CN111610547B - 一种i-129取样装置及取样方法 - Google Patents

一种i-129取样装置及取样方法 Download PDF

Info

Publication number
CN111610547B
CN111610547B CN202010445008.4A CN202010445008A CN111610547B CN 111610547 B CN111610547 B CN 111610547B CN 202010445008 A CN202010445008 A CN 202010445008A CN 111610547 B CN111610547 B CN 111610547B
Authority
CN
China
Prior art keywords
sampling
pipe
iodine
gas
gas outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010445008.4A
Other languages
English (en)
Other versions
CN111610547A (zh
Inventor
常贤龙
王欣
张祥林
杨康
曲广卫
郑皓
贾红宝
肖鹏飞
赵江斌
张伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHAANXI WEIFENG NUCLEAR INSTRUMENT Inc
China Nuclear Power Engineering Co Ltd
Original Assignee
SHAANXI WEIFENG NUCLEAR INSTRUMENT Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHAANXI WEIFENG NUCLEAR INSTRUMENT Inc filed Critical SHAANXI WEIFENG NUCLEAR INSTRUMENT Inc
Priority to CN202010445008.4A priority Critical patent/CN111610547B/zh
Publication of CN111610547A publication Critical patent/CN111610547A/zh
Application granted granted Critical
Publication of CN111610547B publication Critical patent/CN111610547B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/167Measuring radioactive content of objects, e.g. contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/202Measuring radiation intensity with scintillation detectors the detector being a crystal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/208Circuits specially adapted for scintillation detectors, e.g. for the photo-multiplier section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments
    • G01T7/02Collecting means for receiving or storing samples to be investigated and possibly directly transporting the samples to the measuring arrangement; particularly for investigating radioactive fluids

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Measurement Of Radiation (AREA)

Abstract

本发明公开了一种I‑129取样装置及取样方法,装置包括取样管路单元和取样探测单元;取样管路单元包括取样气体入口接头、吹洗气体入口接头和取样气体出口接头,以及取样气体进气管、吹洗气体进气管和取样气体出气总管;取样气体进气管上设置有第一过滤器、第一截止阀、第一流量计、第一电磁换向阀和第一调节阀,吹洗气体进气管上设置有第二过滤器、第二截止阀、单向阀、第二流量计、第二电磁换向阀和第二调节阀。取样探测单元包括第一碘取样器、第二碘取样器和碘探测器。本发明装置结构简单,能够有效去除Kr‑85对I‑129影响的同时,实现对I‑129的高效取样,使用效果好,便于推广。

