CN111595916B - 一种基于丝网印刷电极的NF-κB电化学检测方法 - Google Patents

一种基于丝网印刷电极的NF-κB电化学检测方法 Download PDF

Info

Publication number
CN111595916B
CN111595916B CN201910889868.4A CN201910889868A CN111595916B CN 111595916 B CN111595916 B CN 111595916B CN 201910889868 A CN201910889868 A CN 201910889868A CN 111595916 B CN111595916 B CN 111595916B
Authority
CN
China
Prior art keywords
pna
electrode
screen printing
dna hybrid
printing electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910889868.4A
Other languages
English (en)
Other versions
CN111595916A (zh
Inventor
许媛媛
苗晋锋
蔡莹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Agricultural University
Original Assignee
Nanjing Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Agricultural University filed Critical Nanjing Agricultural University
Priority to CN201910889868.4A priority Critical patent/CN111595916B/zh
Publication of CN111595916A publication Critical patent/CN111595916A/zh
Application granted granted Critical
Publication of CN111595916B publication Critical patent/CN111595916B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3276Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a hybridisation with immobilised receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

本发明属于分析化学技术领域,涉及一种基于丝网印刷电极的NF‑κB电化学检测方法。本发明主要是利用肽核酸(PNA)能够竞争性的结合含NF‑κB结合序列dsDNA中的互补ssDNA形成稳定的PNA‑DNA杂交链,NF‑κB的存在会抑制PNA‑DNA杂交链生成的原理。实验首先在激活的丝网印刷电极表面镀金并共价修饰PNA,PNA竞争性的结合含NF‑κB结合序列dsDNA中的互补ssDNA在电极表面形成稳定的PNA‑DNA杂交链,NF‑κB的存在会与dsDNA结合并抑制PNA‑DNA杂交链的形成且NF‑κB含量的差别会导致PNA‑DNA杂交链形成量不同,选取特异性嵌合于PNA‑DNA杂交链中MB作为电信号分子,利用差分脉冲伏安法测量NF‑κB不同浓度时MB的峰电流值,绘制NF‑κB浓度与峰电流值的关系曲线得出线性方程,通过检测电信号计算待测样品中NF‑κB含量。该方法灵敏度高,为NF‑κB的检测提供新思路。

Description

一种基于丝网印刷电极的NF-κB电化学检测方法
技术领域
本发明涉及一种基于丝网印刷电极的NF-κB电化学检测方法,属于分析化学领域。
背景技术
核转录因子NF-κB是隶属于锌指结构家族的转录因子,能与B细胞免疫球蛋白κ轻链启动子区域相结合,并且调控该区域基因启动表达的蛋白。NF-κB广泛存在于哺乳动物的各个细胞类型中,不同类型研究皆发现机体在健康状态和病理状态下NF-κB的表达量有明显的差异,NF-κB的含量的变化在机体免疫、代谢、炎症反应、肿瘤发展以及其他病程的发生发展过程中发挥重要的指示作用,对于疾病的发展、早期诊断或预防,建立一种灵敏、快速、便捷检测NF-κB水平的方法是非常必要的。
现今,NF-κB的检测方法包括电泳迁移率变动分析,蛋白质免疫印迹等。然而,这些方法通常需要特异性抗体,繁琐的标记或特殊仪器。众所周知,标记过程往往是非常耗时且昂贵,甚至可能会导致生物分子的变性。电化学检测技术具有设备简单,价格低廉、灵敏度高、简便快捷,同时可以实现无标记检测等优点。其中丝网印刷电极作为一种小型传感器具有多种优势,缩短反应时间,平行性好,灵敏度更高。在电化学实验中得到广泛的应用,近年来,被成功的应用于生物大分子定性或定量的检测。
发明内容
本发明的目的是发挥电化学检测技术的优势,建立一种简单、无需标记且成本低廉,同时又具有高灵敏度的NF-κB检测方法。
本发明的技术方案:一种基于丝网印刷电极的NF-κB电化学检测方法,利用PNA与DNA结合具有高亲和力与特异性,能够竞争性的结合dsDNA中的互补ssDNA形成稳定的PNA-DNA杂交链;MB能够嵌合于杂交双链,作为氧化还原指示剂放大电信号响应;设计了含有NF-κB结合序列的DNA,当NF-κB蛋白存在时,NF-κB蛋白与dsDNA的靶向结合能抑制PNA-DNA杂交链的生成,电极表面修饰的PNA单链与MB互作力不强,信号微弱;NF-κB含量的差别导致不同程度的信号响应,测得标准曲线,通过统计学分析得出NF-κB检测的线性方程并计算其含量。该方法具有良好的重复性,高的灵敏度,可应用于NF-κB的检测。
方法包括以下步骤:丝网印刷电极的预处理、金粒子修饰丝网印刷电极、PNA修饰镀金丝网印刷电极、样品与修饰电极共孵育、MB与修饰电极共孵育、NF-κB的电化学检测。
(1)丝网印刷电极的预处理
具体步骤如下:用蒸馏水冲洗丝网印刷电极表面10s,洗耳球吹干。之后将处理好的电极置于0.1M PBS中,在0V-0.8V电压范围内进行循环伏安扫描,扫速参数设置为0.1V/s,直至达到稳定后,室温干燥。
(2)金粒子修饰丝网印刷电极
将上述(1)中经过经典方法预处理的丝网印刷电极表面滴加100μL 5mM的氯金酸溶液(0.5M H2SO4)中电沉积350s,沉积电位为-200mV。
(3)PNA修饰镀金丝网印刷电极
将上述(2)中镀金丝网印刷电极表面滴加0.5μM 5.0μL的PNA(0.1M PBS,pH=7.4),37℃孵育1.5h,蒸馏水冲洗。后在PNA修饰的电极表面滴加100μL 1.0mM MCH溶液,室温处理30min进行占位去除非特异性吸附。
上述PNA的序列为:5′-Cys-ATG-GTC-GGG-ACT-TTC-CCT-3′。
(4)样品与修饰电极共孵育
对待测样品预处理:取12.5μL 0.06μM ssDNA1(0.1M PBS,0.25M NaCl,pH=7.4)与12.5μL 0.06μM ssDNA2(0.1M PBS,0.25M NaCl,pH=7.4),经90℃5min→70℃10min→50℃10min→30℃10min→10℃25min杂交得dsDNA。再和25μL不同浓度(0→0.1ng/mL)NF-κBp50(50mM HEPES,1mM TCEP,50mM NaCl,pH=7.4)溶液混合,37℃孵育0.5h。将经过上述(3)处理的电极表面滴加dsDNA与蛋白的混合溶液,37℃孵育2.0h。
上述ssDNA1的序列为:5′-ATG-GTC-GGG-ACT-TTC-CCT-3′;
上述ssDNA2的序列为:5′-AGG-GAA-AGT-CCC-GAC-CAT-3′
(5)MB与修饰电极共孵育
将经过上述(4)处理的电极表面滴加100μL,浓度为20mM的MB溶液(20mM Tris-HCl,pH=7.4)中,避光,室温孵育2h。
(6)NF-κB的电化学检测
将经过上述(5)处理的电极表面滴加100μL 20mM Tris-HCl,pH为7.4的溶液,进行电化学定量分析,本检测采用的电化学工作站(CHI 660E),以饱和甘汞电极为参比电极,铂电极为对电极。使用的扫描方法为微分脉冲伏安法,参数设置:初始电位-0.6V,终止电位0.3V,电位增量0.004V,振幅0.05V,脉冲宽度0.05s,脉冲周期0.5s。NF-κB含量越多,形成的PNA-DNA杂交链就越少,吸附的电信号分子MB也就越少,因此,得到的电化学信号也就随之越小。以MB的电化学信号为纵坐标,NF-κB的浓度为横坐标,绘制标准曲线,通过计算NF-κB的浓度,即可实现NF-κB的灵敏检测。
本发明的有益效果:方法简便快速、灵敏度高,实现了NF-κB的无标记检测,简化了实验步骤,避免了标记过程,对各类疾病包括癌症的监控与治疗具有重要意义。
附图说明
图1:丝网印刷电极结构图。
图2:NF-κB的检测原理图。
图3:NF-κB在不同浓度下,电化学信号值与NF-κB浓度关系标准曲线图。
具体实施方式
实施例1.NF-κB标准溶液电化学信号值-浓度标准曲线图的测定
将25μL不同浓度NF-κB标准液分别按照上述步骤与DNA共孵育后修饰于电极,经电信号分子MB处理后测得电化学信号。如图2所示电化学信号值(ip)与NF-κB浓度的变化关系曲线,NF-κB在0.02-0.1ng/mL范围内,ip与浓度存在线性关系,线性回归方程为:y=-100.7x+17.22,R2=0.995,式中y为DPV的峰电流ip(μA),x为NF-κB的浓度(ng/mL)。
<110> 南京农业大学
<120> 一种基于丝网印刷电极的NF-κB电化学检测方法
<160> 3
<210> 1
<211> 18
<212> DNA
<213> 人工序列
<220>
<223>5′端半胱氨酸修饰的肽核酸(Cys-PNA)
<400> 1
5'Cysatggtcggga ctttccct3' 18
<210> 2
<211> 18
<212> DNA
<213> 人工序列
<220>
<223> ssDNA1
<400> 2
5'atggtcggga ctttccct3' 18
<210> 3
<211> 18
<212> DNA
<213> 人工序列
<220>
<223> ssDNA2
<400> 3
5'agggaaagtc ccgaccat3' 18

Claims (1)

1.一种基于丝网印刷电极的NF-κB电化学检测方法,其特征是利用肽核酸PNA能够竞争性的结合含NF-κB结合序列dsDNA中的互补ssDNA形成稳定的PNA-DNA杂交链,NF-κB的存在会抑制PNA-DNA杂交链生成的原理;首先在经过激活的丝网印刷电极表面滴加100μL 5mM的氯金酸溶液,以-200mV的电位电沉积350s,双蒸水清洗后再于电极表面滴加5.0μL含0.5μMPNA、0.1M PBS,pH值为7.4的溶液,37℃孵育1.5h,双蒸水冲洗后,将100μL 1.0mM巯基己醇溶液滴加于该电极表面孵育0.5h,双蒸馏冲洗后,得到PNA修饰的镀金丝网印刷电极,其中:PNA的序列为:5′-Cys-ATG-GTC-GGG-ACT-TTC-CCT-3′;分别取用0.25M NaCl、0.1M PBS,pH值为7.4溶液溶解的0.06μM ssDNA1与0.06μM ssDNA2各12.5μL混合,经90℃ 5min→70℃10min→50℃ 10min→30℃ 10min→10℃ 25min退火杂交,得到由ssDNA1和ssDNA2组成的dsDNA后,再与25μL溶解于1mM TCEP、50mM NaCl、50mM HEPES溶液,pH值为7.4的NF-κB标准溶液混合,37℃孵育0.5h后,将该混合液滴加于所述PNA修饰的镀金丝网印刷电极表面,37℃孵育2.0h,其中:ssDNA1的序列为:5′-ATG-GTC-GGG-ACT-TTC-CCT-3′,ssDNA2的序列为:5′-AGG-GAA-AGT-CCC-GAC-CAT-3′;接着将100μL含20mM MB、20mM Tris-HCl,pH值为7.4的溶液滴加于电极表面,室温避光孵育2h,双蒸水清洗后,滴加100μL 20mM Tris-HCl,pH为7.4的溶液进行差分脉冲伏安法分析,参数设置:初始电位-0.6V,终止电位0.3V,电位增量0.004V,振幅0.05V,脉冲宽度0.05s,脉冲周期0.5s;绘制NF-κB浓度与峰电流值的关系曲线得出线性方程,通过检测电信号计算待测样品中NF-κB含量。
CN201910889868.4A 2019-09-18 2019-09-18 一种基于丝网印刷电极的NF-κB电化学检测方法 Active CN111595916B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910889868.4A CN111595916B (zh) 2019-09-18 2019-09-18 一种基于丝网印刷电极的NF-κB电化学检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910889868.4A CN111595916B (zh) 2019-09-18 2019-09-18 一种基于丝网印刷电极的NF-κB电化学检测方法

Publications (2)

Publication Number Publication Date
CN111595916A CN111595916A (zh) 2020-08-28
CN111595916B true CN111595916B (zh) 2023-10-03

Family

ID=72183366

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910889868.4A Active CN111595916B (zh) 2019-09-18 2019-09-18 一种基于丝网印刷电极的NF-κB电化学检测方法

Country Status (1)

Country Link
CN (1) CN111595916B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115901911B (zh) * 2023-01-06 2023-07-07 南京邮电大学 基于CRISPR/Cas12a检测心肌肌钙蛋白I的检测方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1769491A (zh) * 2005-10-21 2006-05-10 中国人民解放军第三军医大学第三附属医院 假互补肽核酸探针生物芯片及其基于spr原理的检测方法
CN110208348A (zh) * 2019-07-02 2019-09-06 河南中医药大学 一种以Nafion为引发剂通过电化学介导的原子转移自由基聚合反应的肺癌检测盒

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1769491A (zh) * 2005-10-21 2006-05-10 中国人民解放军第三军医大学第三附属医院 假互补肽核酸探针生物芯片及其基于spr原理的检测方法
CN110208348A (zh) * 2019-07-02 2019-09-06 河南中医药大学 一种以Nafion为引发剂通过电化学介导的原子转移自由基聚合反应的肺癌检测盒

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Alessandra Romanelli 等.Molecular interactions between nuclear factor kB (NF-kB) transcription factors and a PNA–DNA chimera mimicking NF-kB binding sites.《Eur. J. Biochem.》.2001,第268卷摘要,第6067-6068页,图1. *
Kanfu Peng 等.Highly sensitive electrochemical nuclear factor kappa B aptasensor based on target-induced dual-signal ratiometric and polymerase-assisted protein recycling amplification strategy.《Biosensors and Bioelectronics》.2017,第102卷摘要,第2.3-2.4节,第3.5节,机制图1,图1-5. *

Also Published As

Publication number Publication date
CN111595916A (zh) 2020-08-28

Similar Documents

Publication Publication Date Title
Sharma et al. Disposable and portable aptamer functionalized impedimetric sensor for detection of kanamycin residue in milk sample
Li et al. Fabrication of an oxytetracycline molecular-imprinted sensor based on the competition reaction via a GOD-enzymatic amplifier
Ma et al. A novel one-step triggered “signal-on/off” electrochemical sensing platform for lead based on the dual-signal ratiometric output and electrode-bound DNAzyme assembly
Ensafi et al. Aptamer@ Au-o-phenylenediamine modified pencil graphite electrode: A new selective electrochemical impedance biosensor for the determination of insulin
CN110243891A (zh) 一种检测癌细胞的免标记均相电化学生物传感方法
Niu et al. An electrochemical aptasensor for highly sensitive detection of CEA based on exonuclease III and hybrid chain reaction dual signal amplification
CN110714011B (zh) 铅离子核酸适配体及电化学传感器与制备方法
Ly et al. Diagnosis of Helicobacter pylori bacterial infections using a voltammetric biosensor
Korkut et al. Electrochemical determination of urea using a gold nanoparticle-copolymer coated-enzyme modified gold electrode
Zhang et al. Fabrication of a sensitive impedance biosensor of DNA hybridization based on gold nanoparticles modified gold electrode
CN104764784A (zh) 基于核酸适配体检测汞离子的生物传感器及其制备方法
Li et al. A microbial electrode based on the co-electrodeposition of carboxyl graphene and Au nanoparticles for BOD rapid detection
CN109613095A (zh) 基于i-motif构型变化的末端转移酶电化学生物传感器制备方法及应用
CN111595916B (zh) 一种基于丝网印刷电极的NF-κB电化学检测方法
CN114441616B (zh) 一种新冠病毒生物探针在电化学生物传感器上的修饰方法
CN105911289B (zh) 一种基于动态三明治结构的电化学传感器及其制备和应用
CN113406179A (zh) 一种用于检测重金属铅离子的碳基电化学传感器及其应用
Wang et al. A highly sensitive assay for matrix metalloproteinase 2 via signal amplification strategy of eATRP
Minett et al. Coupling conducting polymers and mediated electrochemical responses for the detection of Listeria
Li et al. Novel electrochemical nuclear factorkappa B biosensor via analyte-restrained peptide nucleic acid displacement reaction constructed on different gold nanoparticle-deposited carbon electrodes
JP2001021525A (ja) バイオセンサを用いた測定方法
Li et al. Amperometric nonenzymatic determination of glucose free of interference based on poly (sulfosalicylic acid) modified nickel microelectrode
CN113049656B (zh) 一种具有高阶重复性及重现性的电化学快扫伏安方法及其分析应用
CN101216451B (zh) 一种dna生物传感器电极的制作方法及其应用
CN110779967B (zh) 一种基于传统玻碳电极的NF-κB电化学检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant