CN111612263B - 考虑水资源利用需求的龙头水库水电群交易优化方法 - Google Patents

考虑水资源利用需求的龙头水库水电群交易优化方法 Download PDF

Info

Publication number
CN111612263B
CN111612263B CN202010467135.4A CN202010467135A CN111612263B CN 111612263 B CN111612263 B CN 111612263B CN 202010467135 A CN202010467135 A CN 202010467135A CN 111612263 B CN111612263 B CN 111612263B
Authority
CN
China
Prior art keywords
power
electric quantity
water
provincial
transaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010467135.4A
Other languages
English (en)
Other versions
CN111612263A (zh
Inventor
魏明奎
路亮
周泓
江栗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwest Branch of State Grid Corp
Original Assignee
Southwest Branch of State Grid Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwest Branch of State Grid Corp filed Critical Southwest Branch of State Grid Corp
Priority to CN202010467135.4A priority Critical patent/CN111612263B/zh
Publication of CN111612263A publication Critical patent/CN111612263A/zh
Application granted granted Critical
Publication of CN111612263B publication Critical patent/CN111612263B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Human Resources & Organizations (AREA)
  • Strategic Management (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Primary Health Care (AREA)
  • Water Supply & Treatment (AREA)
  • Development Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

本发明公开了考虑水资源利用需求的龙头水库水电群交易优化方法,属于水电集群调度领域,提出两种方案,第一种是综合考虑受端市场负荷、来水量、装机容量和发电出力,以及全路径通路的水电集群中的输电损耗,形成了一个完善的水电集群交易的优化方案,对于较小型的受端市场,给出了一个统一的供电送端选择优化方案;第二种是提供了考虑水资源利用需求的龙头水库水电群交易优化方法,综合考虑受端市场负荷、来水量、装机容量和发电出力,及送电时该送端的水位,对于较大型影响水位的受端市场,给出了一个完善的水电集群交易的选择优化方案。

