (zh) 一种跨省送电梯级水电站群调峰调度两阶段搜索方法
CN112564109B (zh) 一种基于储能系统参与含大规模海上风电的调频优化运行方法
CN109711706A (zh) 考虑分布式电源和需求响应的主动配电网变电站规划方法
CN105071410A (zh) 基于虚拟发电厂的配电网无功功率优化调度方法及系统
CN111612268B (zh) 考虑市场交易的龙头水库水电集群运行优化方法
CN115765015A (zh) 面向电网实际应用场景的源网荷储协同互动方案制定方法
CN111612264B (zh) 考虑水利电力综合的龙头水库水电群交易优化方法
Ma et al. Optimal configuration of 5G base station energy storage considering sleep mechanism
CN110826778A (zh) 一种主动适应新能源发展的负荷特性优化计算方法
CN116454879A (zh) 一种虚拟电厂型铁路牵引供电系统及控制方法
CN111612263B (zh) 考虑水资源利用需求的龙头水库水电群交易优化方法
CN111612269B (zh) 清洁能源年度送电方案优化方法
CN107086579B (zh) 一种基于回滞效应的空调用户对实时电价的响应方法
CN108695850B (zh) 一种单站多电网的水电负荷分配方法、系统及其应用
Li et al. Interactive equilibrium of electricity-gas energy distribution system and integrated load aggregators considering energy pricings: a master-slave approach
CN107196348A (zh) 一种考虑多端柔直的日前发电计划编制方法
Zhang et al. Modeling of CHP-EHP coupled energy station considering load side flexibility
CN109638896B (zh) 一种面向能源互联网的能源联合供能管控方法及系统
Teliceanu et al. Consumption profile optimization in smart city vision

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant