CN111600488A - 一种利用过零检测技术提高电力电子变压器效率的方法 - Google Patents
一种利用过零检测技术提高电力电子变压器效率的方法 Download PDFInfo
- Publication number
- CN111600488A CN111600488A CN202010178828.1A CN202010178828A CN111600488A CN 111600488 A CN111600488 A CN 111600488A CN 202010178828 A CN202010178828 A CN 202010178828A CN 111600488 A CN111600488 A CN 111600488A
- Authority
- CN
- China
- Prior art keywords
- zero
- resonant
- current
- bridge
- power electronic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33569—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
- H02M3/33576—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
- H02M3/33584—Bidirectional converters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33507—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
- H02M3/33515—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with digital control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M3/00—Conversion of dc power input into dc power output
- H02M3/22—Conversion of dc power input into dc power output with intermediate conversion into ac
- H02M3/24—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
- H02M3/28—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
- H02M3/325—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
- H02M3/335—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M3/33507—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
- H02M3/33523—Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0009—Devices or circuits for detecting current in a converter
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0003—Details of control, feedback or regulation circuits
- H02M1/0012—Control circuits using digital or numerical techniques
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0048—Circuits or arrangements for reducing losses
- H02M1/0054—Transistor switching losses
- H02M1/0058—Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B70/00—Technologies for an efficient end-user side electric power management and consumption
- Y02B70/10—Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Dc-Dc Converters (AREA)
Abstract
本发明公开了一种利用过零检测技术提高电力电子变压器效率的方法,属于电力电子变压器控制技术领域。该技术方案包括,通过AD过零检测电路(7)对谐振电流零点(9)进行实时监测,并通过DSP(8)运算,对谐振频率进行计算,根据运算结果,调整开关频率的大小,控制IGBT(13,14,15,16,17,18,19,20)在电流为0的时刻进行关断,从而降低IGBT(13,14,15,16,17,18,19,20)的关断损耗。本发明应用于电力电子变压器的隔离级DC‑DC拓扑方面,可降低系统损耗,具有控制方案简单、提高能量转换效率的优势。
Description
技术领域
本发明涉及电力电子变压器控制技术领域,尤其涉及一种利用过零检测技术提高电力电子变压器效率的方法。
背景技术
目前谐振型双有源桥常用的方法是首先控制开关频率小于谐振频率,然后根据能量的流动方向,在能量流出的主动侧施加占空比为50%的控制信号,在能量流入的被动测采用二极管自然整流。这种方式需要主动去判断能量流动的方向。若要实现能量的自然双向流动,则必须在前级中压侧(3)和后级低压侧(4)同时给IGBT施加控制信号。但是目前的谐振型双有源桥本质是利用电容和电感的自然共振过程实现传输能量,其本身并不具备可控性,所以当前级中压侧(3)和后级低压侧(4)同时施加IGBT控制信号时,会造成IGBT的硬关断,最终造成效率下降。
电力电子变压器利用电力电子器件实现电压等级变换以及能量流动控制。与传统变压器相比,具有多种优势,如谐波抑制、无功补偿、提供新能源并网直流母线等。利用过零检测技术对谐振电流进行实时检测,控制IGBT在零电流时刻关断,可以在实现能量双向流动的同时,大大提高谐振型双有源桥的效率。
发明内容
本发明针对上述缺陷及需求,提供一种利用过零检测技术提高电力电子变压器效率的方法。该方法在保证能量双向流动的情况下,通过对谐振电流的过零时刻进行实时检测,并根据检测结果实时改变开关频率大小,进而实现IGBT的零电流关断,提高电力电子变压器的效率。
为实现上述目的,本发明提供一种利用过零检测技术提高电力电子变压器效率的方法,所述的方法包括如下步骤:
步骤1:电力电子变压器的隔离级DC-DC使用谐振型双有源桥拓扑结构(1)。该拓扑中以中频变压器(2)为隔离器件,将拓扑分为前级中压侧(3)和后级低压侧(4)。中压侧H桥(5)和低压侧H桥(6)均采用为IGBT反并联二极管的结构,可实现能量的双向流动。变压器采用中频变压器(2),实现能量传输的同时,可以提高谐振型双有源桥拓扑结构(1)能量密度。
步骤2:设备正常运行过程中,中压侧H桥(5)和低压侧H桥(6)的脉冲驱动信号通过光纤进行同步,且均为占空比50%互补信号。在初始启动阶段,其谐振频率高于开关频率。IGBT(13,14,15,16,17,18,19,20)在关断时刻,谐振电流并不为0,增加了损耗。
步骤3:使用AD过零检测电路(7),对谐振电流零点(9)进行实时检测。在检测到零点之后把触发信号发送给DSP(8),由DSP(8)根据零点信息对谐振频率进行计算,并根据计算结果对IGBT(13,14,15,16,17,18,19,20)的驱动控制信号进行修正,控制IGBT(13,14,15,16,17,18,19,20)在电流为0时刻关断,降低IGBT的关断损耗。
步骤4:在调节完成之后,仍然需要对谐振电流零点(9)进行实时检测,以便判断IGBT关断时刻是否处在允许误差范围之内。若处于合理误差范围之内,则保持谐振型双有源桥拓扑结构(1)稳定运行,若误差太大,则需要对IGBT关断时刻进行再次调节。
所述中频变压器(2),实现隔离的同时,又提高了功率密度。同时利用参数集成理论,可以利用变压器的漏感代替图2中的谐振电感(12),进一步提高了功率密度。
所述中压侧H桥(5)和低压侧H桥(6)的驱动信号完全一致,都是50%占空比的驱动信号,简化了控制方案,易于实现。同时利用光纤对信号进行同步,提高了谐振型双有源桥拓扑结构(1)的实时性。
所述谐振型双有源桥拓扑结构(1)利用AD过零检测电路(7)对谐振电流零点(9)进行实时监控,并把电流过零时刻信息发送给DSP(8),由DSP(8)对谐振频率进行运算,计算出合适的关断时间,进而控制IGBT在零电流时刻关断。
一方面由于器件参数的差异,另一方面由于负载的变化,这些都会引起谐振电流过零关断时刻发生细微变化。在正常运行过程中,需要对电流过零时刻进行实时检测反馈,控制IGBT(13,14,15,16,17,18,19,20)能够在一定误差范围内实现零电流时刻关断。
与现有技术相比,本发明的优点和积极效果在于:
(1)本发明方案简单易行,控制方案复杂度低。
(2)本发明方案通过AD过零检测电路(7)实现对谐振电流零点的实时捕获,控制IGBT在电流为0时刻关断,降低了I GBT的关断损耗,提高了电力电子变压器中谐振型双有源桥拓扑结构(1)的效率。
(3)本发明方案通过光纤对中压侧H桥(5)和低压侧H桥(6)的控制信号进行实时同步,提高了电力电子变压器中信号的准确性和实时性。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1为本发明利用过零检测技术提高电力电子变压器效率方法的电力电子变压器拓扑图。
图2为本发明利用过零检测技术提高电力电子变压器效率方法的电力电子变压器隔离级DC-DC拓扑结构图。
图3为本发明利用过零检测技术提高电力电子变压器效率方法的电力电子变压器中双有源桥正常运行工况下的电压电流波形。
图4为本发明利用过零检测技术提高电力电子变压器效率方法的电力电子变压器中开关频率调节框图。
具体实施方式
以下,结合附图对本发明的具体实施方式进行进一步的描述。
一种利用过零检测技术提高电力电子变压器效率的方法,所述的方法包括如下步骤:
步骤1:图1为电力电子变压器常用拓扑结构图,每一相有N个模组构成,总共3N个模组。其单模组结构包含级联型H桥拓扑结构(21)和谐振型双有源桥拓扑结构(1)。级联型H桥拓扑结构(21)实现AC-DC整流,谐振型双有源桥拓扑结构(1)实现隔离和DC-DC变化。级联型H桥拓扑结构(21)通过级联形式,可降低功率器件的耐压要求。谐振型双有源桥拓扑结构(1)通过并联,可降低对开关管的通流能力要求。
步骤2:电力电子变压器的隔离级DC-DC使用谐振型双有源桥拓扑结构(1),如图2所示。图中所示结构以中频变压器(2)为隔离器件,将拓扑分为前级中压侧(3)和后级低压侧(4)。中压侧H桥(5)和低压侧H桥(6)均采用为IGBT反并联二极管的结构,可实现能量的双向流动。变压器采用中频变压器(2),实现能量传输的同时,可以提高谐振型双有源桥拓扑结构(1)能量密度。
步骤3:设备正常运行过程中,中压侧H桥(5)和低压侧H桥(6)的脉冲驱动信号通过光纤进行同步,且均为占空比50%互补信号,其中IGBT(13,16,17,20)的信号同步。IGBT(14,15,18,19)的信号同步。初始启动阶段,其谐振频率高于开关频率。变压器中压侧的电压和电流波形如图3所示,此时IGBT关断时刻,电流并不为0,易于造成损耗。
步骤4:使用AD过零检测电路(7),对图3中谐振电流零点(9)进行实时检测。在检测到零点之后把触发信号发送给DSP(8),由DSP(8)根据零点信息对谐振频率进行计算,并根据计算结果对IGBT(13-20)的驱动控制信号进行修正,既把关断时刻由实线位置(10)调节到虚线位置(11),使其在电流为0时刻关断,降低IGBT的关断损耗。
步骤5:在调节完成之后,仍然需要对电流零点进行实时检测,以便判断IGBT(13,14,15,16,17,18,19,20)关断时刻是否处在允许误差范围之内。若处于合理误差范围之内,则保持谐振型双有源桥拓扑结构(1)稳定运行,若误差太大,则需要对IGBT(13,14,15,16,17,18,19,20)关断时刻进行再次调节。其调节过程如图4所示。
中压侧H桥(5)和低压侧H桥(6)之间的电压转换,通过中频变压器(2),提高谐振型双有源桥拓扑结构(1)的运行频率,从而提高了功率密度。另一方面,可同时利用参数集成理论,把图2中的谐振电感(12)以变压器漏感的形式集成到变压器中。
中压侧H桥(5)和低压侧H桥(6)的驱动信号都采用50%占空比的驱动信号,完全一致。简化了控制方案,易于实现。同时利用光纤对两侧H桥的驱动信号进行实时同步,提高了谐振型双有源桥拓扑结构(1)的实时性。
利用AD过零检测电路(7)对谐振电流过零时刻进行实时监控,并把电流过零时刻信息发送给DSP(8),由DSP(8)对谐振频率进行运算,计算出合适的关断时间,进而控制IGBT(13-20)在零电流时刻关断。
一方面由于器件参数的差异,另一方面由于负载的变化,这些都会引起谐振电流过零关断时刻发生细微变化。在正常运行过程中,需要对电流过零时刻进行实时检测反馈,控制IGBT(13-20)能够在一定误差范围内实现零电流时刻关断。
Claims (5)
1.一种利用过零检测技术提高电力电子变压器效率的方法,其特征在于,所述的方法包括如下步骤:
步骤1:电力电子变压器的中间隔离级DC-DC采用谐振型双有源桥拓扑结构(1);谐振型双有源桥拓扑结构(1)以中频变压器(2)为隔离器件,将拓扑分为前级中压侧(3)和后级低压侧(4);中压侧H桥(5)和低压侧H桥(6)均采用为IGBT反并联二极管的结构,可实现能量的双向流动;变压器采用中频变压器(2),实现能量传输的同时,可以提高谐振型双有源桥拓扑结构(1)能量密度;
步骤2:设备正常运行过程中,中压侧H桥(5)和低压侧H桥(6)的脉冲驱动信号通过光纤进行同步,且均为占空比50%互补信号,其中IGBT(13,16,17,20)的信号同步;IGBT(14,15,18,19)的信号同步;初始启动阶段,其谐振频率高于开关频率;此时IGBT(13,14,15,16,17,18,19,20)在关断的时候,电流并不为0,易于造成损耗;
步骤3:使用AD过零检测电路(7),对谐振电流零点(9)进行实时检测;在检测到零点之后把触发信号发送给DSP(8),由DSP(8)根据零点信息对谐振频率进行计算,并根据计算结果对IGBT(13,14,15,16,17,18,19,20)的驱动控制信号进行修正,既把关断时刻由实线位置(10)调节到虚线位置(11),使其在电流为0时刻关断,降低关断损耗;
步骤4:在调节完成之后,仍然需要对谐振电流零点(9)进行实时检测,以便判断IGBT关断时刻是否处在允许误差范围之内;若处于合理误差范围之内,则保持谐振型双有源桥拓扑结构(1)稳定运行,若误差太大,则需要对IGBT关断时刻进行再次调节。
2.根据权利要求1所述的一种利用过零检测技术提高电力电子变压器效率的方法,其特征在于,所述中频变压器(2),实现隔离的同时,又提高了功率密度;同时利用参数集成理论,可以利用变压器的漏感代替谐振电感(12),进一步提高了功率密度。
3.根据权利要求1所述的一种利用过零检测技术提高电力电子变压器效率的方法,其特征在于,所述中压侧H桥(5)和低压侧H桥(6)的驱动信号完全一致,都是50%占空比的驱动信号,简化了控制方案,易于实现;同时利用光纤对信号进行同步,提高了谐振型双有源桥拓扑结构(1)的实时性。
4.根据权利要求1所述的一种利用过零检测技术提高电力电子变压器效率的方法,其特征在于,所述谐振型双有源桥拓扑结构(1)在正常开始启动后,首先以默认开关频率运行,此时利用AD过零检测电路(7)对谐振电流零点(9)进行实时监控,并把电流过零时刻信息发送给DSP(8),由DSP(8)对谐振电流的谐振频率进行运算,然后再计算IGBT的开关频率与电流的谐振频率之间差值;若两者之差在误差允许范围50Hz之内,则保证谐振型双有源桥拓扑结构(1)按照当前开关频率继续运行;若两者之差超出误差允许范围50Hz,则需要调节IGBT(13,14,15,16,17,18,19,20)的开关频率,使其控制IGBT(13,14,15,16,17,18,19,20)在零电流时刻关断。
5.根据权利要求1所述的一种利用过零检测技术提高电力电子变压器效率的方法,其特征在于,所述的实时电流监测反馈,能够始终保证IGBT(13,14,15,16,17,18,19,20)在零电流时刻关断;在实际正常运行过程中,一方面由于器件参数的差异,另一方面由于负载的变化,这些都会引起谐振电流过零关断时刻发生细微变化;通过对电流的实时监测反馈,可以抑制上述因素带来的影响。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010178828.1A CN111600488A (zh) | 2020-03-14 | 2020-03-14 | 一种利用过零检测技术提高电力电子变压器效率的方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010178828.1A CN111600488A (zh) | 2020-03-14 | 2020-03-14 | 一种利用过零检测技术提高电力电子变压器效率的方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111600488A true CN111600488A (zh) | 2020-08-28 |
Family
ID=72191126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010178828.1A Withdrawn CN111600488A (zh) | 2020-03-14 | 2020-03-14 | 一种利用过零检测技术提高电力电子变压器效率的方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111600488A (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112350278A (zh) * | 2020-10-15 | 2021-02-09 | 阳光电源股份有限公司 | 谐振电路的故障保护方法、装置及系统、电子装置 |
CN112491277A (zh) * | 2020-11-25 | 2021-03-12 | 青岛鼎信通讯股份有限公司 | 一种通过死区时间自适应提高电力电子变压器效率的方法 |
CN112532086A (zh) * | 2020-11-25 | 2021-03-19 | 青岛鼎信通讯股份有限公司 | 一种检测chb电压滤波分量零点提高pet效率方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102023286A (zh) * | 2010-11-30 | 2011-04-20 | 中国工程物理研究院流体物理研究所 | 串联谐振充电电源的零电流检测电路及设计方法 |
JP2017209015A (ja) * | 2017-09-04 | 2017-11-24 | 株式会社東芝 | 沿面放電素子駆動用電源回路 |
CN109728633A (zh) * | 2019-01-17 | 2019-05-07 | 中国科学院电工研究所 | 一种非接触供电装置的直接谐振频率相位跟踪控制方法 |
CN109768716A (zh) * | 2019-03-07 | 2019-05-17 | 中国科学院电工研究所 | 一种电力电子变压器的控制方法 |
CN109861548A (zh) * | 2019-03-22 | 2019-06-07 | 中国科学院电工研究所 | 一种混合功率模块型直流变压器 |
-
2020
- 2020-03-14 CN CN202010178828.1A patent/CN111600488A/zh not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102023286A (zh) * | 2010-11-30 | 2011-04-20 | 中国工程物理研究院流体物理研究所 | 串联谐振充电电源的零电流检测电路及设计方法 |
JP2017209015A (ja) * | 2017-09-04 | 2017-11-24 | 株式会社東芝 | 沿面放電素子駆動用電源回路 |
CN109728633A (zh) * | 2019-01-17 | 2019-05-07 | 中国科学院电工研究所 | 一种非接触供电装置的直接谐振频率相位跟踪控制方法 |
CN109768716A (zh) * | 2019-03-07 | 2019-05-17 | 中国科学院电工研究所 | 一种电力电子变压器的控制方法 |
CN109861548A (zh) * | 2019-03-22 | 2019-06-07 | 中国科学院电工研究所 | 一种混合功率模块型直流变压器 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112350278A (zh) * | 2020-10-15 | 2021-02-09 | 阳光电源股份有限公司 | 谐振电路的故障保护方法、装置及系统、电子装置 |
CN112491277A (zh) * | 2020-11-25 | 2021-03-12 | 青岛鼎信通讯股份有限公司 | 一种通过死区时间自适应提高电力电子变压器效率的方法 |
CN112532086A (zh) * | 2020-11-25 | 2021-03-19 | 青岛鼎信通讯股份有限公司 | 一种检测chb电压滤波分量零点提高pet效率方法 |
CN112532086B (zh) * | 2020-11-25 | 2022-06-28 | 青岛鼎信通讯股份有限公司 | 一种检测chb电压滤波分量零点提高pet效率方法 |
CN112491277B (zh) * | 2020-11-25 | 2023-02-17 | 青岛鼎信通讯股份有限公司 | 一种通过死区时间自适应提高电力电子变压器效率的方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9882389B2 (en) | High efficiency DC/DC converter and controller | |
US9859714B2 (en) | Multiple input three-phase inverter with independent MPPT and high efficiency | |
CN107966626B (zh) | 一种电力电子变压器功率模块测试系统 | |
CN201856022U (zh) | 一种软开关igbt双逆变式方波交直流钨极氩弧焊电源 | |
CN111600488A (zh) | 一种利用过零检测技术提高电力电子变压器效率的方法 | |
CN201726182U (zh) | 高电压超级电容动力电池充电器 | |
CN101707440A (zh) | Llc谐振变换器控制方法、同步整流控制方法及装置 | |
CN101976965B (zh) | 直流跟踪控制的大功率光伏并网逆变器 | |
CN112491277B (zh) | 一种通过死区时间自适应提高电力电子变压器效率的方法 | |
CN102315680A (zh) | 高电压超级电容动力电池充电器 | |
CN111600489B (zh) | 一种应用于能量路由器的dab开关频率自适应方法 | |
CN105140908A (zh) | 用于光伏高压直流输电系统的零电压软开关控制方法 | |
CN101997418A (zh) | 一种llc型串并联谐振变换器 | |
CN105207484A (zh) | 一种新型全桥llc空载及带载时的电压控制方法 | |
CN111490698A (zh) | 一种相位关联zvt磁化电流最小化的辅助谐振换流极逆变器 | |
CN111596130A (zh) | 一种利用谐振频率检测技术提高能量路由器效率的方法 | |
CN107517007A (zh) | 一种mmc型高压直流变换器的近方波调制方法 | |
CN113206598A (zh) | 一种串联谐振式恒流充电电源 | |
CN102281010A (zh) | 一种大功率单回路逆变软开关弧焊电源 | |
CN101510732B (zh) | 电子束打孔机加速高压电源的控制方法及电源装置 | |
CN101860070B (zh) | 机车空调高频软开关不间断电源及其实现方法 | |
CN103580040B (zh) | 一种配电变压器自适应补偿装置 | |
Xie et al. | Digital control method of synchronous rectification for bidirectional clllc converter | |
CN201380361Y (zh) | 电子束打孔机加速高压电源装置 | |
CN102857136B (zh) | 一种高压直流到交流变换的换流器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WW01 | Invention patent application withdrawn after publication |
Application publication date: 20200828 |
|
WW01 | Invention patent application withdrawn after publication |