Description

一种I-129取样装置及取样方法
技术领域
本发明属于核辐射监测技术领域,具体涉及一种I-129取样装置及取样方法。
背景技术
在核燃料元件后处理场所,经过长时间冷却,裂变产物中的放射性气体主要是Kr-85和I-129,而I-129的半衰期长达1.57×107年,对人体和环境具有长期危害性。因此,为确保环境和操作人员安全,对核燃料元件后处理场所的工艺管道内的气载排出物中I-129的放射性活度监测十分必要。
但是,由于裂变气体中I-129的含量低,且其活度与Kr-85的活度相差至少106数量级,例如,一根燃耗为62GW的燃料棒冷却五年后,其中Kr-85的活度为7.06×1012Bq,I-129的活度为3.726×106Bq,因此,在对核元件后处理场工艺管道内气载排出物中I-129的活度浓度进行在线连续监测时,必须剔除Kr-85的影响进行气载排出物取样。现有技术中,还缺乏应用在核元件后处理场中结构简单,效果显著的去除Kr-85影响的I-129连续取样装置。
发明内容
本发明所要解决的技术问题在于针对上述现有技术中的不足,提供一种I-129取样装置,其装置结构简单,设计合理,实现方便,能够有效去除Kr-85对I-129影响的同时,实现对I-129的高效取样,使用效果好,便于推广使用。
为解决上述技术问题,本发明采用的技术方案是:一种I-129取样装置,包括取样管路单元和取样探测单元;所述取样管路单元包括取样气体入口接头、吹洗气体入口接头和取样气体出口接头,以及取样气体进气管、吹洗气体进气管和取样气体出气总管;所述取样气体进气管的一端与取样气体入口接头连接,所述取样气体进气管的另一端与取样探测单元连接,所述取样气体进气管上从取样气体入口接头至取样探测单元方向上依次设置有第一过滤器、第一截止阀、第一流量计、第一电磁换向阀和第一调节阀,位于第一电磁换向阀和第一调节阀之间的一段所述取样气体进气管上连接有第一连通管,所述吹洗气体进气管的一端与吹洗气体入口接头连接,所述吹洗气体进气管的另一端与取样探测单元连接,所述吹洗气体进气管上从吹洗气体入口接头至取样探测单元方向上依次设置有第二过滤器、第二截止阀、单向阀、第二流量计、第二电磁换向阀和第二调节阀,位于第二电磁换向阀和第二调节阀之间的一段所述吹洗气体进气管上连接有第二连通管,所述第一连通管与第二电磁换向阀连接,所述第二连通管与第一电磁换向阀连接,所述取样气体出气总管的一端与取样气体出口接头连接,所述取样气体出气总管的另一端连接有第一取样气体出气支管和第二取样气体出气支管,所述第一取样气体出气支管和第二取样气体出气支管均与取样探测单元连接,所述取样气体出气总管上设置有第三截止阀,所述第一取样气体出气支管上设置有第一取样泵,所述第二取样气体出气支管上设置有第二取样泵;所述取样探测单元包括第一碘取样器、第二碘取样器和碘探测器,所述第一碘取样器和第二碘取样器之间设置有铅挡块,所述碘探测器的底部设置有电动滑台,所述碘探测器通过电动滑台的移动对第一碘取样器和第二碘取样器交替探测,所述取样气体进气管和第一取样气体出气支管均与第一碘取样器连通,所述吹洗气体进气管和第二取样气体出气支管均与第二碘取样器连通。
上述的一种I-129取样装置,所述第一电磁换向阀和第二电磁换向阀均为两进一出电磁换向阀。
上述的一种I-129取样装置,所述第一取样泵和第二取样泵均为真空泵。
上述的一种I-129取样装置,所述第一碘取样器和第二碘取样器的结构相同,所述第一碘取样器包括第一气体入口和第一气体出口,所述第一气体入口和第一气体出口之间设置有位于第一碘取样器内的第一碘盒,所述第一碘取样器靠近碘探测器的端面上设置有第一碳纤维封头;所述第二碘取样器包括第二气体入口和第二气体出口,所述第二气体入口和第二气体出口之间设置有位于第二碘取样器内的第二碘盒,所述第二碘取样器靠近碘探测器的端面上设置有第二碳纤维封头。
上述的一种I-129取样装置,所述取样探测单元设置在屏蔽室内。
上述的一种I-129取样装置,所述碘探测器包括NaI晶体、光电倍增管和信号处理模块,所述NaI晶体与光电倍增管之间设置有光导,所述光电倍增管接收NaI晶体传输的光信号,并将所述光信号进行光电转换和倍增后传输至所述信号处理模块。
上述的一种I-129取样装置,所述NaI晶体的尺寸为
Figure BDA0002505506560000031
本发明还公开了一种I-129取样方法,该方法包括以下步骤:
步骤一、将所述取样气体入口接头和取样气体出口接头连接到主排风管;
步骤二、打开所述第一截止阀、第二截止阀和第三截止阀;
步骤三、启动所述第一取样泵和第二取样泵;
步骤四、所述取样探测单元对主排风管内气体进行连续取样;
步骤五、经过取样探测后的气体通过所述取样气体出气总管排放到主排风管中。
上述的一种I-129取样方法,步骤四中所述取样探测单元对主排风管内气体进行连续取样的具体过程为:
步骤401、所述第一电磁换向阀工作,关闭第一电磁换向阀与第二连通管的连通,同时,第二电磁换向阀工作,关闭第二电磁换向阀与第一连通管的连通;
步骤402、在所述第一取样泵作用下,主排风管内气体通过取样气体进气管进入第一碘取样器中,再通过第一取样气体出气支管排到取样气体出气总管中;同时,在所述第二取样泵作用下,吹洗气体通过吹洗气体进气管进入第二碘取样器中,再通过第二取样气体出气支管排到取样气体出气总管中;
步骤403、经过时间T;
步骤404、所述第一电磁换向阀工作,打开第一电磁换向阀与第二连通管的连通,同时,第二电磁换向阀工作,打开第二电磁换向阀与第一连通管的连通;
步骤405、在所述第二取样泵作用下,主排风管内气体通过第二连通管和吹洗气体进气管进入第二碘取样器中,再通过第二取样气体出气支管排到取样气体出气总管中;同时,在所述第一取样泵作用下,吹洗气体通过第一连通管和取样气体进气管进入第一碘取样器中,再通过第一取样气体出气支管排到取样气体出气总管中;
步骤406、经过时间T后,返回步骤401,实现连续取样。
上述的一种I-129取样方法,步骤402中所述主排风管内气体通过取样气体进气管进入第一碘取样器中,气体中I-129被第一碘取样器取样,所述碘探测器通过电动滑台滑动到第一碘取样器处,进行I-129活度探测;同时,吹洗气体通过吹洗气体进气管进入第二碘取样器中,对第二碘取样器进行吹洗,清除第二碘取样器中含高浓度Kr-85的惰性气体;
上述的一种I-129取样方法,步骤405中所述主排风管内气体通过第二连通管和吹洗气体进气管进入第二碘取样器中,气体中I-129被第二碘取样器取样,所述碘探测器通过电动滑台滑动到第二碘取样器处,进行I-129活度探测;同时,吹洗气体通过第一连通管和取样气体进气管进入第一碘取样器中,对第一碘取样器进行吹洗,清除第一碘取样器中含高浓度Kr-85的惰性气体。
本发明与现有技术相比具有以下优点:
1、本发明的装置结构简单,设计合理,实现方便。
2、本发明的取样管路单元通过设计两路气体置换,能够实现I-129的连续取样,提高取样效率。
3、本发明取样探测单元通过设计可移动式碘探测器在电动滑台上移动,在第一碘取样器和第二碘取样器之间移动交替测量,完成对I-129活度的在线连续探测。
4、本发明能够应用在对核燃料元件后处理场所的工艺管道内的气载排出物中I-129的取样中,有效去除Kr-85对I-129影响的同时,实现对I-129的高效取样,使用效果好,便于推广使用。
综上所述,本发明的装置结构简单,设计合理,实现方便,能够有效去除Kr-85对I-129影响的同时,实现对I-129的高效取样,使用效果好,便于推广使用。
下面通过附图和实施例,对本发明的技术方案做进一步的详细描述。
附图说明
图1为本发明的结构示意图;
图2为本发明取样探测单元的结构示意图;
图3为本发明第一碘取样器的结构示意图;
图4为本发明第二碘取样器的结构示意图;
图5为本发明碘探测器的结构示意图。
附图标记说明:
1—取样气体入口接头; 2—吹洗气体入口接头; 3—取样气体出口接头;
4—取样气体进气管; 5—吹洗气体进气管; 6—取样气体出气总管;
7—第一过滤器; 8—第一截止阀; 9—第一流量计;
10—第一电磁换向阀; 11—第一调节阀; 12—第一连通管;
13—第二过滤器; 14—第二截止阀; 15—单向阀;
16—第二流量计; 17—第二电磁换向阀; 18—第二调节阀;
19—第二连通管; 21—第一取样气体出气支管;
22—第二取样气体出气支管; 23—第三截止阀;
24—第一取样泵; 25—第二取样泵; 26—主排风管;
32—第一碘取样器; 32-1—第一气体入口; 32-2—第一气体出口;
32-3—第一碘盒; 32-4—第一碳纤维封头; 33—第二碘取样器;
33-1—第二气体入口; 33-2—第二气体出口; 33-3—第二碘盒;
33-4—第二碳纤维封头; 34—铅挡块; 36—电动滑台;
37—碘探测器; 37-1—NaI晶体; 37-2—光电倍增管;
37-3—信号处理模块; 37-4—光导。
具体实施方式
如图1所示,本发明的I-129取样装置,包括取样管路单元和取样探测单元;所述取样管路单元包括取样气体入口接头1、吹洗气体入口接头2和取样气体出口接头3,以及取样气体进气管4、吹洗气体进气管5和取样气体出气总管6;所述取样气体进气管4的一端与取样气体入口接头1连接,所述取样气体进气管4的另一端与取样探测单元连接,所述取样气体进气管4上从取样气体入口接头1至取样探测单元方向上依次设置有第一过滤器7、第一截止阀8、第一流量计9、第一电磁换向阀10和第一调节阀11,位于第一电磁换向阀10和第一调节阀11之间的一段所述取样气体进气管4上连接有第一连通管12,所述吹洗气体进气管5的一端与吹洗气体入口接头2连接,所述吹洗气体进气管5的另一端与取样探测单元连接,所述吹洗气体进气管5上从吹洗气体入口接头2至取样探测单元方向上依次设置有第二过滤器13、第二截止阀14、单向阀15、第二流量计16、第二电磁换向阀17和第二调节阀18,位于第二电磁换向阀17和第二调节阀18之间的一段所述吹洗气体进气管5上连接有第二连通管19,所述第一连通管12与第二电磁换向阀17连接,所述第二连通管19与第一电磁换向阀10连接,所述取样气体出气总管6的一端与取样气体出口接头3连接,所述取样气体出气总管6的另一端连接有第一取样气体出气支管21和第二取样气体出气支管22,所述第一取样气体出气支管21和第二取样气体出气支管22均与取样探测单元连接,所述取样气体出气总管6上设置有第三截止阀23,所述第一取样气体出气支管21上设置有第一取样泵24,所述第二取样气体出气支管22上设置有第二取样泵25;如图2所示,所述取样探测单元包括第一碘取样器32、第二碘取样器33和碘探测器37,所述第一碘取样器32和第二碘取样器33之间设置有铅挡块34,所述碘探测器37的底部设置有电动滑台36,所述碘探测器37通过电动滑台36的移动对第一碘取样器32和第二碘取样器33交替探测,所述取样气体进气管4和第一取样气体出气支管21均与第一碘取样器32连通,所述吹洗气体进气管5和第二取样气体出气支管22均与第二碘取样器33连通。
具体实施时,碘探测器37在第一碘取样器32和第二碘取样器33之间切换,分别对第一碘取样器32和第二碘取样器33中吸附的I-129进行探测。
具体实施时,碘探测器37安装在电动滑台36上,在第一碘取样器32和第二碘取样器33之间切换位置;测量时,碘探测器37间隔正对第一碘取样器32内的第一碘盒32-3或第二碘取样器33内的第二碘盒33-3。
具体实施时,铅挡块34用于隔离第一碘取样器32和第二碘取样器33相互之间的干扰。
具体实施时,为方便使用和维护过程中更换碘盒,第一碘取样器32和第二碘取样器33外部均设计为易拆卸且保证密封的顶盖,为提高对I-129的吸附效率,使用TEDA浸渍过的椰壳活性炭。
本实施例中,所述第一电磁换向阀10和第二电磁换向阀17均为两进一出电磁换向阀。
本实施例中,所述第一取样泵24和第二取样泵25均为真空泵。
本实施例中,所述第一碘取样器32和第二碘取样器33的结构相同,如图3所示,所述第一碘取样器32包括第一气体入口32-1和第一气体出口32-2,所述第一气体入口32-1和第一气体出口32-2之间设置有位于第一碘取样器32内的第一碘盒32-3,所述第一碘取样器32靠近碘探测器37的端面上设置有第一碳纤维封头32-4;如图4所示,所述第二碘取样器33包括第二气体入口33-1和第二气体出口33-2,所述第二气体入口33-1和第二气体出口33-2之间设置有位于第二碘取样器33内的第二碘盒33-3,所述第二碘取样器33靠近碘探测器37的端面上设置有第二碳纤维封头33-4。
本实施例中,所述取样探测单元设置在屏蔽室内。
具体实施时,为了有效隔绝外部环境γ干扰,取样探测单元安装在屏蔽室内,屏蔽室为50mm厚铅和20mm厚不锈钢组成。
本实施例中,如图5所示,所述碘探测器37包括NaI晶体37-1、光电倍增管37-2和信号处理模块37-3,所述NaI晶体37-1与光电倍增管37-2之间设置有光导37-4,所述光电倍增管37-2接收NaI晶体37-1传输的光信号,并将所述光信号进行光电转换和倍增后传输至所述信号处理模块37-3。
本实施例中,所述NaI晶体37-1的尺寸为
Figure BDA0002505506560000081
具体实施时,5mm厚的NaI晶体37-1能够有效探测到I-129发射的低能γ射线。
本发明的I-129取样方法包括以下步骤:
步骤一、将所述取样气体入口接头1和取样气体出口接头3连接到主排风管26;
步骤二、打开所述第一截止阀8、第二截止阀14和第三截止阀23;
步骤三、启动所述第一取样泵24和第二取样泵25;
步骤四、所述取样探测单元对主排风管26内气体进行连续取样;
步骤五、经过取样探测后的气体通过所述取样气体出气总管6排放到主排风管26中。
本方法步骤四中所述取样探测单元对主排风管26内气体进行连续取样的具体过程为:
步骤401、所述第一电磁换向阀10工作,关闭第一电磁换向阀10与第二连通管19的连通,同时,第二电磁换向阀17工作,关闭第二电磁换向阀17与第一连通管12的连通;
步骤402、在所述第一取样泵24作用下,主排风管26内气体通过取样气体进气管4进入第一碘取样器32中,再通过第一取样气体出气支管21排到取样气体出气总管6中;同时,在所述第二取样泵25作用下,吹洗气体通过吹洗气体进气管5进入第二碘取样器33中,再通过第二取样气体出气支管22排到取样气体出气总管6中;
步骤403、经过时间T;
具体实施时,T的取值为300s。
步骤404、所述第一电磁换向阀10工作,打开第一电磁换向阀10与第二连通管19的连通,同时,第二电磁换向阀17工作,打开第二电磁换向阀17与第一连通管12的连通;
步骤405、在所述第二取样泵25作用下,主排风管26内气体通过第二连通管19和吹洗气体进气管5进入第二碘取样器33中,再通过第二取样气体出气支管22排到取样气体出气总管6中;同时,在所述第一取样泵24作用下,吹洗气体通过第一连通管12和取样气体进气管4进入第一碘取样器32中,再通过第一取样气体出气支管21排到取样气体出气总管6中;
步骤406、经过时间T后,返回步骤401,实现连续取样。
本方法中,步骤402中所述主排风管26内气体通过取样气体进气管4进入第一碘取样器32中,气体中I-129被第一碘取样器32取样,所述碘探测器37通过电动滑台36滑动到第一碘取样器32处,进行I-129活度探测;同时,吹洗气体通过吹洗气体进气管5进入第二碘取样器33中,对第二碘取样器33进行吹洗,清除第二碘取样器33中含高浓度Kr-85的惰性气体;
本方法中,步骤405中所述主排风管26内气体通过第二连通管19和吹洗气体进气管5进入第二碘取样器33中,气体中I-129被第二碘取样器33取样,所述碘探测器37通过电动滑台36滑动到第二碘取样器33处,进行I-129活度探测;同时,吹洗气体通过第一连通管12和取样气体进气管4进入第一碘取样器32中,对第一碘取样器32进行吹洗,清除第一碘取样器32中含高浓度Kr-85的惰性气体。
以上所述,仅是本发明的较佳实施例,并非对本发明作任何限制,凡是根据本发明技术实质对以上实施例所作的任何简单修改、变更以及等效结构变化,均仍属于本发明技术方案的保护范围内。

Claims (9)

1.一种I-129取样装置,其特征在于:包括取样管路单元和取样探测单元;
所述取样管路单元包括取样气体入口接头(1)、吹洗气体入口接头(2)和取样气体出口接头(3),以及取样气体进气管(4)、吹洗气体进气管(5)和取样气体出气总管(6);所述取样气体进气管(4)的一端与取样气体入口接头(1)连接,所述取样气体进气管(4)的另一端与取样探测单元连接,所述取样气体进气管(4)上从取样气体入口接头(1)至取样探测单元方向上依次设置有第一过滤器(7)、第一截止阀(8)、第一流量计(9)、第一电磁换向阀(10)和第一调节阀(11),位于第一电磁换向阀(10)和第一调节阀(11)之间的一段所述取样气体进气管(4)上连接有第一连通管(12),所述吹洗气体进气管(5)的一端与吹洗气体入口接头(2)连接,所述吹洗气体进气管(5)的另一端与取样探测单元连接,所述吹洗气体进气管(5)上从吹洗气体入口接头(2)至取样探测单元方向上依次设置有第二过滤器(13)、第二截止阀(14)、单向阀(15)、第二流量计(16)、第二电磁换向阀(17)和第二调节阀(18),位于第二电磁换向阀(17)和第二调节阀(18)之间的一段所述吹洗气体进气管(5)上连接有第二连通管(19),所述第一连通管(12)与第二电磁换向阀(17)连接,所述第二连通管(19)与第一电磁换向阀(10)连接,所述取样气体出气总管(6)的一端与取样气体出口接头(3)连接,所述取样气体出气总管(6)的另一端连接有第一取样气体出气支管(21)和第二取样气体出气支管(22),所述第一取样气体出气支管(21)和第二取样气体出气支管(22)均与取样探测单元连接,所述取样气体出气总管(6)上设置有第三截止阀(23),所述第一取样气体出气支管(21)上设置有第一取样泵(24),所述第二取样气体出气支管(22)上设置有第二取样泵(25);
所述取样探测单元包括第一碘取样器(32)、第二碘取样器(33)和碘探测器(37),所述第一碘取样器(32)和第二碘取样器(33)之间设置有铅挡块(34),所述碘探测器(37)的底部设置有电动滑台(36),所述碘探测器(37)通过电动滑台(36)的移动对第一碘取样器(32)和第二碘取样器(33)交替探测,所述取样气体进气管(4)和第一取样气体出气支管(21)均与第一碘取样器(32)连通,所述吹洗气体进气管(5)和第二取样气体出气支管(22)均与第二碘取样器(33)连通。
2.按照权利要求1所述的一种I-129取样装置,其特征在于:所述第一电磁换向阀(10)和第二电磁换向阀(17)均为两进一出电磁换向阀。
3.按照权利要求1所述的一种I-129取样装置,其特征在于:所述第一取样泵(24)和第二取样泵(25)均为真空泵。
4.按照权利要求1所述的一种I-129取样装置,其特征在于:所述第一碘取样器(32)和第二碘取样器(33)的结构相同,所述第一碘取样器(32)包括第一气体入口(32-1)和第一气体出口(32-2),所述第一气体入口(32-1)和第一气体出口(32-2)之间设置有位于第一碘取样器(32)内的第一碘盒(32-3),所述第一碘取样器(32)靠近碘探测器(37)的端面上设置有第一碳纤维封头(32-4);所述第二碘取样器(33)包括第二气体入口(33-1)和第二气体出口(33-2),所述第二气体入口(33-1)和第二气体出口(33-2)之间设置有位于第二碘取样器(33)内的第二碘盒(33-3),所述第二碘取样器(33)靠近碘探测器(37)的端面上设置有第二碳纤维封头(33-4)。
5.按照权利要求1所述的一种I-129取样装置,其特征在于:所述取样探测单元设置在屏蔽室内。
6.按照权利要求1所述的一种I-129取样装置,其特征在于:所述碘探测器(37)包括NaI晶体(37-1)、光电倍增管(37-2)和信号处理模块(37-3),所述NaI晶体(37-1)与光电倍增管(37-2)之间设置有光导(37-4),所述光电倍增管(37-2)接收NaI晶体(37-1)传输的光信号,并将所述光信号进行光电转换和倍增后传输至所述信号处理模块(37-3)。
7.按照权利要求6所述的一种I-129取样装置,其特征在于:所述NaI晶体(37-1)的尺寸为
Figure FDA0003305729990000031
8.一种采用如权利要求1所述装置对I-129进行取样的方法,其特征在于:该方法包括以下步骤:
步骤一、将所述取样气体入口接头(1)和取样气体出口接头(3)连接到主排风管(26);
步骤二、打开所述第一截止阀(8)、第二截止阀(14)和第三截止阀(23);
步骤三、启动所述第一取样泵(24)和第二取样泵(25);
步骤四、所述取样探测单元对主排风管(26)内气体进行连续取样;
步骤401、所述第一电磁换向阀(10)工作,关闭第一电磁换向阀(10)与第二连通管(19)的连通,同时,第二电磁换向阀(17)工作,关闭第二电磁换向阀(17)与第一连通管(12)的连通;
步骤402、在所述第一取样泵(24)作用下,主排风管(26)内气体通过取样气体进气管(4)进入第一碘取样器(32)中,再通过第一取样气体出气支管(21)排到取样气体出气总管(6)中;同时,在所述第二取样泵(25)作用下,吹洗气体通过吹洗气体进气管(5)进入第二碘取样器(33)中,再通过第二取样气体出气支管(22)排到取样气体出气总管(6)中;
步骤403、经过时间T;
步骤404、所述第一电磁换向阀(10)工作,打开第一电磁换向阀(10)与第二连通管(19)的连通,同时,第二电磁换向阀(17)工作,打开第二电磁换向阀(17)与第一连通管(12)的连通;
步骤405、在所述第二取样泵(25)作用下,主排风管(26)内气体通过第二连通管(19)和吹洗气体进气管(5)进入第二碘取样器(33)中,再通过第二取样气体出气支管(22)排到取样气体出气总管(6)中;同时,在所述第一取样泵(24)作用下,吹洗气体通过第一连通管(12)和取样气体进气管(4)进入第一碘取样器(32)中,再通过第一取样气体出气支管(21)排到取样气体出气总管(6)中;
步骤406、经过时间T后,返回步骤401,实现连续取样;
步骤五、经过取样探测后的气体通过所述取样气体出气总管(6)排放到主排风管(26)中。
9.按照权利要求8所述的一种I-129取样方法,其特征在于:
步骤402中所述主排风管(26)内气体通过取样气体进气管(4)进入第一碘取样器(32)中,气体中I-129被第一碘取样器(32)取样,所述碘探测器(37)通过电动滑台(36)滑动到第一碘取样器(32)处,进行I-129活度探测;同时,吹洗气体通过吹洗气体进气管(5)进入第二碘取样器(33)中,对第二碘取样器(33)进行吹洗,清除第二碘取样器(33)中含高浓度Kr-85的惰性气体;
步骤405中所述主排风管(26)内气体通过第二连通管(19)和吹洗气体进气管(5)进入第二碘取样器(33)中,气体中I-129被第二碘取样器(33)取样,所述碘探测器(37)通过电动滑台(36)滑动到第二碘取样器(33)处,进行I-129活度探测;同时,吹洗气体通过第一连通管(12)和取样气体进气管(4)进入第一碘取样器(32)中,对第一碘取样器(32)进行吹洗,清除第一碘取样器(32)中含高浓度Kr-85的惰性气体。
CN202010445008.4A 2020-05-23 2020-05-23 一种i-129取样装置及取样方法 Active CN111610547B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010445008.4A CN111610547B (zh) 2020-05-23 2020-05-23 一种i-129取样装置及取样方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010445008.4A CN111610547B (zh) 2020-05-23 2020-05-23 一种i-129取样装置及取样方法