Description

考虑水资源利用需求的龙头水库水电群交易优化方法
技术领域
本发明属于水电集群调度领域,涉及考虑水资源利用需求的龙头水库水电群交易优化方法。
背景技术
目前,国内针对梯级水电的相关研究已初步开展,但是主要围绕的是梯级水电运行过程中的各类协调优化调度方法展开了研究。
专利[1]提出了采用一种梯级水电“虚拟抽蓄电站”的调度方法,以实际与目标调峰功率偏差最小和梯级水电耗水量最小为调度目标,构建梯级水电“虚拟抽蓄电站”调度目标函数进行求解优化调度,以期实现电力系统的短期调度计划;
专利[2]公开了一种梯级水电系统发电调度自适应优化方法与系统,用以提高梯级水电系统的整体发电效益;
专利[3]提出了一种基于电量控制的梯级水电短期调峰模型及求解方法,可使梯级水电在满足日优化电量、出力爬坡、出力波动控制需求的同时,充分发挥了梯级水电站群的调峰作用;
专利[4]公开了一种巨型梯级水电系统的多目标调度并行降维方法;
专利[5]提出了一种考虑调峰调频需求的多能源协调优化调度方法;
专利[6]提出了一种基于随机安全域的梯级水电鲁棒优化调度方法,该方法对预调度方案的鲁棒可行性进行判定,通过反馈修正协调优化最终获得具有鲁棒性的调度方案;
专利[7]公开了一种基于实时反馈的梯级水电水位控制的多时段潮流优化方法,构建了水库水位与电网运行相协调的多时段最优潮流控制方法,基于实时反馈实现了将复杂的非线性条件线性化处理的效果,大大提升了梯级水电运行效率;
专利[8]提出了一种涉及一种梯级水电参与省内和西电东送市场组合交易策略优化方法,为新电力环境下我国西南地区大规模梯级水电站群的调度运行管理提供有益支持;
专利[9]提出了一种市场环境下梯级水电站中长期调度与检修双层优化方法,以中长期调度中间结果为边界条件,以最小检修损失为优化目标,将检修损失优化结果与中长期发电收益归并为总收益,从而实现联合优化;
专利[10]提供了基于调节性能的水风光电站群协同组合划分方法及系统,提升了多种电源协同运行优化的精细度,有利于含有多种类型电源的复杂电力系统的调度优化,对于提高清洁能源开发利用具有重要意义,具有重要的推广使用价值;
专利[11]提供了一种考虑非恒定耦合约束的水电群调度方法;专利[12]提出了一种考虑水流延时连续变化的梯级水电站日优化调度方法;
专利[13]提出了一种巨型水电站动态投产下跨流域梯级水电站群长期运行方法;
专利[14]提出了一种一种考虑水流延时连续变化的梯级水电站日优化调度方法,这种方法相较于前面的调度方法具有水流延时描述细致、模型精确、收敛效果好、实用性强等优点;
专利[15]提出了一种复杂约束限制下的梯级水电站群实时优化调度方法,其将日前发电计划纳入实时调度算法中,以梯级水电系统总蓄能最大作为优化目标,满足实时调度的安全性、时效性、实用性、经济性的要求。
专利[16]提出了一种多尺度电力市场条件下的梯级水电中期发电计划制定方法,统筹考虑了梯级水电站在传统非市场条件下面临的上下游复杂约束问题及多尺度市场带来的多市场电价、履约耦合、市场风险等新问题,能较好地引导梯级水电发电过程响应市场价格变化、通过市场优化提高整体收益并规避市场风险;
专利[17]提出了一种梯级水电参与省内和西电东送市场组合交易策略优化方法,为新电力环境下我国西南地区大规模梯级水电站群的调度运行管理提供有益支持;
专利[18]提出了一种市场环境下梯级水电站中长期调度与检修双层优化方法;
专利[19]提出了一种基于梯级水电站耦合关系的日前市场出清机制,实现上、下游电站的联合出清,解决下游电站中标电量与可发电流量匹配失衡问题。
专利[20]本发明公开了一种基于三层宏观组网约束的中压配网精准规划方法,通过空间上的全局统筹和时间上的远近协调强化规划的目标导向和利旧原则,提升规划方案的可操作性、科学性和精准性。
专利[21]公开了一种基于GIS信息数据的电力走廊规划方法,减少因外送通道规划建设滞后,水电出现大量弃水,经济效益损失严重的问题,确保绿色环保的水电顺利送出,创造持续可靠的经济效益、生态效益和社会效益。
上述专利[1-15]基本侧重于梯级水电的运行侧,着重于梯级水电站之间的协调调度问题;专利[16-19]则侧重于电力市场侧,着重于上下游的水电站如何参与电力市场的竞争以及出清价格的确定等方面的问题;专利[20-21]虽然涉及到网架规划的问题,但专利[20-21]主要是针对精准配电网的规划方法,其对于分区电量平衡类的大区域协调规划问题未有涉及,更没有针对龙头水库建设的长时间动态过程展开分析,以及建立相适应的评估方案和评价体系。
因此考虑水资源利用需求的龙头水库水电群交易优化方法亟待研究。
发明内容
本发明的目的在于:提供了考虑水资源利用需求的龙头水库水电群交易优化方法,综合考虑受端市场负荷、来水量、装机容量和发电出力,以及全路径通路的水电集群中的输电损耗,及送电时该送端的水位,形成了一个完善的水电集群交易的优化方案,解决了目前没有完善的考虑水资源利用需求的龙头水库水电群交易优化方法形成完善的水电集群交易的优化方案的问题。
本发明采用的技术方案如下:
考虑水资源利用需求的龙头水库水电群交易优化方法,首先考虑市场化交易,主要包括依次进行的以下步骤:
S1:分析龙头水库投产后,水电集群发电能力;
S2:根据来水预测,分别安排国调、网调、省调水电站年度发电计划,并按受电地区分解年度计划;
S3:根据负荷预测,确定省内负荷分月用电需求,包括最大用电负荷和统调用电量;
S4:依据本省机组发电计划以及国调、网调机组留本省发电计划和本省负荷预测,及断面限制,进行省内电力电量平衡分析;
S5:根据省内电力电量平衡结果,确定省调水电机组丰水期外送电能力;
S6:确定跨区直流通道及跨省交流断面功率限额;
S7:针对每条跨区特高压直流通道,依次安排国调机组送出政府间中长期送电协议计划的电力和电量;
S8:针对每条跨区超高压直流通道,安排跨区水火风光丰枯互济年度计划;
S9:针对每个跨省超高压交流断面,安排国调、网调机组外送电力和电量,安排政府间协议电量;
S10:在国调机组送电计划基础上,丰水期特高压直流通道按功率限额,安排区域内清洁能源外送;区域间的超高压互济直流,丰水期按30%功率限额,安排省内清洁能源外送;省间的交流断面,丰水期按满功率,排省内清洁能源外送;
然后,再考虑龙头水库调蓄能力的水电集群参与市场化交易方法,主要包括依次进行的以下步骤:
T1:对剩余的水电集群发电能力及通道空间,开展日前及月度、日前或日内市场化电量交易;
T2:判断是否有受端负荷提出市场化购电需求?若是,转T3,若否,转T9;
T3:根据受端市场提出的购电交易需求,确定受端所需的电力和电量;
T4:根据来水量、装机容量和发电出力,确定整个水电集群中,能响应该交易需求的龙头水库水电站群列表;
T5:根据全路径通道情况,确定水电集群中具备外送条件的龙头水库水电站群列表;
T6:综合航运、灌溉需水量,确定响应该购电需求的水电站;
T7:送端到受端是否有可用的直流通道?若是转T8,若否转T10;
T8:直流通道是否达到预设的限额?若否转T9,若是转T10;
T9:通过该直流通道输送,转T11;
T10:通过交流通道输送;
T11:完成一次市场化交易;
T12:水电发电集群能力是否用尽,若是则结束,若否转T1。
进一步地,所述步骤S1中分析龙头水库投产后,水电集群发电能力,主要包括预想出力、保证出力和年发电量指标,具体方法为:
将电站A第i个月丰、平、枯水年预想出力表示为:AbuAntPowA,i、NorAntPowA,i、DryAntPowA,i,其中,i=1,2,3,…,12;
将电站A第i个月,丰、平、枯水年平均出力表示为:AbuAvgPowA,i、NorAvgPowA,i、DryAvgPowA,i
将电站A第i个月,丰、平、枯水年发电量表示为:AbuGenCapA,i、NorGenCapA,i、DryGenCapA,i
则电站A丰、平、枯水年年发电量为:
Figure GDA0003304898650000041
Figure GDA0003304898650000042
Figure GDA0003304898650000043
由公式1-1、1-2、1-3得出电站A的丰、平、枯水年年发电量。
