CN212083682U - 一种防酸型i-129辐射监测系统 - Google Patents

一种防酸型i-129辐射监测系统 Download PDF

Info

Publication number
CN212083682U
CN212083682U CN202020888014.2U CN202020888014U CN212083682U CN 212083682 U CN212083682 U CN 212083682U CN 202020888014 U CN202020888014 U CN 202020888014U CN 212083682 U CN212083682 U CN 212083682U
Authority
CN
China
Prior art keywords
sampling
gas inlet
pipe
valve
gas outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202020888014.2U
Other languages
English (en)
Inventor
刘朋波
杨康
王俊超
王欣
马兴杰
郑皓
李心悦
肖鹏飞
吴伟
张伟
高攀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHAANXI WEIFENG NUCLEAR INSTRUMENT Inc
China Nuclear Power Engineering Co Ltd
Original Assignee
SHAANXI WEIFENG NUCLEAR INSTRUMENT Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHAANXI WEIFENG NUCLEAR INSTRUMENT Inc filed Critical SHAANXI WEIFENG NUCLEAR INSTRUMENT Inc
Priority to CN202020888014.2U priority Critical patent/CN212083682U/zh
Application granted granted Critical
Publication of CN212083682U publication Critical patent/CN212083682U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

本实用新型公开了一种防酸型I‑129辐射监测系统,包括安装支架,安装支架上设置有取样管路单元、取样探测单元、就地辐射处理单元和电气控制单元;取样管路单元包括取样气体入口接头、吹洗气体入口接头和取样气体出口接头,以及取样气体进气管、吹洗气体进气管和取样气体出气总管;取样探测单元包括屏蔽室,屏蔽室的侧面并列设置有第一碘取样器和第二碘取样器,第一碘取样器靠近碘探测器的端面上设置有第一碳纤维封头,第二碘取样器靠近碘探测器的端面上设置有第二碳纤维封头。本实用新型结构简单,设计合理,能够有效提高I‑129辐射监测时的耐酸性,使用效果好,便于推广使用。

Description

一种防酸型I-129辐射监测系统
技术领域
本实用新型属于核辐射监测技术领域,具体涉及一种防酸型I-129辐射监测系统。
背景技术
在核燃料元件后处理场所,经过长时间冷却,裂变产物中的放射性气体主要是Kr-85和I-129,而I-129的半衰期长达1.57×107年,对人体和环境具有长期危害性。因此,为确保环境和操作人员安全,对核燃料元件后处理场所的工艺管道内的气载排出物中I-129的放射性活度监测十分必要。
但是,由于裂变气体中I-129的含量低,且其活度与Kr-85的活度相差至少106数量级,比如,一根燃耗为62GW的燃料棒冷却五年后,其中Kr-85的活度为7.06×1012Bq,I-129的活度为3.726×106Bq,因此,在对核元件后处理场工艺管道内气载排出物中I-129的活度浓度进行在线连续监测时,必须剔除Kr-85的影响。
另外,由于核燃料元件后处理场所的混合气体中含有硝酸类酸性物质(氮氧化物单酸或复合酸),为保证辐射监测系统长期稳定可靠地工作,辐射监测系统还必须具有耐酸抗腐蚀能力,现有技术中,还缺乏防酸性能好的I-129辐射监测系统。
实用新型内容
本实用新型所要解决的技术问题在于针对上述现有技术中的不足,提供一种防酸型I-129辐射监测系统,其结构简单,设计合理,实现方便,能够应用在对核燃料元件后处理场所的工艺管道内的气载排出物中I-129的放射性活度监测中,有效提高I-129辐射监测时的耐酸性,使用效果好,便于推广使用。
为解决上述技术问题,本实用新型采用的技术方案是:一种防酸型I-129辐射监测系统,包括安装支架,所述安装支架上设置有取样管路单元、取样探测单元、就地辐射处理单元和电气控制单元;所述取样管路单元包括取样气体入口接头、吹洗气体入口接头和取样气体出口接头,以及取样气体进气管、吹洗气体进气管和取样气体出气总管,所述取样气体进气管的一端与取样气体入口接头连接,所述取样气体进气管的另一端与取样探测单元连接,所述取样气体进气管上从取样气体入口接头至取样探测单元方向上依次设置有第一截止阀、第一流量计、第一电磁换向阀和第一调节阀,位于第一流量计和第一电磁换向阀之间的一段所述取样气体进气管上连接有第一连通管,所述吹洗气体进气管的一端与吹洗气体入口接头连接,所述吹洗气体进气管的另一端与取样探测单元连接,所述吹洗气体进气管上从吹洗气体入口接头至取样探测单元方向上依次设置有第二截止阀、单向阀、第二流量计、第二电磁换向阀和第二调节阀,位于第二流量计和第二电磁换向阀之间的一段所述吹洗气体进气管上连接有第二连通管,所述第一连通管与第二电磁换向阀连接,所述第二连通管与第一电磁换向阀连接,所述取样气体出气总管的一端与取样气体出口接头连接,所述取样气体出气总管的另一端连接有第一取样气体出气支管和第二取样气体出气支管,所述第一取样气体出气支管和第二取样气体出气支管均与取样探测单元连接,所述取样气体出气总管上设置有第三截止阀,所述第一取样气体出气支管上设置有第一取样泵,所述第二取样气体出气支管上设置有第二取样泵;所述取样探测单元包括屏蔽室,所述屏蔽室的侧面并列设置有第一碘取样器和第二碘取样器,所述第一碘取样器和第二碘取样器之间设置有铅挡块,所述屏蔽室的底面设置有电动滑台,所述电动滑台上设置有碘探测器,所述取样气体进气管和第一取样气体出气支管均与第一碘取样器连通,所述吹洗气体进气管和第二取样气体出气支管均与第二碘取样器连通;所述第一碘取样器靠近碘探测器的端面上设置有第一碳纤维封头,所述第二碘取样器靠近碘探测器的端面上设置有第二碳纤维封头;所述碘探测器包括NaI晶体、光电倍增管和信号处理模块,所述NaI晶体与光电倍增管之间设置有光导,所述光电倍增管接收NaI晶体传输的光信号,并将所述光信号进行光电转换和倍增后传输至所述信号处理模块;所述就地辐射处理单元包括微控制器模块,以及与微控制器模块相接的RS485接口和以太网接口,所述第一流量计、第二流量计和信号处理模块均与微控制器模块的输入端连接,所述微控制器模块的输出端接有显示模块和声光报警模块。
上述的一种防酸型I-129辐射监测系统,所述电气控制单元为所述就地辐射处理单元供电,且与就地辐射处理单元进行信号传输,所述电气控制单元和就地辐射处理单元之间的传输信号包括模拟量、开关量和RS485信号。
上述的一种防酸型I-129辐射监测系统,所述取样管路单元中取样气体进气管、第一截止阀、第一流量计、第一调节阀、第一连通管、第二截止阀、单向阀、第二流量计、第二调节阀、第二连通管和第三截止阀的材质均为316L不锈钢。
上述的一种防酸型I-129辐射监测系统,所述取样管路单元中第一取样泵和第二取样泵的泵头,以及第一截止阀、第一调节阀、第二截止阀、单向阀和第三截止阀的阀芯材质均为聚四氟乙烯。
上述的一种防酸型I-129辐射监测系统,所述第一电磁换向阀和第二电磁换向阀均为两进一出电磁换向阀。
上述的一种防酸型I-129辐射监测系统,所述第一取样泵和第二取样泵均为防酸泵。
上述的一种防酸型I-129辐射监测系统,所述NaI晶体的尺寸为
Figure BDA0002505506090000031
本实用新型与现有技术相比具有以下优点:
1、本实用新型的结构简单,设计合理,实现方便。
2、本实用新型取样管路单元中取样气体进气管、第一截止阀、第一流量计、第一调节阀、第一连通管、第二截止阀、单向阀、第二流量计、第二调节阀、第二连通管和第三截止阀的材质均采用316L不锈钢,提高耐酸抗腐蚀性。
3、本实用新型取样管路单元中第一取样泵和第二取样泵的泵头,以及第一截止阀、第一调节阀、第二截止阀、单向阀和第三截止阀的阀芯材质均采用聚四氟乙烯,提高耐酸抗腐蚀性。
4、本实用新型第一碘取样器和第二碘取样器接近碘探测器的一侧均设置有碳纤维封头,碳纤维能够耐硝酸,起到防酸作用。
5、本实用新型能够应用在对核燃料元件后处理场所的工艺管道内的气载排出物中I-129的放射性活度监测中,有效提高I-129辐射监测时的耐酸性,使用效果好,便于推广使用。
综上所述,本实用新型的结构简单,设计合理,实现方便,能够应用在对核燃料元件后处理场所的工艺管道内的气载排出物中I-129的放射性活度监测中,有效提高I-129辐射监测时的耐酸性,使用效果好,便于推广使用。
下面通过附图和实施例,对本实用新型的技术方案做进一步的详细描述。
附图说明
图1为本实用新型的结构示意图;
图2为本实用新型取样探测单元的结构示意图;
图3为本实用新型碘探测器的结构示意图;
图4为本实用新型就地辐射处理单元的组成原理框图。
附图标记说明:
1—取样气体入口接头; 2—吹洗气体入口接头; 3—取样气体出口接头;
4—取样气体进气管; 5—吹洗气体进气管; 6—取样气体出气总管;
8—第一截止阀; 9—第一流量计; 10—第一电磁换向阀;
11—第一调节阀; 12—第一连通管; 14—第二截止阀;
15—单向阀; 16—第二流量计; 17—第二电磁换向阀;
18—第二调节阀; 19—第二连通管; 21—第一取样气体出气支管;
22—第二取样气体出气支管; 23—第三截止阀; 24—第一取样泵;
25—第二取样泵; 26—主排风管; 31—屏蔽室;
32—第一碘取样器; 33—第二碘取样器; 34—铅挡块;
36—电动滑台; 37—碘探测器; 37-1—NaI晶体;
37-2—光电倍增管; 37-3—信号处理模块; 37-4—光导;
38—第一碳纤维封头; 39—第二碳纤维封头; 41—安装支架;
42—就地辐射处理单元; 42-1—微控制器模块; 42-2—RS485接口;
42-3—以太网接口; 42-4—显示模块; 42-5—声光报警模块;
43—电气控制单元。
具体实施方式
如图1所示,本实用新型的防酸型I-129辐射监测系统,包括安装支架41,所述安装支架41上设置有取样管路单元、取样探测单元、就地辐射处理单元42和电气控制单元43;所述取样管路单元包括取样气体入口接头1、吹洗气体入口接头2和取样气体出口接头3,以及取样气体进气管4、吹洗气体进气管5和取样气体出气总管6,所述取样气体进气管4的一端与取样气体入口接头1连接,所述取样气体进气管4的另一端与取样探测单元连接,所述取样气体进气管4上从取样气体入口接头1至取样探测单元方向上依次设置有第一截止阀8、第一流量计9、第一电磁换向阀10和第一调节阀11,位于第一流量计9和第一电磁换向阀10之间的一段所述取样气体进气管4上连接有第一连通管12,所述吹洗气体进气管5的一端与吹洗气体入口接头2连接,所述吹洗气体进气管5的另一端与取样探测单元连接,所述吹洗气体进气管5上从吹洗气体入口接头2至取样探测单元方向上依次设置有第二截止阀14、单向阀15、第二流量计16、第二电磁换向阀17和第二调节阀18,位于第二流量计16和第二电磁换向阀17之间的一段所述吹洗气体进气管5上连接有第二连通管19,所述第一连通管12与第二电磁换向阀17连接,所述第二连通管19与第一电磁换向阀10连接,所述取样气体出气总管6的一端与取样气体出口接头3连接,所述取样气体出气总管6的另一端连接有第一取样气体出气支管21和第二取样气体出气支管22,所述第一取样气体出气支管21和第二取样气体出气支管22均与取样探测单元连接,所述取样气体出气总管6上设置有第三截止阀23,所述第一取样气体出气支管21上设置有第一取样泵24,所述第二取样气体出气支管22上设置有第二取样泵25;所述取样探测单元包括屏蔽室31,如图2所示,所述屏蔽室31的侧面并列设置有第一碘取样器32和第二碘取样器33,所述第一碘取样器32和第二碘取样器33之间设置有铅挡块34,所述屏蔽室31的底面设置有电动滑台36,所述电动滑台36上设置有碘探测器37,所述取样气体进气管4和第一取样气体出气支管21均与第一碘取样器32连通,所述吹洗气体进气管5和第二取样气体出气支管22均与第二碘取样器33连通;所述第一碘取样器32靠近碘探测器37的端面上设置有第一碳纤维封头38,所述第二碘取样器33靠近碘探测器37的端面上设置有第二碳纤维封头39;如图3所示,所述碘探测器37包括NaI晶体37-1、光电倍增管37-2和信号处理模块37-3,所述NaI晶体37-1与光电倍增管37-2之间设置有光导37-4,所述光电倍增管37-2接收NaI晶体37-1传输的光信号,并将所述光信号进行光电转换和倍增后传输至所述信号处理模块37-3;如图4所示,所述就地辐射处理单元42包括微控制器模块42-1,以及与微控制器模块42-1相接的RS485接口42-2和以太网接口42-3,所述第一流量计9、第二流量计16和信号处理模块37-3均与微控制器模块42-1的输入端连接,所述微控制器模块42-1的输出端接有显示模块42-4和声光报警模块42-5。
具体实施时,碳纤维能够耐硝酸,通过第一碳纤维封头38和第二碳纤维封头39提高系统耐酸性。
具体实施时,为了有效隔绝外部环境γ干扰,取样探测单元安装在50mm厚铅加20mm厚不锈钢组成的屏蔽室31内,该厚度的屏蔽室31对γ本底衰减可达120倍以上。
具体实施时,碘探测器37安装在电动滑台36上,在第一碘取样器32和第二碘取样器33之间切换位置;测量时,碘探测器37间隔正对第一碘取样器32内的第一碘盒32-3或第二碘取样器33内的第二碘盒33-3。
具体实施时,铅挡块34用于隔离第一碘取样器32和第二碘取样器33相互之间的干扰。
本实施例中,所述电气控制单元43为所述就地辐射处理单元42供电,且与就地辐射处理单元42进行信号传输,所述电气控制单元43和就地辐射处理单元42之间的传输信号包括模拟量、开关量和RS485信号。
具体实施时,电气控制单元43为就地辐射处理单元42提供电源;为系统提供各种类型的输入/输出接线端子,包括:2路4~20mA模拟量输出、4路开关量输出(故障/失效、试验/源检、高值报警、高高值报警)、2路RS485通信(测量结果、控制)。
本实施例中,所述取样管路单元中取样气体进气管4、第一截止阀8、第一流量计9、第一调节阀11、第一连通管12、第二截止阀14、单向阀15、第二流量计16、第二调节阀18、第二连通管19和第三截止阀23的材质均为316L不锈钢。
具体实施时,采用316L不锈钢能够耐硝酸。
本实施例中,所述取样管路单元中第一取样泵24和第二取样泵25的泵头,以及第一截止阀8、第一调节阀11、第二截止阀14、单向阀15和第三截止阀23的阀芯材质均为聚四氟乙烯。
具体实施时,采用聚四氟乙烯能够耐硝酸。
本实施例中,所述第一电磁换向阀10和第二电磁换向阀17均为两进一出电磁换向阀。
本实施例中,所述第一取样泵24和第二取样泵25均为防酸泵。
具体实施时,采用防酸泵提高系统耐酸性。
本实施例中,所述NaI晶体37-1的尺寸为
Figure BDA0002505506090000081
具体实施时,通过5mm厚的NaI晶体37-1,能够探测I-129低能γ射线。
本实用新型使用时,先将取样气体入口接头1和取样气体出口接头3连接到主排风管26;再打开第一截止阀8、第二截止阀14和第三截止阀23;启动第一取样泵24和第二取样泵25;取样探测单元对主排风管26内气体进行连续取样,具体过程为:第一电磁换向阀10工作,关闭第一电磁换向阀10与第二连通管19的连通,同时,第二电磁换向阀17工作,关闭第二电磁换向阀17与第一连通管12的连通;在第一取样泵24作用下,主排风管26内气体通过取样气体进气管4进入第一碘取样器32中,再通过第一取样气体出气支管21排到取样气体出气总管6中;碘探测器37通过电动滑台36滑动到第一碘取样器32处,进行I-129活度探测;同时,吹洗气体通过吹洗气体进气管5进入第二碘取样器33中,对第二碘取样器33进行吹洗,清除第二碘取样器33中的Kr-85惰性气体;同时,在第二取样泵25作用下,吹洗气体通过吹洗气体进气管5进入第二碘取样器33中,再通过第二取样气体出气支管22排到取样气体出气总管6中;经过时间300s;第一电磁换向阀10工作,打开第一电磁换向阀10与第二连通管19的连通,同时,第二电磁换向阀17工作,打开第二电磁换向阀17与第一连通管12的连通;在第二取样泵25作用下,主排风管26内气体通过第二连通管19和吹洗气体进气管5进入第二碘取样器33中,再通过第二取样气体出气支管22排到取样气体出气总管6中,碘探测器37通过电动滑台36滑动到第二碘取样器33处,进行I-129活度探测;同时,吹洗气体通过第一连通管12和取样气体进气管4进入第一碘取样器32中,对第一碘取样器32进行吹洗,清除第一碘取样器32中的Kr-85惰性气体;同时,在第一取样泵24作用下,吹洗气体通过第一连通管12和取样气体进气管4进入第一碘取样器32中,再通过第一取样气体出气支管21排到取样气体出气总管6中,实现连续辐射监测。
以上所述,仅是本实用新型的较佳实施例,并非对本实用新型作任何限制,凡是根据本实用新型技术实质对以上实施例所作的任何简单修改、变更以及等效结构变化,均仍属于本实用新型技术方案的保护范围内。

Claims (7)

1.一种防酸型I-129辐射监测系统,其特征在于:包括安装支架(41),所述安装支架(41)上设置有取样管路单元、取样探测单元、就地辐射处理单元(42)和电气控制单元(43);
所述取样管路单元包括取样气体入口接头(1)、吹洗气体入口接头(2)和取样气体出口接头(3),以及取样气体进气管(4)、吹洗气体进气管(5)和取样气体出气总管(6),所述取样气体进气管(4)的一端与取样气体入口接头(1)连接,所述取样气体进气管(4)的另一端与取样探测单元连接,所述取样气体进气管(4)上从取样气体入口接头(1)至取样探测单元方向上依次设置有第一截止阀(8)、第一流量计(9)、第一电磁换向阀(10)和第一调节阀(11),位于第一流量计(9)和第一电磁换向阀(10)之间的一段所述取样气体进气管(4)上连接有第一连通管(12),所述吹洗气体进气管(5)的一端与吹洗气体入口接头(2)连接,所述吹洗气体进气管(5)的另一端与取样探测单元连接,所述吹洗气体进气管(5)上从吹洗气体入口接头(2)至取样探测单元方向上依次设置有第二截止阀(14)、单向阀(15)、第二流量计(16)、第二电磁换向阀(17)和第二调节阀(18),位于第二流量计(16)和第二电磁换向阀(17)之间的一段所述吹洗气体进气管(5)上连接有第二连通管(19),所述第一连通管(12)与第二电磁换向阀(17)连接,所述第二连通管(19)与第一电磁换向阀(10)连接,所述取样气体出气总管(6)的一端与取样气体出口接头(3)连接,所述取样气体出气总管(6)的另一端连接有第一取样气体出气支管(21)和第二取样气体出气支管(22),所述第一取样气体出气支管(21)和第二取样气体出气支管(22)均与取样探测单元连接,所述取样气体出气总管(6)上设置有第三截止阀(23),所述第一取样气体出气支管(21)上设置有第一取样泵(24),所述第二取样气体出气支管(22)上设置有第二取样泵(25);
所述取样探测单元包括屏蔽室(31),所述屏蔽室(31)的侧面并列设置有第一碘取样器(32)和第二碘取样器(33),所述第一碘取样器(32)和第二碘取样器(33)之间设置有铅挡块(34),所述屏蔽室(31)的底面设置有电动滑台(36),所述电动滑台(36)上设置有碘探测器(37),所述取样气体进气管(4)和第一取样气体出气支管(21)均与第一碘取样器(32)连通,所述吹洗气体进气管(5)和第二取样气体出气支管(22)均与第二碘取样器(33)连通;所述第一碘取样器(32)靠近碘探测器(37)的端面上设置有第一碳纤维封头(38),所述第二碘取样器(33)靠近碘探测器(37)的端面上设置有第二碳纤维封头(39);
所述碘探测器(37)包括NaI晶体(37-1)、光电倍增管(37-2)和信号处理模块(37-3),所述NaI晶体(37-1)与光电倍增管(37-2)之间设置有光导(37-4),所述光电倍增管(37-2)接收NaI晶体(37-1)传输的光信号,并将所述光信号进行光电转换和倍增后传输至所述信号处理模块(37-3);
所述就地辐射处理单元(42)包括微控制器模块(42-1),以及与微控制器模块(42-1)相接的RS485接口(42-2)和以太网接口(42-3),所述第一流量计(9)、第二流量计(16)和信号处理模块(37-3)均与微控制器模块(42-1)的输入端连接,所述微控制器模块(42-1)的输出端接有显示模块(42-4)和声光报警模块(42-5)。
2.按照权利要求1所述的一种防酸型I-129辐射监测系统,其特征在于:所述电气控制单元(43)为所述就地辐射处理单元(42)供电,且与就地辐射处理单元(42)进行信号传输,所述电气控制单元(43)和就地辐射处理单元(42)之间的传输信号包括模拟量、开关量和RS485信号。
3.按照权利要求1所述的一种防酸型I-129辐射监测系统,其特征在于:所述取样管路单元中取样气体进气管(4)、第一截止阀(8)、第一流量计(9)、第一调节阀(11)、第一连通管(12)、第二截止阀(14)、单向阀(15)、第二流量计(16)、第二调节阀(18)、第二连通管(19)和第三截止阀(23)的材质均为316L不锈钢。
4.按照权利要求1所述的一种防酸型I-129辐射监测系统,其特征在于:所述取样管路单元中第一取样泵(24)和第二取样泵(25)的泵头,以及第一截止阀(8)、第一调节阀(11)、第二截止阀(14)、单向阀(15)和第三截止阀(23)的阀芯材质均为聚四氟乙烯。
5.按照权利要求1所述的一种防酸型I-129辐射监测系统,其特征在于:所述第一电磁换向阀(10)和第二电磁换向阀(17)均为两进一出电磁换向阀。
6.按照权利要求1所述的一种防酸型I-129辐射监测系统,其特征在于:所述第一取样泵(24)和第二取样泵(25)均为防酸泵。
7.按照权利要求1所述的一种防酸型I-129辐射监测系统,其特征在于:所述NaI晶体(37-1)的尺寸为
Figure FDA0002505506080000031
CN202020888014.2U 2020-05-23 2020-05-23 一种防酸型i-129辐射监测系统 Active CN212083682U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202020888014.2U CN212083682U (zh) 2020-05-23 2020-05-23 一种防酸型i-129辐射监测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202020888014.2U CN212083682U (zh) 2020-05-23 2020-05-23 一种防酸型i-129辐射监测系统

