CN111603606A - 一种高力学强度聚乳酸血管支架的制备方法 - Google Patents
一种高力学强度聚乳酸血管支架的制备方法 Download PDFInfo
- Publication number
- CN111603606A CN111603606A CN201910140170.2A CN201910140170A CN111603606A CN 111603606 A CN111603606 A CN 111603606A CN 201910140170 A CN201910140170 A CN 201910140170A CN 111603606 A CN111603606 A CN 111603606A
- Authority
- CN
- China
- Prior art keywords
- polylactic acid
- intravascular stent
- mechanical strength
- stent
- high mechanical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/14—Macromolecular materials
- A61L27/18—Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/50—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L27/507—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials for artificial blood vessels
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4326—Condensation or reaction polymers
- D04H1/435—Polyesters
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/70—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
- D04H1/72—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged
- D04H1/728—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged by electro-spinning
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Epidemiology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dermatology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Vascular Medicine (AREA)
- Materials For Medical Uses (AREA)
Abstract
本发明涉及一种高力学强度聚乳酸血管支架的制备方法,包括:将一定量的聚乳酸溶于混合溶剂中,并在溶剂中添加四丁基溴化铵(TBAB)得到纺丝液。然后进行静电纺丝,制备得到血管支架,将血管支架真空干燥后泡入乙醇除去TBAB并烘干即可得到血管支架。本发明的血管支架因聚乳酸在纺丝过程中内部取向因此具有优良的力学性能,并因静电纺丝制备得到材料模拟天然血管结构,具有优良的生物相容性。
Description
技术领域
本发明属于血管支架的制备领域,特别涉及高力学性能聚乳酸血管支架的制备方法。
背景技术
在组织工程领域,静电纺丝制备血管支架的纳米纤维直径小于细胞,可以模拟天然的细胞外基质的结构,并且静电纺丝制备所得支架具有比表面积高和孔隙率高等特性,这有利于细胞的粘附和增殖。并且静电纺丝可选用可生物降解的合成高分子材料或天然高分子材料以及两者复配物,该类材料具有良好的生物相容性。近年来,因组织工程对血管支架功能上进一步的要求,研究人员提出了一系列改进的方案。本发明是一种高力学强度聚乳酸血管支架的制备方法,通过在混合溶剂中添加TBAB得到复配的聚乳酸纺丝液,同时控制纺丝过程中的工艺参数得到内部链段高度取向的聚乳酸纤维,从而提高聚乳酸血管支架的力学性能。并且本发明采用高速旋转的铜管作为接收装置,可制备得到具有一定环向取向的血管支架,这一结构有利于细胞的增长和繁殖。
发明内容
本发明所解决的技术问题是提供一种高力学强度聚乳酸血管支架的制备方法,本发明所制备的聚乳酸血管支架具有优异的力学性能和生物相容性,并且所制备得到的血管支架在环向方向具有一定宏观取向,这一取向结构有利于细胞的粘附和增殖。本发明设计的血管支架可根据所需内径以及长度不同制备多种规格血管支架。
本发明是一种高力学强度聚乳酸血管支架的制备方法,包括
(1)将聚乳酸溶于混合溶剂中,得到聚乳酸溶液;
(2)将TBAB溶于上述制得的聚乳酸溶液,得到复配溶液;
(3)以上述复配溶液作为纺丝液,进行静电纺丝,得到负载TBAB的聚乳酸基血管支架;
(4)将上述血管支架进行真空干燥,后泡入乙醇除去TBAB并烘干即得到聚乳酸基血管支架。
所述步骤(1)中的混合溶剂为二氯甲烷和N,N-二甲基甲酰胺混合液,其中二氯甲烷和N,N-二甲基甲酰胺的体积比为3-5。
所述步骤(1)中聚乳酸溶液的质量浓度为8-12%。
所述步骤(2)中纺丝液中TBAB的质量浓度为0-0.8%。
所述步骤(3)中静电纺丝的工艺参数为:纺丝电压20-25kV,推进速度为0.5-2.0mL/h,接收距离为15-20cm,纺丝温度为15±5℃,湿度为50±5%,接收装置为外径3-6mm的铜管,铜管旋转速率为500-2000rpm。
所述步骤(4)中真空干燥的温度为15℃,干燥时间为48h;乙醇用量为浸没支架,浸泡时间为48h;烘干温度为37℃,时间为24h。
本发明设计的血管支架,采用聚乳酸作为基础材料,同时选用二氯甲烷和N,N-二甲基甲酰胺作为混合溶剂并在其中添加TBAB得到复配溶液进行静电纺丝。采用此工艺制备得到的血管支架的纳米纤维结构与细胞外基质结构接近,有利于细胞的粘附和生长;同时混合溶剂的选用和TBAB的添加可以有效地提高聚乳酸链段的内部取向,从而极大的提高了血管支架的力学性能。并通过调节纺丝工艺参数解决了纺丝过程中针头容易堵住的现象。此血管支架可根据实际所需制备得到内径大于2mm,长度小于250mm的不同规格的血管支架,这在组织工程中有重要应用。
有益效果
(1)本发明以负载TBAB的复配纺丝液通过静电纺丝工艺制备得到了聚乳酸血管支架,制备所得的PLA支架不仅在宏观上具有取向而且纤维内部也有取向结构,从而极大地提高了聚乳酸血管支架的力学性能。
(2)本发明通过在纺丝液中添加TBAB,并控制静电纺丝过程中的温度和湿度,解决了聚乳酸溶液在纺丝过程中容易堵针头的现象。
附图说明
图1本发明血管支架SEM图,a为实施例1,b为实施例2,c为实施例3;
图2本发明血管支架轴向拉伸性能;
图3本发明血管支架径向拉伸性能;
图4本发明实施例1和实施例2的血管支架成纤维细胞生长5天的激光共聚焦显微镜图,图片大小为640*640μm,a为实施例1,b为实施例2。
具体实施方式
实施例1
步骤1. 纺丝液的配制:将2gPLA溶于体积比为19:6的二氯甲烷/DMF混合溶剂,制备得到PLA溶液(8%w/v),常温下搅拌溶解,并静置5分钟以除去气泡。
步骤2.血管支架的制备:将溶液装入注射器中,并在电压为22.5Kv,注射速度为1mL/h,接收距离为17.5cm,接收装置转速为2000rpm,相对湿度为50%左右,温度为15℃的条件下进行静电纺丝3h,其中接收装置外径为4mm,针头为100mm长的18G(内径0.84mm)针头。纺丝结束后将支架放入真空烘箱中室温下真空干燥48h。最后将支架取下,泡入乙醇中48h,并在37℃下烘干24h。其最终所得样品轴向拉伸强度为4.75MPa,径向拉伸强度为5.23MPa。
实施例2
步骤1. 纺丝液的配制:将2gPLA溶于体积比为19:6的二氯甲烷/DMF混合溶剂,制备得到PLA溶液(8%w/v),并称量0.165gTBAB加入PLA溶液,常温下搅拌溶解,并静置5分钟以除去气泡。
步骤2.血管支架的制备:如实施例1中的步骤2。其最终所得样品轴向拉伸强度为11.97MPa,径向拉伸强度为22.15MPa。
实施例3
步骤1. 纺丝液的配制:将2gPLA溶于体积比为19:6的二氯甲烷/DMF混合溶剂,制备得到PLA溶液(8%w/v),并称量0.2gTBAB加入PLA溶液,常温下搅拌溶解,并静置5分钟以除去气泡。
步骤2.血管支架的制备:如实施例1中的步骤2。其最终所得样品轴向拉伸强度为6.91MPa,径向拉伸强度为26.72MPa。
Claims (6)
1.一种高力学强度聚乳酸血管支架的制备方法,包括:
(1)将一定量的聚乳酸溶于混合溶剂中,得到聚乳酸溶液;
(2)将一定量的TBAB溶于步骤一制得的聚乳酸溶液液中得到复配溶液;
(3)以上述制得的复配溶液作为纺丝液,进行静电纺丝,得到负载TBAB的聚乳酸血管支架;
(4)将上述血管支架进行真空干燥后泡入乙醇除去TBAB并烘干即得到聚乳酸血管支架。
2.根据权利要求1所述的一种高力学强度聚乳酸血管支架的制备方法,其特征在于:所述步骤(1)中得混合溶剂为二氯甲烷和N,N-二甲基甲酰胺的混合液,其中二氯甲烷和N,N-二甲基甲酰胺的体积比为3-5。
3.根据权利要求1所述的一种高力学强度聚乳酸血管支架的制备方法,其特征在于:所述步骤(1)聚乳酸溶液的质量浓度为8-12%。
4.根据权利要求1所述的一种高力学强度聚乳酸血管支架的制备方法,其特征在于:所述步骤(2)中纺丝液中TBAB的质量浓度为0.1-0.8%。
5.根据权利要求1所述的一种高力学强度的聚乳酸血管支架的制备方法,其特征在于:所述步骤(3)中静电纺丝的工艺参数为:纺丝电压20-25kV,推进速度为0.5-2.0mL/h,接收距离为15-20cm,纺丝温度为15±5℃,湿度为50±5%,接收装置为外径3-6mm的铜管,铜管旋转速率为500-2000rpm。
6.根据权利要求1所述的一种高力学强度的聚乳酸血管支架的制备方法,其特征在于:所述步骤(4)中真空干燥的温度为15℃,干燥时间为48h;乙醇浸泡时间为48h;烘干温度为37℃,时间为24h以上。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910140170.2A CN111603606A (zh) | 2019-02-26 | 2019-02-26 | 一种高力学强度聚乳酸血管支架的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910140170.2A CN111603606A (zh) | 2019-02-26 | 2019-02-26 | 一种高力学强度聚乳酸血管支架的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111603606A true CN111603606A (zh) | 2020-09-01 |
Family
ID=72199791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910140170.2A Pending CN111603606A (zh) | 2019-02-26 | 2019-02-26 | 一种高力学强度聚乳酸血管支架的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111603606A (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105363076A (zh) * | 2015-09-30 | 2016-03-02 | 东华大学 | 一种聚乳酸己内酯-胶原蛋白双层仿生血管支架的制备方法 |
CN106498508A (zh) * | 2016-10-05 | 2017-03-15 | 桂林理工大学 | 一种聚乳酸静电纺丝溶液的制备方法 |
CN106512087A (zh) * | 2016-12-06 | 2017-03-22 | 北京航空航天大学 | 一种纤维取向排列的人造血管支架及其制备方法 |
CN106668944A (zh) * | 2016-12-22 | 2017-05-17 | 北京航空航天大学 | 一种三层复合小口径血管支架及其制备方法 |
CN107164820A (zh) * | 2017-05-22 | 2017-09-15 | 华东理工大学 | 一种高取向复合导电纳米纤维 |
-
2019
- 2019-02-26 CN CN201910140170.2A patent/CN111603606A/zh active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105363076A (zh) * | 2015-09-30 | 2016-03-02 | 东华大学 | 一种聚乳酸己内酯-胶原蛋白双层仿生血管支架的制备方法 |
CN106498508A (zh) * | 2016-10-05 | 2017-03-15 | 桂林理工大学 | 一种聚乳酸静电纺丝溶液的制备方法 |
CN106512087A (zh) * | 2016-12-06 | 2017-03-22 | 北京航空航天大学 | 一种纤维取向排列的人造血管支架及其制备方法 |
CN106668944A (zh) * | 2016-12-22 | 2017-05-17 | 北京航空航天大学 | 一种三层复合小口径血管支架及其制备方法 |
CN107164820A (zh) * | 2017-05-22 | 2017-09-15 | 华东理工大学 | 一种高取向复合导电纳米纤维 |
Non-Patent Citations (3)
Title |
---|
化学工业出版社组织编写: "《中国化工产品大全(第三版)(上卷)》", 31 January 2005, 化学工业出版社 * |
宋明玉等: "静电纺自集束法制备高取向度纤维", 《化工新型材料》 * |
徐义华: "《南京卫生年鉴(2009)》", 31 August 2009, 中国文史出版社 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9068282B2 (en) | System and method for making biomaterial structures | |
Wang et al. | Silk fibroin H-fibroin/poly (ε-caprolactone) core-shell nanofibers with enhanced mechanical property and long-term drug release | |
Liu et al. | Controllable structure, properties, and degradation of the electrospun PLGA/PLA‐blended nanofibrous scaffolds | |
CN106540327A (zh) | 一种仿自然血管的三层人造血管支架及其制备方法 | |
CN110344151B (zh) | 模拟天然肌腱组织纤维层次结构的仿生支架及其制备方法 | |
KR20070006551A (ko) | 겔 방사 성형법을 이용한 조직공학용 다공성 고분자지지체의 제조 방법 | |
CN104739473A (zh) | 一种纳米纤维纱线神经导管及其制备方法 | |
Feng et al. | Electrospun chitosan nanofibers for hepatocyte culture | |
Thomas et al. | Electrospinning of Biosyn®-based tubular conduits: structural, morphological, and mechanical characterizations | |
Zhu et al. | Characterization of a co-electrospun scaffold of HLC/CS/PLA for vascular tissue engineering | |
CN109938875A (zh) | 一种神经假体及其制备方法和用途 | |
CN110124109B (zh) | 人工血管支架及其制备方法和应用 | |
CN110935065A (zh) | 一种大孔蓬松纤维基组织工程支架及其制备方法 | |
CN110592947A (zh) | 聚羟基脂肪酸酯/聚多巴胺复合电纺丝膜的制备方法及电纺丝膜 | |
Li et al. | Bladder acellular matrix graft reinforced silk fibroin composite scaffolds loaded VEGF with aligned electrospun fibers in multiple layers | |
CN109758617A (zh) | 一种神经修复膜及其制备方法和应用 | |
Liu et al. | Electrospun core–sheath fibers for integrating the biocompatibility of silk fibroin and the mechanical properties of PLCL | |
Malik et al. | Electrospun biomimetic polymer nanofibers as vascular grafts | |
KR101828925B1 (ko) | 저밀도 나노섬유, 그 제조방법 및 그의 용도 | |
CN110354316A (zh) | 一种复合肌腱防粘连膜及其制备方法与应用 | |
CN111714704B (zh) | Pgs/sf电纺人工血管及其制备方法 | |
US20180002835A1 (en) | Composite fibers and matrices thereof | |
CN111603606A (zh) | 一种高力学强度聚乳酸血管支架的制备方法 | |
CN110464881B (zh) | 具有层级结构的丝素多孔支架及其制备方法 | |
CN109943974B (zh) | 基于聚羟基脂肪酸酯/明胶电纺纳米纤维的神经导管材料的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200901 |