Publications (2)

Publication Number Publication Date
CN111610547A CN111610547A (zh) 2020-09-01
CN111610547B true CN111610547B (zh) 2021-12-24

Family

ID=72203810

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010445008.4A Active CN111610547B (zh) 2020-05-23 2020-05-23 一种i-129取样装置及取样方法

Country Status (1)

Country Link
CN (1) CN111610547B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5918256A (en) * 1997-10-27 1999-06-29 Delaney; William O. Motor vehicle emission analysis system
JP2008076357A (ja) * 2006-09-25 2008-04-03 Taiyo Nippon Sanso Corp ガスサンプリング装置およびガスサンプリング方法
CN201421457Y (zh) * 2009-04-13 2010-03-10 济南兰光机电技术有限公司 溶剂残留量测试装置
CN103257059A (zh) * 2013-01-04 2013-08-21 哈尔滨工程大学 一种高温高湿环境下的碘蒸气取样装置
CN104166154A (zh) * 2014-06-26 2014-11-26 中国核电工程有限公司 一种pig取样及监测系统和方法
CN105353057A (zh) * 2015-12-17 2016-02-24 中国原子能科学研究院 一种用于在线分析Ne中微量He、H2和杂质组分的气相色谱检测系统及方法
FR3061296A1 (fr) * 2016-12-27 2018-06-29 Engie Procede et dispositif mobile de prelevement d'un echantillon de gaz sous pression issu d'une canalisation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5918256A (en) * 1997-10-27 1999-06-29 Delaney; William O. Motor vehicle emission analysis system
JP2008076357A (ja) * 2006-09-25 2008-04-03 Taiyo Nippon Sanso Corp ガスサンプリング装置およびガスサンプリング方法
CN201421457Y (zh) * 2009-04-13 2010-03-10 济南兰光机电技术有限公司 溶剂残留量测试装置
CN103257059A (zh) * 2013-01-04 2013-08-21 哈尔滨工程大学 一种高温高湿环境下的碘蒸气取样装置
CN104166154A (zh) * 2014-06-26 2014-11-26 中国核电工程有限公司 一种pig取样及监测系统和方法
CN105353057A (zh) * 2015-12-17 2016-02-24 中国原子能科学研究院 一种用于在线分析Ne中微量He、H2和杂质组分的气相色谱检测系统及方法
FR3061296A1 (fr) * 2016-12-27 2018-06-29 Engie Procede et dispositif mobile de prelevement d'un echantillon de gaz sous pression issu d'une canalisation

Also Published As

Publication number Publication date
CN111610547A (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
Mathieu et al. System for measurement of 222Rn at low levels in natural waters
CN103234778B (zh) 一种地下水半挥发性有机物富集装置
US8919184B2 (en) Leak testing method and leak testing device for iodine filter
CN104166154A (zh) 一种pig取样及监测系统和方法
CN107561177B (zh) 放射性气体连续监测装置和方法
CN111610547B (zh) 一种i-129取样装置及取样方法
CN111610545B (zh) 一种高量程防酸型i-129辐射监测系统及方法
CN110726776A (zh) 一种用于核设施碘吸附器吸附效率测试的设备及其方法
CN111610548B (zh) 一种i-129辐射监测系统及方法
CN219936112U (zh) 放射性材料浓度的在线测量装置
CN212083682U (zh) 一种防酸型i-129辐射监测系统
CN216561025U (zh) 一种氚和碳-14联合取样装置
CN113917520B (zh) 一种氚和碳-14联合取样装置和方法
CN216082219U (zh) 一种气体多点取样在线放射性测量系统
CN111610546B (zh) 一种I-129与Kr-85探测信号甄别处理方法
CN215297689U (zh) 一种高湿度惰性气体活度监测装置
KR100606599B1 (ko) 방사성핵종 자동분리장치 및 그를 이용한 플루토늄자동분리방법
CN112882083B (zh) 高灵敏度多路放射性气体在线监测仪
CN107861145A (zh) 一种环境空气中放射性惰性气体连续监测系统
CN216671213U (zh) 一种适用于核电去除降级重水中的有机物实验装置
Molnár et al. Dissolved gas measurements of the cooling ponds of Paks Nuclear Power Plant, Hungary
CN219039369U (zh) 一种放射性气态碘监测装置
CN114002025B (zh) 一种放射性气体取样装置及取样系统
CN114089405B (zh) 一种宽浓度放射性元素态t标准气制备装置及其制备方法
CN221803501U (zh) 一种污染场地水样采取装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230331

Address after: 710119 first floor, building 3, phase II, pilot Institute, No. 15, Shanglinyuan 1st Road, high tech Zone, Xi'an, Shaanxi Province

Patentee after: SHAANXI WEIFENG NUCLEAR INSTRUMENT Inc.

Patentee after: CHINA NUCLEAR POWER ENGINEERING Co.,Ltd.

Address before: 710118 building B7, military civilian integration industrial park, 176 Biyuan 2nd Road, high tech Zone, Xi'an City, Shaanxi Province

Patentee before: SHAANXI WEIFENG NUCLEAR INSTRUMENT Inc.