CN111592659A - 盐增强调控多孔有机聚合物及其制备方法和应用 - Google Patents

盐增强调控多孔有机聚合物及其制备方法和应用 Download PDF

Info

Publication number
CN111592659A
CN111592659A CN202010540272.6A CN202010540272A CN111592659A CN 111592659 A CN111592659 A CN 111592659A CN 202010540272 A CN202010540272 A CN 202010540272A CN 111592659 A CN111592659 A CN 111592659A
Authority
CN
China
Prior art keywords
salt
porous organic
polymer
organic polymer
enhanced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010540272.6A
Other languages
English (en)
Inventor
陈杰
邱挺
叶长燊
李玲
黄智贤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuzhou University
Original Assignee
Fuzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuzhou University filed Critical Fuzhou University
Priority to CN202010540272.6A priority Critical patent/CN111592659A/zh
Publication of CN111592659A publication Critical patent/CN111592659A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/063Polymers comprising a characteristic microstructure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/618Surface area more than 1000 m2/g
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/10Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aromatic carbon atoms, e.g. polyphenylenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Analytical Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开一种盐增强调控多孔有机聚合物及其制备方法和应用,其采用包括无机盐和有机盐在内的盐,利用盐对溶剂Hansen溶解度的影响效应实现对多种偶联反应所得多孔有机聚合物比表面积和孔隙的可控性增强。与此同时,盐的加入还能促进聚合物形成类似金属有机框架或共轭有机框架的均一微孔孔隙,从而进一步实现对聚合物二氧化碳吸附量的增强。本发明操作简单、条件温和、效果显著、绿色环保,在无需任何催化剂、复杂药剂存在或者复杂操作条件下即可实现聚合物的比表面积增加3200%以上、CO2吸附量增加300%以上。本发明在锂硫电池隔膜、废水吸附处理、催化等应用上还具有广泛的应用前景。

Description

盐增强调控多孔有机聚合物及其制备方法和应用
技术领域
本发明属于化学功能材料合成领域,具体涉及一种盐增强调控多孔有机聚合物及其制备方法和应用。
背景技术
多孔有机聚合物(POPs)是指一类具有丰富孔道的有机聚合物。其基本结构单元是由一个具有三个以上接点的核心子(Core;A i (i>3))和数个带有相应偶联基团且具有两个以上接点的连接子(Linker;B j (j>2))组成。在某些化学反应的偶联下,A i B j 会聚合形成网络状的分子结构,并获得POPs的两个重要性质:大比表面积和丰富孔道。与传统聚合物相比,多孔有机聚合物还具有以下独特的特点:(1)比表面积大,通常接近1000 m2/g;(2)优异的化学稳定性,不溶于酸碱和有机溶剂;(3)良好的热稳定性,分解温度大于300℃;(4)多孔有机聚合物制备方法简单,成本也相对较为低廉。因此,多孔有机聚合物被广泛应用于催化、吸附和电池能源领域。多孔有机聚合物的比表面积不仅可以按需为客体提供更多的储存空间,且还可以按需实现吸附位点和催化位点的暴露,从而调控多孔有机聚合物在吸附分离和催化应用中的效能;而丰富均一的孔道不仅可促进传质,还有可以利用分子识别效应实现催化和分离的选择性,进而实现快速选择吸附和催化,以及有效降低锂硫电池使用过程中的“穿梭效应”。
然而,对于有些聚合反应(如Buchwald-Hartwig(BH)),即便具备获得POPs的所有基本条件,然而所得的聚合物比表面积很低,孔容很小。这说明具有网络状的分子结构不是获得大比表面积POPs的充分条件。因此,在机理不清的情况下,研究者仍然很难按需实现对POPs比表面积的精准调控。与此同时,POPs虽然具有构筑出均一孔道的分子结构,但是,目前仅具有良好结晶度的COFs和少部分偶联反应下形成的无定型POPs拥有较为均一的孔道,而对于大部分的POPs,均一孔道的构筑仍是一个挑战。
发明内容
针对上述挑战和不足,本发明的目的是提供一种解决部分偶联反应条件下多孔共轭聚合物比表面积和孔隙率低、孔径分布宽以及多种聚合反应所得多孔有机聚合物比表面积和孔隙无法调控的方法。具体来说,本发明利用盐对溶剂Hansen溶解度的影响效应,采用不同离子尺寸的盐实现对各种偶联反应所得多孔有机聚合物比表面积、孔隙和CO2吸附量的可控性增强。所制得的聚合物的比表面积可以随着加入盐阳离子/阴离子尺寸的减小而增加。与此同时,通过盐投加量以及盐的类型还能调控多孔有机聚合物的孔径分布,从而促进聚合物形成类似金属有机框架或共轭有机框架的均一微孔孔隙,对聚合物应用于二氧化碳捕集和废水污染物吸附的增强以及防止锂硫电池中锂硫聚合物穿梭均有重要意义。
为实现上述目的,本发明采用如下技术方案:
本发明的第一个目的是保护以上所述盐调控后的多孔有机聚合物材料,其采用盐作为主要的调控因素材料,采用具有两个及以上偶联基团的化学物质作为连接子,采用三个及三个以上偶联基团的化学物质作为中心子,在盐的作用下进行聚合反应形成具有丰富且均一微孔孔道的盐增强调控的多孔有机聚合物材料。
本发明的第二个目的是保护一种增强多孔有机聚合物比表面积和CO2吸附容量的方法,其采用盐作为主要的调控因素,加入到聚合反应体系中,在一定的温度下反应一段时间,所得产品经过离心后用溶剂和沸水洗涤、干燥,即得比表面积调控后的多孔有机聚合物。
其中,所述盐的投加量为0.0001-10000当量(相比于反应物)。
所述的盐为无机盐和有机盐中的一种或几种。
所述的聚合反应体系为涉及偶联聚合反应体系中的至少一种。
本发明的第三个目的是保护以上所述增强后的聚合材料在吸附CO2方面的应用。
本发明的显著优势在于:
本发明操作简单、条件温和、效果显著、绿色环保,在无需任何催化剂、复杂药剂存在或者复杂操作条件下即可可控地实现聚合物的比表面积增加3200%以上、CO2吸附量增加300%以上。不仅如此,本发明所制得的多孔有机聚合物具有丰富且均一的微孔孔道和大比表面积的特点,在锂硫电池隔膜、废水吸附处理、催化等应用上均有广泛的应用前景。
附图说明
图1为不同盐调控前后BH偶联聚合的PTAPA及其前驱体的红外谱图;
图2为不同盐调控前后BH偶联聚合的PTAPA的氮气吸脱附曲线图和孔径分布图;
图3为 NaF盐调控前后几种偶联聚合的聚合物的红外谱图;
图4为NaF盐调控前后Sonogashira-Hagihara偶联聚合的聚合物CMP-1的氮气吸脱附曲线图,孔径分布图和孔体积分布图;
图5为 NaF盐调控前后氧化催化偶联聚合的聚合物PTCT的氮气吸脱附曲线图、孔径分布图和孔体积分布图;
图6为 NaF盐调控前后Suzuki偶联聚合的聚合物p-PPF的氮气吸脱附曲线图、孔径分布图和孔体积分布图。
具体实施方式
为了使本发明所述的内容更加便于理解,下面结合具体实施方式对本发明所述的技术方案做进一步的说明,但是本发明不仅限于此。
实施例1:
不同盐对BH偶联聚合的PTAPA比表面积和孔隙的调控:将0.75 mmol盐(包括NaF,NaCl, NaBr, NaI或LiNO3, NaNO3, KNO3, Ba(NO3)2)作为调控盐加入到0.33 mmol 4,4’-二氨基二苯硫醚和0.5 mmol三(4-氨基苯基)胺中,并将5 mol% Pd(dba)2, 9 mol% xPhos以及7 eq. NaOtBu作为催化剂加入到30 mL四氢呋喃溶剂中,并在66℃下反应48 h,所得产品经抽滤后分别用氯仿、沸水等溶液浸泡洗涤,真空干燥即得调控后的PTAPA多孔共轭聚合物材料。
图1为不同盐调控前后BH偶联聚合的PTAPA及其前驱体的红外谱图。从结果可以看出,除了位于710, 1004和1070 cm-1处指代C-Br以及3400和3300 cm-1处指代NH2的特征振动峰,所制得的PTAPA的红外谱图具有前驱体所有的特征振动峰,证实了氨基与溴苯基的成功偶联和聚合物的成功合成。与此同时,不同盐调控后PTAPA的红外谱图没有明显的区别,说明盐对PTAPA孔道的调控并不是通过改变其分子结构来进行的。
图2为不同盐调控前后BH偶联聚合的聚合物PTAPA的氮气吸脱附曲线图和孔径分布图。结果表明,盐调控前,所制得的PTAPA显示出II型的氮气吸脱附曲线,说明盐调控前的PTAPA所具有的比表面积很小,孔隙度很低。而经过盐调控后的PTAPA显示出I型的氮气吸脱附等温曲线,说明了盐调控法使得PTAPA产生了大量的微孔和大比表面积,证实了盐对BH偶联型聚合物孔隙的重要作用。由BET公式计算出PTAPA的比表面积如表1所示。结果进一步表明,盐调控法使得PTAPA产生了大量的微孔和大比表面积,使PTAPA的比表面积从28 m2/g显著增加至901 m2/g。不仅如此,随着盐的阳离子尺寸/阴离子尺寸的减小(例如,从NaI到NaF或从Ba(NO3)2到LiNO3),PTAPA的比表面积从556 m2/g可控地升高至901 m2/g,说明了PTAPA的比表面积可以通过盐进行可控性的增强。从而证明本发明提出的盐调控法的重要性。并且,对于图2(b)和(d)看出,调控前PTAPA孔径分布很不均一,而且微孔含量很少;然而,加入盐后,所制得的PATPA的孔径分布十分均一,均集中在微孔(2 nm)区域,证实盐是促进聚合物均一微孔形成的重要因素;同时也证实了本发明对聚合物获得均一微孔孔道的有效性。
实施例2:
NaF盐对Sonogashira-Hagihara偶联聚合的CMP-1比表面积和孔隙的调控:将0.5 mmolNaF作为调控盐加入到2.0 mmol 1,3,5-三乙炔苯和2.0 mmol 1,4-二碘基苯中,并将100mg 四-(三苯基膦)钯以及30 mg CuI催化剂加入到2.5 mL甲苯和2.5 mL三乙胺中,并在80℃温度下反应72 h,所得产品经抽滤后分别用氯仿、沸水等溶液浸泡洗涤,真空干燥即得。
实施例3:
NaF盐对调控前后氧化催化偶联聚合的PTCT比表面积和孔隙的调控:将0.5 mmol NaF作为调控盐加入到1.0 mmol 2,4,6-三(9H-咔唑-9-基)-1,3,5-三嗪和50 mL氯仿溶液中,配成A溶液。将3.0 mmol 无水氯化铁加入到20 mL CH3NO2中配成B溶液。之后将B溶液加入到A溶液中,在常温下搅拌反应72 h,所得产品经抽滤后分别用氯仿、沸水等溶液浸泡洗涤,真空干燥即得。
实施例4:
NaF盐对Suzuki偶联聚合的聚合物p-PPF比表面积和孔隙的调控:将0.5 mmol NaF作为调控盐加入到0.46 mmol 1,3,5-三苯基三溴、0.92 mmol 1,4-苯二硼酸、2 mmol碳酸钾、4mL水以及70 mg 四(三苯基膦)-钯催化剂和20 mL DMF中,并在150℃温度下反应36 h,所得产品经抽滤后分别用氯仿、沸水等溶液浸泡洗涤,真空干燥即得。
图3为NaF盐调控前后几种偶联聚合的聚合物的红外谱图。从结果可以看出,与PTAPA的情况相似,NaF盐调控前后集中偶联聚合物的红外谱图没有明显的区别,说明盐对其他的聚合物孔道的调控并不是通过改变其分子结构来进行的。
从图4,图5和图6中可以看出,盐调控前,由于已经加入了碘化亚铜、无水氯化铁或者碳酸钾这些无机盐作为催化剂或者碱,所制得的几种聚合物已经显示出I型的氮气吸脱附曲线。然而从其孔径分布曲线(图4(b)、图5(b)以及图6(b))中可以看出,在NaF调控前,所有聚合物的孔径分布中虽然含有一定数量的微孔,但其分布均较不均匀。而经过NaF盐调控,这些聚合物的孔径分布变得更加均一,并同时获得更加丰富的微孔,证实了盐对其他非BH偶联型聚合物孔隙的重要作用。由BET公式计算出的聚合物比表面积如表2所示。结果表明,盐调控法使得CMP-1、PTCT以及p-PPF获得了更加丰富的微孔和大比表面积,使得CMP-1、PTCT以及p-PPF的比表面积从886 m2/g显著增加至1146 m2/g、981 m2/g显著增加至1263m2/g、35 m2/g显著增加至215 m2/g。最后,从其孔体积分布曲线(图4(c)、图5(c)以及图6(c))中可以证实,盐的加入可以进一步增加不同类型聚合物的孔容。
实施例5:
将实施例1、2、3、4中所得聚合物在1 atm,273 K的条件下对CO2进行吸附实验。结果如表1、2所示。从结果可以证实,盐不仅可以促使聚合物的比表面积规律增大,同时还能显著增加聚合物的CO2吸附容量。结果中,经过NaBr的调控,BH偶联聚合所得聚合物PTAPA的CO2吸附量从调控前的0.75 mmol/g激增至2.59 mmol/g(增加约300%)。对于其他聚合偶联的聚合物,经过NaF盐调控法的调控,CMP-1、PTCT以及p-PPF的CO2吸附容量分别从1.10 mmol/g增加值1.62 mmol/g、从1.94 mmol/g增加至2.53 mmol/g,0.55 mmol/g增加至0.79 mmol/g。据此证实,本发明提出的盐调控法不仅具有对聚合物比表面积的调控能力,还具有对聚合物CO2吸附容量的增强能力,对环境的可持续发展具有重要作用。
表1不同盐调控前后BH偶联聚合的PTAPA的孔隙数据
Figure DEST_PATH_IMAGE002
表2 NaF盐调控前后几种偶联聚合的聚合物的孔隙数据
Figure DEST_PATH_IMAGE004
以上所述仅为本发明的较佳实施例,凡依本发明申请专利范围所做的均等变化与修饰,皆应属本发明的涵盖范围。

Claims (5)

1.一种盐增强调控多孔有机聚合物的制备方法,其特征在于:采用盐作为调控材料,具有两个及以上偶联基团的化学物质作为连接子,三个及三个以上偶联基团的化学物质作为中心子,进行聚合反应形成具有丰富且均一微孔孔道的盐增强调控多孔有机聚合物。
2.根据权利要求1所述的盐增强调控多孔有机聚合物的制备方法,其特征在于:所述盐的投加量为所述连接子和中心子的总投加量的0.0001-10000当量。
3.根据权利要求1所述的盐增强调控多孔有机聚合物的制备方法,其特征在于:所述盐为无机盐和有机盐中的一种或几种。
4.一种如权利要求1-3中任意一项所述的制备方法制得的盐增强调控多孔有机聚合物。
5.一种如权利要求4所述盐增强调控多孔有机聚合物在CO2吸附上的应用。
CN202010540272.6A 2020-06-15 2020-06-15 盐增强调控多孔有机聚合物及其制备方法和应用 Pending CN111592659A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010540272.6A CN111592659A (zh) 2020-06-15 2020-06-15 盐增强调控多孔有机聚合物及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010540272.6A CN111592659A (zh) 2020-06-15 2020-06-15 盐增强调控多孔有机聚合物及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN111592659A true CN111592659A (zh) 2020-08-28

Family

ID=72191432

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010540272.6A Pending CN111592659A (zh) 2020-06-15 2020-06-15 盐增强调控多孔有机聚合物及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111592659A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113861390A (zh) * 2021-09-28 2021-12-31 福州大学 具有层级孔道分布的多孔有机聚合物及其制备方法与应用
CN114100575A (zh) * 2021-10-25 2022-03-01 福州大学 一种基于微孔有机聚合物的含氮缺陷位多孔炭的制备方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107149924A (zh) * 2017-06-15 2017-09-12 福州大学 一种磁性纳米吸附剂的制备及其在复合废水处理中的应用
CN110041533A (zh) * 2019-05-29 2019-07-23 福州大学 一种离子液体配体置换法制备功能化金属有机骨架材料的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107149924A (zh) * 2017-06-15 2017-09-12 福州大学 一种磁性纳米吸附剂的制备及其在复合废水处理中的应用
CN110041533A (zh) * 2019-05-29 2019-07-23 福州大学 一种离子液体配体置换法制备功能化金属有机骨架材料的方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHEN, JIE等: "Exploiting Hansen solubility parameters to tune porosity and function in conjugated microporous polymers", 《JOURNAL OF MATERIALS CHEMISTRY A》 *
CHEN, JIE等: "Tunable Surface Area, Porosity, and Function in Conjugated Microporous Polymers", 《ANGEWANDTE CHEMIE-INTERNATIONAL EDITION》 *
WANG, HAIGE等: "Conjugated Microporous Polycarbazole Networks as Precursors for Nitrogen-Enriched Microporous Carbons for CO2 Storage and Electrochemical Capacitors", 《CHEMISTRY OF MATERIALS》 *
刘晨等: "环己烯水合过程汽-液两相流动的CFD研究", 《化工进展》 *
黄智贤等: "PTA氧化残渣中苯甲酸和Co2+、 Mn2+的分离回收", 《福州大学学报(自然科学版)》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113861390A (zh) * 2021-09-28 2021-12-31 福州大学 具有层级孔道分布的多孔有机聚合物及其制备方法与应用
CN113861390B (zh) * 2021-09-28 2023-10-13 福州大学 具有层级孔道分布的多孔有机聚合物及其制备方法与应用
CN114100575A (zh) * 2021-10-25 2022-03-01 福州大学 一种基于微孔有机聚合物的含氮缺陷位多孔炭的制备方法与应用

Similar Documents

Publication Publication Date Title
Qian et al. Imine and imine-derived linkages in two-dimensional covalent organic frameworks
Petrovic et al. Influence of surface modification on selective CO2 adsorption: A technical review on mechanisms and methods
Liu et al. A hydrophilic covalent organic framework for photocatalytic oxidation of benzylamine in water
Paraknowitsch et al. Functional carbon materials from ionic liquid precursors
Yu et al. Crystalline porous organic salts: from micropore to hierarchical pores
Sang et al. Bifunctional ionic hyper-cross-linked polymers for CO2 capture and catalytic conversion
Yu et al. Molten salt synthesis of nitrogen-doped porous carbons for hydrogen sulfide adsorptive removal
CN102190797B (zh) 具有纳米孔洞的三嗪基共价键有机骨架材料的快速合成方法及用途
CN103221127B (zh) 多孔聚合物材料
CN111592659A (zh) 盐增强调控多孔有机聚合物及其制备方法和应用
Li et al. Naphthalene-based microporous polyimides: adsorption behavior of CO2 and toxic organic vapors and their separation from other gases
Zhou et al. Porous polyelectrolyte frameworks: synthesis, post-ionization and advanced applications
CN111876160A (zh) 一种炭气凝胶材料及其制备方法和作为重金属污染土壤修复材料的应用
Liang et al. In situ Cu-loaded porous boron nitride nanofiber as an efficient adsorbent for CO2 capture
CN101816925B (zh) 一种用于co2吸附的有机无机杂化材料及其制备方法
CN109179379B (zh) 一种具有碳纳米管核@功能无定形碳壳单元的纳米网络结构碳材料及其制备方法和应用
Guo et al. Construction of multifunctional histidine-based hypercrosslinked hierarchical porous ionic polymers for efficient CO2 capture and conversion
Lan et al. Conjugated porous polymers for gaseous toluene adsorption in humid atmosphere
Fu et al. Ionic covalent organic framework: what does the unique ionic site bring to us?
CN113831512B (zh) 一种多氮共轭微孔聚合物及其制备方法与应用
CN114031701A (zh) 一种双季铵二氧化碳吸附树脂及其制备方法和应用
Demir et al. Enhanced water stability and high CO 2 storage capacity of a Lewis basic sites-containing zirconium metal–organic framework
Li et al. Water stable MIL-101 (Cr)/polyacrylonitrile/agarose aerogel for efficient 2, 4-dichlorophenoxyacetic acid adsorption
CN105062033A (zh) 高容量有机-无机复合储氢材料及其制备方法
Cho et al. Epoxide functionalization of a pentaethylenehexamine adsorbent supported on macroporous silica for post-combustion CO2 capture

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200828

RJ01 Rejection of invention patent application after publication