Publications (1)

Publication Number Publication Date
CN212083682U true CN212083682U (zh) 2020-12-04

Family

ID=73567382

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202020888014.2U Active CN212083682U (zh) 2020-05-23 2020-05-23 一种防酸型i-129辐射监测系统

Country Status (1)

Country Link
CN (1) CN212083682U (zh)

Similar Documents

Publication Publication Date Title
CN110954939B (zh) 一种氚监测仪实验室校准装置
CN110068428B (zh) 一种碘吸附器泄漏率在线测量系统及其测量方法
US8919184B2 (en) Leak testing method and leak testing device for iodine filter
CN206038669U (zh) 一种cod水质在线监测设备
CN111610545B (zh) 一种高量程防酸型i-129辐射监测系统及方法
CZ58894A3 (en) Method of detecting escape of radioactive gases from nuclear reactor and apparatus for making the same
CN212083682U (zh) 一种防酸型i-129辐射监测系统
CN115078274A (zh) 用于待测铀酸溶液中铀、酸浓度的实时分析方法及装置
CN111610548B (zh) 一种i-129辐射监测系统及方法
CN219936112U (zh) 放射性材料浓度的在线测量装置
US3783268A (en) Device for measuring activity concentration in primary circulation systems of nuclear reactors
CN106198168B (zh) 一种低盐度水体中锶-90测量的制样装置
CN217359845U (zh) 一种核电厂水化学智能在线监测装置
CN111610547B (zh) 一种i-129取样装置及取样方法
JPH09189797A (ja) 放射性廃液処理設備
CN113750669A (zh) 一种袋进袋出过滤系统
KR101999847B1 (ko) 계통 제염 설비 및 방법
CN219142388U (zh) 一种排风塔气体样品取样系统
CN212904729U (zh) 在线式卡尔费休测量微量水分析系统
CN212083683U (zh) 一种i-129取样用双管路结构
CN114002025B (zh) 一种放射性气体取样装置及取样系统
Wren et al. Modelling iodine behaviour using LIRIC 3.0
CN220895207U (zh) 一种放射性废液收集和衰变处理系统
CN118068388A (zh) 基于核素分析的液态流出物在线监测系统及在线监测方法
CN113917520A (zh) 一种氚和碳-14联合取样装置和方法

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230410

Address after: 710119 first floor, building 3, phase II, pilot Institute, No. 15, Shanglinyuan 1st Road, high tech Zone, Xi'an, Shaanxi Province

Patentee after: SHAANXI WEIFENG NUCLEAR INSTRUMENT Inc.

Patentee after: CHINA NUCLEAR POWER ENGINEERING Co.,Ltd.

Address before: 710118 building B7, military civilian integration industrial park, 176 Biyuan 2nd Road, high tech Zone, Xi'an City, Shaanxi Province

Patentee before: SHAANXI WEIFENG NUCLEAR INSTRUMENT Inc.

TR01 Transfer of patent right