进一步地,所述步骤S2针对研究目标年,电站A第i个月的最大出力、平均出力、扣除厂用电及电厂内部线损等损耗后的发电量分别表示为:
MaxPowA,i、AvgPowA,i、GenCapA,i,其中,i=1,2,3,…,12;
送省外的平均出力和电量分别表示为:SendAvgPowA,i,SendGenCapA,i
留本省的平均出力和电量分别表示为:StayAvgPowA,i,StayGenCapA,i
则对所有月份i满足约束:
SendGenCapA,i+StayGenCapA,i=GenCapA,i (1-4)
其中,i=1,2,3,…,12;
研究目标年,电站A年发电量为:
Figure GDA0003304898650000051
研究目标年全年电站A送省外电量为:
Figure GDA0003304898650000052
研究目标年全年电站A年留省内电量为:
Figure GDA0003304898650000053
进一步地,所述步骤S6中确定跨区直流通道及跨省交流断面功率限额的方法为:
对于第k条跨区特高压直流通道的送电能力表示为UHVDCPowLimk,其中,k=1,2,3,…,s,本区域共有s条跨区特高压直流外送通道;
对于第k条跨区超高压直流通道的送电能力表示为EHVDCPowLimk,其中,k=1,2,3,…,u。本区域共有u条跨区超高压直流外送通道;
对于第k个跨省交流断面的送电能力表示为EHVACSecPowLimk,其中,k=1,2,3,…,v。区域内共有v个跨省交流断面;
则对第k条外送通道,省调的外送空间为
ProPowLimk=UHVDCPowLimk-NatDCPowk-RegDCPowk (1-8)
其中,k=1,2,3,…,s,NatDCPowk和RegDCPowk分别表示国调和网调经过第i条高压直流外送的电力,
则在第i个月,省调高峰时段最大外送空间为:
Figure GDA0003304898650000054
其中,Vari表示受外在因素影响导致第i个月外送能力的变化,i=1,2,3,…,12,Coek表示外部因素影响,交直流输电线路限功率运行系数,其中,为提高算法运行效率,直流通道以线路为单位进行控制,交流通道以断面为单位进行控制。
进一步地,所述步骤S7中针对每条跨区特高压直流通道,依次安排国调机组送出政府间中长期送电协议计划的电力和电量的方法为:
将第i个月经第k条跨区特高压直流通道送出的区域内清洁能源电力和电量分别表示为:SCUDCHydPowi,k和SCUDCHydCapi,k,则平均意义上有
SCUDCHydPowi,k=SCUDCHydCapi,k×10000/Moni/24 (1-10)
其中Moni是第i个月的天数;
将第i个月第k条特高压直流上安排的电力和电量分别记为UHVDCPowi,k和UHVDCCapi,k,则依次安排国调机组送出、政府间中长期送电协议计划的电力和电量后,有
UHVDCPowi,k=NatDCPowi,k+GovAgrDCPowi,k+SCUDCHydPowi,k (1-11)
UHVDCCapi,k=NatDCCapi,k+GovAgrDCCapi,k+SCUDCHydCapi,k (1-12)
其中,NatDCPowi,k和NatDCCapi,k为第i个月,对应第k条特高压直流的优先安排的国调水电站的发电电力和电量,GovAgrDCPowi,k和GovAgrDCCapi,k为第i个月,对应第k条特高压直流的优先安排的政府间协议的电力和电量。
进一步地,所述步骤S8中针对每条跨区超高压直流通道,安排跨区水火风光丰枯互济年度计划的方法为:
将第i个月经第k条跨区超高压直流通道送出的区域内清洁能源电力和电量分别表示为:SCEDCHydPowi,k和SCEDCHydCapi,k,则平均意义上有
SCEDCHydPowi,k=SCEDCHydCapi,k×10000/Moni/24 (1-13)
其中Moni是第i个月的天数;
将第i个月经第k条跨区超高压直流通道跨区水火风光丰枯互济受入电力和电量分别表示为NorToSouPowi,k和NorToSouCapi,k,跨区水火风光丰枯互济送出电力和电量分别为SouToNorPowi,k、SouToNorCapi,k,则第i个月经第k条跨区超高压直流通道送出的电力和电量分别为:
EHVDCSendPowi,k=SouToNorPowi,k+SCEDCHydPowi,k (1-14)
EHVDCSendPowi,k=SouToNorCapi,k+SCEDCHydCapi,k (1-15)
则第i个月经第k条跨区超高压直流通道受入的电力和电量分别为:
EHVDCRecPowi,k=NorToSouPowi,k (1-16)
EHVDCRecPowi,k=NorToSouCapi,k (1-17)。
进一步地,所述步骤S9中针对每个跨省超高压交流断面,安排国调、网调机组外送电力和电量,安排政府间协议电量的方法为:
将第i个月经第k个跨省交流断面送出的区域内清洁能源电力和电量分别表示为为SCEACHydPowi,k和SCEACHydCapi,k,则有:
SCEACHydPowi,k=SCEACHydCapi,k×10000/Moni/24 (1-18)
其中,Moni是第i个月的天数;
则第i个月经第k个跨省交流断面输送的电力和电量分别为:
ACSectPowi,k=NatACPowi,k+RegACPowi,k+GovAgrACPowi,k+SCEACHydPowi,k (1-19)
ACSectCapi,k=NatACCapi,k+RegACCapi,k+GovAgrACCapi,k+SCEACHydCapi,k (1-20)
其中,NatACPowi,k和NatACCapi,k分别为第i个月经第k个跨省交流断面输送的国调机组的电力和电量;RegACPowi,k和RegACCapi,k分别为第i个月经第k个跨省交流断面输送的网调机组的电力和电量;GovAgrACPowi,k和GovAgrACCapi,k分别为第i个月经第k个跨省交流断面输送的政府间协议的电力和电量。
进一步地,所述步骤T4中,能响应该交易需求的龙头水库水电站群列表的确定方法为:
将时间t到t+Δt时刻,市场化交易受端负荷中心所提出的电力电量需求分别表示为:MarkRecRegPowt,t+Δt和MarkRecRegCapt,t+Δt,其中t表示时间;
第j个水电集群包括Nj个水电站,则能响应该交易需求的水电群需满足:
电力:
Figure GDA0003304898650000071
电量:
Figure GDA0003304898650000072
其中i=1,2,3,…Nj;t表示起始时刻,Δt表示该交易经历的时长;PlanGenPowi,t和PlanGenCapi分别表示t时刻第i个电站的发电计划出力和计划电量,InsCapi和GenCapi,t分别表示第i个电站的装机容量和第i个电站t时刻可发电量;
通过该步骤,找出所有可以提供该交易的水电集群列表。
进一步地,所述步骤T5具体为:
设t到t+Δt时刻,市场化交易电量需要经过从A到B的输电线路,则:
MarkRecRegPowt,t+Δt+max(TranLinePowA,B,t,t+Δt)<TranCapA,B (2-3)
其中,TranLinePowA,B,t,t+Δt和TranCapA,B分别表示t到t+Δt时刻输电线路A到B的输送功率和输送能力;从市场交易的电源侧到负荷侧,若每一段输电线路或断面都满足上述约束,则该水电集群可以响应该笔市场化交易。
进一步地,所述步骤T6具体为:
对于所有可以响应该交易的水电集群,
WatDems,t
α(Act1WatLevs,t-PowTheWatLevs,t)+β(Act2WatLevs,t-ShipTheWatLevs,t)+γ(Act3WatLevs,t-IrrTheWatLevs,t) (2-4)
其中,WatDems,t表示电站T在t时刻的水量需求,Act1WatLevs,t和PowTheWatLevs,t分别表示根据发电计划,电站T在t时刻实际水位和发电理论水位;Act2WatLevs,t和ShipTheWatLevs,t分别表示为满足航运安排,电站T在t时刻实际水位和航运理论水位;Act3WatLevs,t和IrrTheWatLevs,t分别表示为满足灌溉需求,电站T在t时刻实际水位和灌溉理论水位,α,β,γ为系数,取值为0到1之间;
所述步骤T8具体为:
用点A和B分别表示完成该交易所经过的直流通道起点和终点,设交易时刻为从t时刻到t+Δt时刻,则判断
max(TranLinePlanPowA,B,t,t+Δt)+MarkRecRegPowt,t+Δt≤min(TranLineThreA,B,t,t+Δt) (2-5)
其中max(TranLinePlanPowA,B,t,t+Δt)表示从t时刻到t+Δt时刻直流通道计划功率的最大值,MarkRecRegPowt,t+Δt表示该市场交易受端区域的电力需求,min(TranLineThreA,B,t,t+Δt)表示从t时刻到t+Δt时刻直流通道计划传输限额的最小值。
在本方案中,区别于前述技术方案考虑输电损耗,我们重点考虑航运、灌溉的需水量,还有供电的送端到受端是否有可用的直流通道及该直流通道是否达到预设限额的问题,这里区别于前述技术方案的是,这里一般是较大型的供电受端市场,因此对于输电损耗的差别很小,并且,选择给该受端供电的送端的水位会有较大变化,需要考虑航运的需求,因此我们在这种环境下选择该方案去进行供电送端的选择。
综上所述,由于采用了上述技术方案,本发明的有益效果是:
1.本发明考虑水资源利用需求的龙头水库水电群交易优化方法,综合考虑受端市场负荷、来水量、装机容量和发电出力,以及全路径通路的水电集群中的输电损耗,形成了一个完善的水电集群交易的优化方案,对于较小型的受端市场,给出了一个统一的供电送端选择优化方案。
2.本发明考虑水资源利用需求的龙头水库水电群交易优化方法,提供了考虑水资源利用需求的龙头水库水电群交易优化方法,综合考虑受端市场负荷、来水量、装机容量和发电出力,及送电时该送端的水位,对于较大型影响水位的受端市场,给出了一个完善的水电集群交易的选择优化方案。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图,其中:
图1是本发明的一种方案的原理框图;
图2是本发明的另一种方案的原理框图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明,即所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本发明实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本发明的实施例的详细描述并非旨在限制要求保护的本发明的范围,而是仅仅表示本发明的选定实施例。基于本发明的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,术语“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
下面结合实施例对本发明的特征和性能作进一步的详细描述。
实施例一
本发明较佳实施例提供的一种,考虑水资源利用需求的龙头水库水电群交易优化方法,主要包括依次进行的以下步骤:
考虑水资源利用需求的龙头水库水电群交易优化方法,首先考虑市场化交易,主要包括依次进行的以下步骤:
S1:分析龙头水库投产后,水电集群发电能力;
S2:根据来水预测,分别安排国调、网调、省调水电站年度发电计划,并按受电地区分解年度计划;
S3:根据负荷预测,确定省内负荷分月用电需求,包括最大用电负荷和统调用电量;
S4:依据本省机组发电计划以及国调、网调机组留本省发电计划和本省负荷预测,及断面限制,进行省内电力电量平衡分析;
S5:根据省内电力电量平衡结果,确定省调水电机组丰水期外送电能力;
S6:确定跨区直流通道及跨省交流断面功率限额;
S7:针对每条跨区特高压直流通道,依次安排国调机组送出政府间中长期送电协议计划的电力和电量;
S8:针对每条跨区超高压直流通道,安排跨区水火风光丰枯互济年度计划;
S9:针对每个跨省超高压交流断面,安排国调、网调机组外送电力和电量,安排政府间协议电量;
S10:在国调机组送电计划基础上,丰水期特高压直流通道按功率限额,安排区域内清洁能源外送;区域间的超高压互济直流,丰水期按30%功率限额,安排省内清洁能源外送;省间的交流断面,丰水期按满功率,排省内清洁能源外送;
然后,再考虑龙头水库调蓄能力的水电集群参与市场化交易方法,主要包括依次进行的以下步骤:
T1:对剩余的水电集群发电能力及通道空间,开展日前及月度、日前或日内市场化电量交易;
T2:判断是否有受端负荷提出市场化购电需求?若是,转T3,若否,转T9;
T3:根据受端市场提出的购电交易需求,确定受端所需的电力和电量;
T4:根据来水量、装机容量和发电出力,确定整个水电集群中,能响应该交易需求的龙头水库水电站群列表;
T5:根据全路径通道情况,确定水电集群中具备外送条件的龙头水库水电站群列表;
T6:综合航运、灌溉需水量,确定响应该购电需求的水电站;
T7:送端到受端是否有可用的直流通道?若是转T8,若否转T10;
T8:直流通道是否达到预设的限额?若否转T9,若是转T10;
T9:通过该直流通道输送,转T11;
T10:通过交流通道输送;
T11:完成一次市场化交易;
T12:水电发电集群能力是否用尽,若是则结束,若否转T1。
进一步地,所述步骤S1中分析龙头水库投产后,水电集群发电能力,主要包括预想出力、保证出力和年发电量指标,具体方法为:
将电站A第i个月丰、平、枯水年预想出力表示为:AbuAntPowA,i、NorAntPowA,i、DryAntPowA,i,其中,i=1,2,3,…,12;
将电站A第i个月,丰、平、枯水年平均出力表示为:AbuAvgPowA,i、NorAvgPowA,i、DryAvgPowA,i
将电站A第i个月,丰、平、枯水年发电量表示为:AbuGenCapA,i、NorGenCapA,i、DryGenCapA,i
则电站A丰、平、枯水年年发电量为:
Figure GDA0003304898650000111
Figure GDA0003304898650000112
Figure GDA0003304898650000113
由公式1-1、1-2、1-3得出电站A的丰、平、枯水年年发电量。
进一步地,所述步骤S2针对研究目标年,电站A第i个月的最大出力、平均出力、扣除厂用电及电厂内部线损等损耗后的发电量分别表示为:
MaxPowA,i、AvgPowA,i、GenCapA,i,其中,i=1,2,3,…,12;
送省外的平均出力和电量分别表示为:SendAvgPowA,i,SendGenCapA,i
留本省的平均出力和电量分别表示为:StayAvgPowA,i,StayGenCapA,i
则对所有月份i满足约束:
SendGenCapA,i+StayGenCapA,i=GenCapA,i (1-4)
其中,i=1,2,3,…,12;
研究目标年,电站A年发电量为:
Figure GDA0003304898650000114
研究目标年全年电站A送省外电量为:
Figure GDA0003304898650000121
研究目标年全年电站A年留省内电量为:
Figure GDA0003304898650000122
进一步地,所述步骤S6中确定跨区直流通道及跨省交流断面功率限额的方法为:
对于第k条跨区特高压直流通道的送电能力表示为UHVDCPowLimk,其中,k=1,2,3,…,s,本区域共有s条跨区特高压直流外送通道;
对于第k条跨区超高压直流通道的送电能力表示为EHVDCPowLimk,其中,k=1,2,3,…,u。本区域共有u条跨区超高压直流外送通道;
对于第k个跨省交流断面的送电能力表示为EHVACSecPowLimk,其中,k=1,2,3,…,v。区域内共有v个跨省交流断面;
则对第k条外送通道,省调的外送空间为
ProPowLimk=UHVDCPowLimk-NatDCPowk-RegDCPowk (1-8)
其中,k=1,2,3,…,s,NatDCPowk和RegDCPowk分别表示国调和网调经过第i条高压直流外送的电力,
则在第i个月,省调高峰时段最大外送空间为:
Figure GDA0003304898650000123
其中,Vari表示受外在因素影响导致第i个月外送能力的变化,i=1,2,3,…,12,Coek表示外部因素影响,交直流输电线路限功率运行系数,其中,为提高算法运行效率,直流通道以线路为单位进行控制,交流通道以断面为单位进行控制。
进一步地,所述步骤S7中针对每条跨区特高压直流通道,依次安排国调机组送出政府间中长期送电协议计划的电力和电量的方法为:
将第i个月经第k条跨区特高压直流通道送出的区域内清洁能源电力和电量分别表示为:SCUDCHydPowi,k和SCUDCHydCapi,k,则平均意义上有
SCUDCHydPowi,k=SCUDCHydCapi,k×10000/Moni/24 (1-10)
其中Moni是第i个月的天数;
将第i个月第k条特高压直流上安排的电力和电量分别记为UHVDCPowi,k和UHVDCCapi,k,则依次安排国调机组送出、政府间中长期送电协议计划的电力和电量后,有
UHVDCPowi,k=NatDCPowi,k+GovAgrDCPowi,k+SCUDCHydPowi,k (1-11)
UHVDCCapi,k=NatDCCapi,k+GovAgrDCCapi,k+SCUDCHydCapi,k (1-12)
其中,NatDCPowi,k和NatDCCapi,k为第i个月,对应第k条特高压直流的优先安排的国调水电站的发电电力和电量,GovAgrDCPowi,k和GovAgrDCCapi,k为第i个月,对应第k条特高压直流的优先安排的政府间协议的电力和电量。
进一步地,所述步骤S8中针对每条跨区超高压直流通道,安排跨区水火风光丰枯互济年度计划的方法为:
将第i个月经第k条跨区超高压直流通道送出的区域内清洁能源电力和电量分别表示为:SCEDCHydPowi,k和SCEDCHydCapi,k,则平均意义上有
SCEDCHydPowi,k=SCEDCHydCapi,k×10000/Moni/24 (1-13)
其中Moni是第i个月的天数;
将第i个月经第k条跨区超高压直流通道跨区水火风光丰枯互济受入电力和电量分别表示为NorToSouPowi,k和NorToSouCapi,k,跨区水火风光丰枯互济送出电力和电量分别为SouToNorPowi,k、SouToNorCapi,k,则第i个月经第k条跨区超高压直流通道送出的电力和电量分别为:
EHVDCSendPowi,k=SouToNorPowi,k+SCEDCHydPowi,k (1-14)
EHVDCSendPowi,k=SouToNorCapi,k+SCEDCHydCapi,k (1-15)
则第i个月经第k条跨区超高压直流通道受入的电力和电量分别为:
EHVDCRecPowi,k=NorToSouPowi,k (1-16)
EHVDCRecPowi,k=NorToSouCapi,k (1-17)。
进一步地,所述步骤S9中针对每个跨省超高压交流断面,安排国调、网调机组外送电力和电量,安排政府间协议电量的方法为:
将第i个月经第k个跨省交流断面送出的区域内清洁能源电力和电量分别表示为为SCEACHydPowi,k和SCEACHydCapi,k,则有:
SCEACHydPowi,k=SCEACHydCapi,k×10000/Moni/24 (1-18)
其中,Moni是第i个月的天数;
则第i个月经第k个跨省交流断面输送的电力和电量分别为:
ACSectPowi,k=NatACPowi,k+RegACPowi,k+GovAgrACPowi,k+SCEACHydPowi,k (1-19)
ACSectCapi,k=NatACCapi,k+RegACCapi,k+GovAgrACCapi,k+SCEACHydCapi,k (1-20)
其中,NatACPowi,k和NatACCapi,k分别为第i个月经第k个跨省交流断面输送的国调机组的电力和电量;RegACPowi,k和RegACCapi,k分别为第i个月经第k个跨省交流断面输送的网调机组的电力和电量;GovAgrACPowi,k和GovAgrACCapi,k分别为第i个月经第k个跨省交流断面输送的政府间协议的电力和电量。
其中max(TranLinePlanPowA,B,t,t+Δt)表示从t时刻到t+Δt时刻直流通道计划功率的最大值,MarkRecRegPowt,t+Δt表示该市场交易受端区域的电力需求,min(TranLineThreA,B,t,t+Δt)表示从t时刻到t+Δt时刻直流通道计划传输限额的最小值。在本方案中,重点考虑输电损耗的问题,对于都能满足该受端市场的购电需求,由于各供电的电源端给予该受端市场供电的输电损耗不同,我们出于节约能源的目的,需要选择最小输电损耗的供电电源端给予该受端市场供电。
实施例二
本发明较佳实施例提供的一种,考虑水资源利用需求的龙头水库水电群交易优化方法,主要包括依次进行的以下步骤:
考虑水资源利用需求的龙头水库水电群交易优化方法,首先考虑市场化交易,主要包括依次进行的以下步骤:
S1:分析龙头水库投产后,水电集群发电能力;
S2:根据来水预测,分别安排国调、网调、省调水电站年度发电计划,并按受电地区分解年度计划;
S3:根据负荷预测,确定省内负荷分月用电需求,包括最大用电负荷和统调用电量;
S4:依据本省机组发电计划以及国调、网调机组留本省发电计划和本省负荷预测,及断面限制,进行省内电力电量平衡分析;
S5:根据省内电力电量平衡结果,确定省调水电机组丰水期外送电能力;
S6:确定跨区直流通道及跨省交流断面功率限额;
S7:针对每条跨区特高压直流通道,依次安排国调机组送出政府间中长期送电协议计划的电力和电量;
S8:针对每条跨区超高压直流通道,安排跨区水火风光丰枯互济年度计划;
S9:针对每个跨省超高压交流断面,安排国调、网调机组外送电力和电量,安排政府间协议电量;
S10:在国调机组送电计划基础上,丰水期特高压直流通道按功率限额,安排区域内清洁能源外送;区域间的超高压互济直流,丰水期按30%功率限额,安排省内清洁能源外送;省间的交流断面,丰水期按满功率,排省内清洁能源外送;
然后,再考虑龙头水库调蓄能力的水电集群参与市场化交易方法,主要包括依次进行的以下步骤:
T1:对剩余的水电集群发电能力及通道空间,开展日前及月度、日前或日内市场化电量交易;
T2:判断是否有受端负荷提出市场化购电需求?若是,转T3,若否,转T9;
T3:根据受端市场提出的购电交易需求,确定受端所需的电力和电量;
T4:根据来水量、装机容量和发电出力,确定整个水电集群中,能响应该交易需求的龙头水库水电站群列表;
T5:根据全路径通道情况,确定水电集群中具备外送条件的龙头水库水电站群列表;
T6:综合航运、灌溉需水量,确定响应该购电需求的水电站;
T7:送端到受端是否有可用的直流通道?若是转T8,若否转T10;
T8:直流通道是否达到预设的限额?若否转T9,若是转T10;
T9:通过该直流通道输送,转T11;
T10:通过交流通道输送;
T11:完成一次市场化交易;
T12:水电发电集群能力是否用尽,若是则结束,若否转T1。
进一步地,所述步骤T4中,能响应该交易需求的龙头水库水电站群列表的确定方法为:
将时间t到t+Δt时刻,市场化交易受端负荷中心所提出的电力电量需求分别表示为:MarkRecRegPowt,t+Δt和MarkRecRegCapt,t+Δt,其中t表示时间;
第j个水电集群包括Nj个水电站,则能响应该交易需求的水电群需满足:
电力:
Figure GDA0003304898650000151
电量:
Figure GDA0003304898650000152
其中i=1,2,3,…Nj;t表示起始时刻,Δt表示该交易经历的时长;PlanGenPowi,t和PlanGenCapi分别表示t时刻第i个电站的发电计划出力和计划电量,InsCapi和GenCapi,t分别表示第i个电站的装机容量和第i个电站t时刻可发电量;
通过该步骤,找出所有可以提供该交易的水电集群列表。
进一步地,所述步骤T5具体为:
设t到t+Δt时刻,市场化交易电量需要经过从A到B的输电线路,则:
MarkRecRegPowt,t+Δt+max(TranLinePowA,B,t,t+Δt)<TranCapA,B (2-3)
其中,TranLinePowA,B,t,t+Δt和TranCapA,B分别表示t到t+Δt时刻输电线路A到B的输送功率和输送能力;从市场交易的电源侧到负荷侧,若每一段输电线路或断面都满足上述约束,则该水电集群可以响应该交易。
进一步地,所述步骤T6具体为:
对于所有可以响应该交易的水电集群,
WatDems,t
α(Act1WatLevs,t-PowTheWatLevs,t)+β(Act2WatLevs,t-ShipTheWatLevs,t)+γ(Act3WatLevs,t-IrrTheWatLevs,t) (2-4)
其中,WatDems,t表示电站T在t时刻的水量需求,Acy1WatLevs,t和PowTheWatLevs,t分别表示根据发电计划,电站T在t时刻实际水位和发电理论水位;Act2WatLevs,t和ShipTheWatLevs,t分别表示为满足航运安排,电站T在t时刻实际水位和航运理论水位;Act3WatLevs,t和IrrTheWatLevs,t分别表示为满足灌溉需求,电站T在t时刻实际水位和灌溉理论水位,α,β,γ为系数,取值为0到1之间;
所述步骤T8具体为:
用点A和B分别表示完成该交易所经过的直流通道起点和终点,设交易时刻为从t时刻到t+Δt时刻,则判断
max(TranLinePlanPowA,B,t,t+Δt)+MarkRecRegPowt,t+Δt≤min(TranLineThreA,B,t,t+Δt) (2-5)
其中max(TranLinePlanPowA,B,t,t+Δt)表示从t时刻到t+Δt时刻直流通道计划功率的最大值,MarkRecRegPowt,t+Δt表示该市场交易受端区域的电力需求,min(TranLineThreA,B,t,t+Δt)表示从t时刻到t+Δt时刻直流通道计划传输限额的最小值。
在本方案中,区别于前述技术方案考虑输电损耗,我们重点考虑航运、灌溉的需水量,还有供电的送端到受端是否有可用的直流通道及该直流通道是否达到预设限额的问题,这里区别于前述技术方案的是,这里一般是较大型的供电受端市场,因此对于输电损耗的差别很小,并且,选择给该受端供电的送端的水位会有较大变化,需要考虑航运的需求,因此我们在这种环境下选择该方案去进行供电送端的选择。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明的保护范围,任何熟悉本领域的技术人员在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.考虑水资源利用需求的龙头水库水电群交易优化方法,其特征在于:首先考虑市场化交易,主要包括依次进行的以下步骤:
S1:分析龙头水库投产后,水电集群发电能力;
S2:根据来水预测,分别安排国调、网调、省调水电站年度发电计划,并按受电地区分解年度计划;
S3:根据负荷预测,确定省内负荷分月用电需求,包括最大用电负荷和统调用电量;
S4:依据本省机组发电计划以及国调、网调机组留本省发电计划和本省负荷预测,及断面限制,进行省内电力电量平衡分析;
S5:根据省内电力电量平衡结果,确定省调水电机组丰水期外送电能力;
S6:确定跨区直流通道及跨省交流断面功率限额;
S7:针对每条跨区特高压直流通道,依次安排国调机组送出政府间中长期送电协议计划的电力和电量;
S8:针对每条跨区超高压直流通道,安排跨区水火风光丰枯互济年度计划;
S9:针对每个跨省超高压交流断面,安排国调、网调机组外送电力和电量,安排政府间协议电量;
S10:在国调机组送电计划基础上,丰水期特高压直流通道按功率限额,安排区域内清洁能源外送;区域间的超高压互济直流,丰水期按30%功率限额,安排省内清洁能源外送;省间的交流断面,丰水期按满功率,排省内清洁能源外送;
然后,再考虑龙头水库调蓄能力的水电集群参与市场化交易方法,主要包括依次进行的以下步骤:
T1:对剩余的水电集群发电能力及通道空间,开展日前及月度、日前或日内市场化电量交易;
T2:判断是否有受端负荷提出市场化购电需求?若是,转T3,若否,转T9;
T3:根据受端市场提出的购电交易需求,确定受端所需的电力和电量;
T4:根据来水量、装机容量和发电出力,确定整个水电集群中,能响应该交易需求的龙头水库水电站群列表;
T5:根据全路径通道情况,确定水电集群中具备外送条件的龙头水库水电站群列表;
T6:综合航运、灌溉需水量,确定响应该购电需求的水电站;
T7:送端到受端是否有可用的直流通道?若是转T8,若否转T10;
T8:直流通道是否达到预设的限额?若否转T9,若是转T10;
T9:通过该直流通道输送,转T11;
T10:通过交流通道输送;
T11:完成一次市场化交易;
T12:水电发电集群能力是否用尽,若是则结束,若否转T1。
2.根据权利要求1所述的考虑水资源利用需求的龙头水库水电群交易优化方法,其特征在于:所述步骤S1中分析龙头水库投产后,水电集群发电能力,主要包括预想出力、保证出力和年发电量指标,具体方法为:
将电站A第i个月丰、平、枯水年预想出力表示为:AbuAntPowA,i、NorAntPowA,i、DryAntPowA,i,其中,i=1,2,3,…,12;
将电站A第i个月,丰、平、枯水年平均出力表示为:AbuAvgPowA,i、NorAvgPowA,i、DryAvgPowA,i
将电站A第i个月,丰、平、枯水年发电量表示为:AbuGenCapA,i、NorGenCapA,i、DryGenCapA,i
则电站A丰、平、枯水年年发电量为:
Figure FDA0003304898640000021
Figure FDA0003304898640000022
Figure FDA0003304898640000023
由公式1-1、1-2、1-3得出电站A的丰、平、枯水年年发电量。
3.根据权利要求1所述的考虑水资源利用需求的龙头水库水电群交易优化方法,其特征在于:所述步骤S2针对研究目标年,电站A第i个月的最大出力、平均出力、扣除厂用电及电厂内部线损损耗后的发电量分别表示为:
MaxPowA,i、AvgPowA,i、GenCapA,i,其中,i=1,2,3,…,12;
送省外的平均出力和电量分别表示为:SendAvgPowA,i,SendGenCapA,i
留本省的平均出力和电量分别表示为:StayAvgPowA,i,StayGenCapA,i
则对所有月份i满足约束:
SendGenCapA,i+StayGenCapA,i=GenCapA,i (1-4)
其中,i=1,2,3,…,12;
研究目标年,电站A年发电量为:
Figure FDA0003304898640000024
研究目标年全年电站A送省外电量为:
Figure FDA0003304898640000031
研究目标年全年电站A年留省内电量为:
Figure FDA0003304898640000032
4.根据权利要求1所述的考虑水资源利用需求的龙头水库水电群交易优化方法,其特征在于:所述步骤S6中确定跨区直流通道及跨省交流断面功率限额的方法为:
对于第k条跨区特高压直流通道的送电能力表示为UHVDCPowLimk,其中,k=1,2,3,…,s,本区域共有s条跨区特高压直流外送通道;
对于第k条跨区超高压直流通道的送电能力表示为EHVDCPowLimk,其中,k=1,2,3,…,u,本区域共有u条跨区超高压直流外送通道;
对于第k个跨省交流断面的送电能力表示为EHVACSecPowLimk,其中,k=1,2,3,…,v,区域内共有v个跨省交流断面;
则对第k条外送通道,省调的外送空间为
ProPowLimk=UHVDCPowLimk-NatDCPowk-RegDCPowk (1-8)
其中,k=1,2,3,…,s,NatDCPowk和RegDCPowk分别表示国调和网调经过第i条高压直流外送的电力,
则在第i个月,省调高峰时段最大外送空间为:
Figure FDA0003304898640000033
其中,Vari表示受外在因素影响导致第i个月外送能力的变化,i=1,2,3,…,12,Coek表示外部因素影响,交直流输电线路限功率运行系数,其中,为提高算法运行效率,直流通道以线路为单位进行控制,交流通道以断面为单位进行控制。
5.根据权利要求1所述的考虑水资源利用需求的龙头水库水电群交易优化方法,其特征在于:所述步骤S7中针对每条跨区特高压直流通道,依次安排国调机组送出政府间中长期送电协议计划的电力和电量的方法为:
将第i个月经第k条跨区特高压直流通道送出的区域内清洁能源电力和电量分别表示为:SCUDCHydPowi,k和SCUDCHydCapi,k,则平均意义上有
SCUDCHydPowi,k=SCUDCHydCapi,k×10000/Moni/24 (1-10)
其中Moni是第i个月的天数;
将第i个月第k条特高压直流上安排的电力和电量分别记为UHVDCPowi,k和UHVDCCapi,k,则依次安排国调机组送出、政府间中长期送电协议计划的电力和电量后,有
UHVDCPowi,k=NatDCPowi,k+GovAgrDCPowi,k+SCUDCHydPowi,k (1-11)
UHVDCCapi,k=NatDCCapi,k+GovAgrDCCapi,k+SCUDCHydCapi,k (1-12)
其中,NatDCPowi,k和NatDCCapi,k为第i个月,对应第k条特高压直流的优先安排的国调水电站的发电电力和电量,GovAgrDCPowi,k和GovAgrDCCapi,k为第i个月,对应第k条特高压直流的优先安排的政府间协议的电力和电量。
6.根据权利要求1所述的考虑水资源利用需求的龙头水库水电群交易优化方法,其特征在于:所述步骤S8中针对每条跨区超高压直流通道,安排跨区水火风光丰枯互济年度计划的方法为:
将第i个月经第k条跨区超高压直流通道送出的区域内清洁能源电力和电量分别表示为:SCEDCHydPowi,k和SCEDCHydCapi,k,则平均意义上有
SCEDCHydPowi,k=SCEDCHydCapi,k×10000/Moni/24 (1-13)
其中Moni是第i个月的天数;
将第i个月经第k条跨区超高压直流通道跨区水火风光丰枯互济受入电力和电量分别表示为NorToSouPowi,k和NorToSouCapi,k,跨区水火风光丰枯互济送出电力和电量分别为SouToNorPowi,k、SouToNorCapi,k,则第i个月经第k条跨区超高压直流通道送出的电力和电量分别为:
EHVDCSendPowi,k=SouToNorPowi,k+SCEDCHydPowi,k (1-14)
EHVDCSendPowi,k=SouToNorCapi,k+SCEDCHydCapi,k (1-15)
则第i个月经第k条跨区超高压直流通道受入的电力和电量分别为:
EHVDCRecPowi,k=NorToSouPowi,k (1-16)
EHVDCRecPowi,k=NorToSouCapi,k (1-17)。
7.根据权利要求1所述的考虑水资源利用需求的龙头水库水电群交易优化方法,其特征在于:所述步骤S9中针对每个跨省超高压交流断面,安排国调、网调机组外送电力和电量,安排政府间协议电量的方法为:
将第i个月经第k个跨省交流断面送出的区域内清洁能源电力和电量分别表示为为SCEACHydPowi,k和SCEACHydCapi,k,则有:
SCEACHydPowi,k=SCEACHydCapi,k×10000/Moni/24 (1-18)
其中,Moni是第i个月的天数;
则第i个月经第k个跨省交流断面输送的电力和电量分别为:
ACSectPowi,k=NatACPowi,k+RegACPowi,k+GovAgrACPowi,k+SCEACHydPowi,k (1-19)
ACSectCapi,k=NatACCapi,k+RegACCapi,k+GovAgrACCapi,k+SCEACHydCapi,k (1-20)
其中,NatACPowi,k和NatACCapi,k分别为第i个月经第k个跨省交流断面输送的国调机组的电力和电量;RegACPowi,k和RegACCapi,k分别为第i个月经第k个跨省交流断面输送的网调机组的电力和电量;GovAgrACPowi,k和GovAgrACCapi,k分别为第i个月经第k个跨省交流断面输送的政府间协议的电力和电量。
8.根据权利要求1所述的考虑水资源利用需求的龙头水库水电群交易优化方法,其特征在于:所述步骤T4中,能响应该交易需求的龙头水库水电站群列表的确定方法为:
将时间t到t+Δt时刻,市场化交易受端负荷中心所提出的电力电量需求分别表示为:MarkRecRegPowt,t+Δt和MarkRecRegCapt,t+Δt,其中t表示时间;
第j个水电集群包括Nj个水电站,则能响应该交易需求的水电群需满足:
电力:
Figure FDA0003304898640000051
电量:
Figure FDA0003304898640000052
其中i=1,2,3,…Nj;t表示起始时刻,Δt表示该交易经历的时长;PlanGenPowi,t和PlanGenCapi分别表示t时刻第i个电站的发电计划出力和计划电量,InsCapi和GenCapi,t分别表示第i个电站的装机容量和第i个电站t时刻可发电量;
通过该步骤,找出所有可以提供该交易的水电集群列表。
9.根据权利要求1所述的考虑水资源利用需求的龙头水库水电群交易优化方法,其特征在于:所述步骤T5具体为:
设t到t+Δt时刻,市场化交易电量需要经过从A到B的输电线路,市场化交易受端负荷中心所提出的电力需求表示为:MarkRecRegPowt,t+Δt;则:
MarkRecRegPowt,t+Δt+max(TranLinePowA,B,t,t+Δt)<TranCapA,B (2-3)
其中,TranLinePowA,B,t,t+Δt和TranCapA,B分别表示t到t+Δt时刻输电线路A到B的输送功率和输送能力;从市场交易的电源侧到负荷侧,若每一段输电线路或断面都满足约束(2-3),则该水电集群可以响应该交易。
10.根据权利要求1所述的考虑水资源利用需求的龙头水库水电群交易优化方法,其特征在于:所述步骤T6具体为:
对于所有可以响应该交易的水电集群,
WatDems,t
α(Act1WatLevs,t-PowTheWatLevs,t)+β(Act2WatLevs,t-ShipTheWatLevs,t)+γ(Act3WatLevs,t-IrrTheWatLevs,t) (2-4)
其中,WatDems,t表示电站T在t时刻的水量需求,Act1WatLevs,t和PowTheWatLevs,t分别表示根据发电计划,电站T在t时刻实际水位和发电理论水位;Act2WatLevs,t和ShipTheWatLevs,t分别表示为满足航运安排,电站T在t时刻实际水位和航运理论水位;Act3WatLevs,t和IrrTheWatLevs,t分别表示为满足灌溉需求,电站T在t时刻实际水位和灌溉理论水位,α,β,γ为系数,取值为0到1之间;
所述步骤T8具体为:
用点A和B分别表示完成该交易所经过的直流通道起点和终点,设交易时刻为从t时刻到t+Δt时刻,则判断max(TranLinePlanPowA,B,t,t+Δt)+MarkRecRegPowt,t+Δt≤min(TranLineThreA,B,t,t+Δt) (2-5)
其中max(TranLinePlanPowA,B,t,t+Δt)表示从t时刻到t+Δt时刻直流通道计划功率的最大值,MarkRecRegPowt,t+Δt表示市场交易受端区域的电力需求,min(TranLineThreA,B,t,t+Δt)表示从t时刻到t+Δt时刻直流通道计划传输限额的最小值。
CN202010467135.4A 2020-05-28 2020-05-28 考虑水资源利用需求的龙头水库水电群交易优化方法 Active CN111612263B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010467135.4A CN111612263B (zh) 2020-05-28 2020-05-28 考虑水资源利用需求的龙头水库水电群交易优化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010467135.4A CN111612263B (zh) 2020-05-28 2020-05-28 考虑水资源利用需求的龙头水库水电群交易优化方法

Publications (2)

Publication Number Publication Date
CN111612263A CN111612263A (zh) 2020-09-01
CN111612263B true CN111612263B (zh) 2022-02-18

Family

ID=72200212

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010467135.4A Active CN111612263B (zh) 2020-05-28 2020-05-28 考虑水资源利用需求的龙头水库水电群交易优化方法

Country Status (1)

Country Link
CN (1) CN111612263B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103337039A (zh) * 2013-04-28 2013-10-02 国家电网公司 一种多目标多约束的中长期购电决策方法
CN103955773A (zh) * 2014-05-13 2014-07-30 国家电网公司 一种水电减弃增发交易管理方法及系统
CN107330551A (zh) * 2017-06-28 2017-11-07 国网山东省电力公司经济技术研究院 一种优化安排能源基地外送通道的送电方法
CN108767895A (zh) * 2018-05-25 2018-11-06 国网四川省电力公司经济技术研究院 考虑资源约束的送端系统水风光配套电源容量优化方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5998081B2 (ja) * 2013-03-08 2016-09-28 株式会社日立製作所 電力需要調整システム及び需要調整実行システム
CN105335561B (zh) * 2015-10-29 2019-01-08 大连理工大学 一种基于指标排序的梯级水电站群超短期调度方法
US20200076198A1 (en) * 2017-03-03 2020-03-05 General Electric Company Microgrid energy reservoir transaction verification via secure, distributed ledger
CN107844910A (zh) * 2017-11-20 2018-03-27 华北电力大学(保定) 基于风核协调的多电源联合优化调度运行方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103337039A (zh) * 2013-04-28 2013-10-02 国家电网公司 一种多目标多约束的中长期购电决策方法
CN103955773A (zh) * 2014-05-13 2014-07-30 国家电网公司 一种水电减弃增发交易管理方法及系统
CN107330551A (zh) * 2017-06-28 2017-11-07 国网山东省电力公司经济技术研究院 一种优化安排能源基地外送通道的送电方法
CN108767895A (zh) * 2018-05-25 2018-11-06 国网四川省电力公司经济技术研究院 考虑资源约束的送端系统水风光配套电源容量优化方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Real-Time Optimal Dispatch and Economic Viability of Cryogenic Energy Storage Exploiting Arbitrage Opportunities in an Electricity Market;Hadi Khani;《IEEE Transactions on Smart Grid》;20150131;第6卷(第1期);P391-401 *
流域梯级水电站中长期调度与跨价区交易组合双层优化模型;刘方 等;《中国电机工程学报》;20180120;第38卷(第2期);第444-455页 *

Also Published As

Publication number Publication date
CN111612263A (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
CN107301470B (zh) 一种配电网扩展规划与光储选址定容的双层优化方法
CN110782281B (zh) 一种多业主梯级电站流域电量转移的日前市场出清方法
CN114221357B (zh) 计及调频备用效益的主动配电网分层分布式优化调度方法
CN109149651A (zh) 一种计及调压辅助服务收益的光储系统优化运行方法
CN111612268B (zh) 考虑市场交易的龙头水库水电集群运行优化方法
CN111553544B (zh) 基于一致性算法的工业园区分布式综合需求响应方法
CN109978331B (zh) 一种高比例水电现货市场下日电量分解方法
Yu et al. Optimal scheduling strategy of cascade hydropower plants under the joint market of day-ahead energy and frequency regulation
CN109726894A (zh) 保障现货交易和中长期电量的新能源有功指令计算方法
CN111612264B (zh) 考虑水利电力综合的龙头水库水电群交易优化方法
CN111612263B (zh) 考虑水资源利用需求的龙头水库水电群交易优化方法
CN110826778A (zh) 一种主动适应新能源发展的负荷特性优化计算方法
Wang et al. Optimal operation of multi-energy collaborative system considering demand response
CN114548609B (zh) 一种面向生态发电供水的水资源协同调配方法
CN111612271B (zh) 考虑清洁能源利用率的清洁能源外送规划及运行优化方法
CN111612269B (zh) 清洁能源年度送电方案优化方法
CN111709605A (zh) 一种基于多重反调节作用的水库电站调峰能力评估方法
CN113379147B (zh) 远期水电合同与水电站群调度规则的同步优化方法
CN111612270B (zh) 考虑龙头水库适应性的清洁能源外送规划及运行优化方法
Li et al. Optimization Clearing Model of Regional Integrated Electricity Market Transaction in the Dual Track System of Planning and Market
CN111612272B (zh) 考虑龙头水库的水电集群送出网架优化方法
Wu et al. Multi-alliance market subject auxiliary peak shaving strategy for new energy consumption
CN111612267B (zh) 考虑远景水平年的水电集群送出网架优化方法
Zheng et al. Research on optimal operation strategy of distributed energy based on distribution network planning
CN112257994B (zh) 一种协调多种时间尺度的跨省区电量库交易方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant