CN111584912A - 电堆 - Google Patents

电堆 Download PDF

Info

Publication number
CN111584912A
CN111584912A CN202010253248.4A CN202010253248A CN111584912A CN 111584912 A CN111584912 A CN 111584912A CN 202010253248 A CN202010253248 A CN 202010253248A CN 111584912 A CN111584912 A CN 111584912A
Authority
CN
China
Prior art keywords
cathode
air
stack
anode
solid oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010253248.4A
Other languages
English (en)
Other versions
CN111584912B (zh
Inventor
陈烁烁
邱基华
谭礼林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Sanhuan Electronic Co ltd
Chaozhou Three Circle Group Co Ltd
Original Assignee
Shenzhen Sanhuan Electronic Co ltd
Chaozhou Three Circle Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Sanhuan Electronic Co ltd, Chaozhou Three Circle Group Co Ltd filed Critical Shenzhen Sanhuan Electronic Co ltd
Priority to CN202010253248.4A priority Critical patent/CN111584912B/zh
Publication of CN111584912A publication Critical patent/CN111584912A/zh
Application granted granted Critical
Publication of CN111584912B publication Critical patent/CN111584912B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0276Sealing means characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/1213Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material
    • H01M8/1226Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the electrode/electrolyte combination or the supporting material characterised by the supporting layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Combustion & Propulsion (AREA)

Abstract

本发明涉及一种电堆,包括多片固体氧化物燃料电池单电池,以及设于各相邻的固体氧化物燃料电池单电池之间的连接体,电堆采用阴极侧空气外置气流分配的方式,连接体包括设有空气通道的阴极侧和设有燃气通道的阳极侧,空气通道包括设于阴极侧边缘的空气进口区域的空气预热区,空气预热区包括多条从阴极侧边缘向阴极侧的中部延伸的进气道。本发明在电堆阴极侧空气进口区域设计一空气预热区域,该区域可加工成流道形式,流道数量可调整,再配合优化的电池电极材料和电池结构、高导热的金属连接体材料,制备的电堆能有效进行电堆热管理,能有效克服电堆在高功率密度下运行或者长期老化后运行进、出口温差较大的问题,有效提高电堆长期使用的可靠性。

Description

电堆
技术领域
本发明涉及电池领域,尤其涉及一种固体氧化物燃料电池电堆。
背景技术
固体氧化物燃料电池(SOFC)电堆是将化学能直接转化为电能的高效率电化学发电装置。
传统的电堆工作时,阳极侧通入的燃气和阴极侧通入的空气在电池的界面处发生高温电化学反应,转化成电能,实现燃料化学能高效率转换为电能输出。现有电堆结构较难实现电堆高功率密度运行,难点在于电堆高功率密度运行时产生较多的热量,热量随着气体从出口排出导致电堆存在较大的温度梯度而失效。另一方面,随着电堆长时间运行,阻抗的衰减导致电堆发热量越来越大,因此同样会给电堆热管理带来更多挑战。
发明内容
基于此,有必要针对传统的固体氧化物燃料电池电堆整体结构的设计存在不足,导致电堆较难进行热管理,提供一种新的电堆设计。
一种电堆,包括多片固体氧化物燃料电池单电池,以及设于各相邻的固体氧化物燃料电池单电池之间的连接体,所述连接体用于为固体氧化物燃料电池单电池提供空气通道和燃气通道,所述电堆采用阴极侧空气外置气流分配的方式,不限于同流、错流、逆流或其它复合气流分配方式的电堆设计,所述连接体包括设有空气通道的阴极侧和设有燃气通道的阳极侧,所述空气通道包括设于所述阴极侧边缘的空气进口区域的空气预热区,所述空气预热区包括多条从所述阴极侧边缘向所述阴极侧的中部延伸的进气道。
进一步地,各所述固体氧化物燃料电池单电池均包括阳极、阴极及设于所述阳极和阴极之间的电解质层,所述连接体阴极侧与所述单电池阴极相对设置从而为阴极提供空气通道,所述连接体阳极侧与单电池阳极相对设置从而为阳极提供燃气通道。
进一步地,各所述固体氧化物燃料电池单电池还包括阻挡层,所述阻挡层位于所述电解质层和阴极之间,用于隔离所述电解质层和所述阴极,以防止电解质层和阴极发生化学反应。
进一步地,所述阻挡层材料为GDC或SDC材料。
进一步地,各所述进气道的长度为1-10mm,空气预热区纵向间隙为0.2-2mm。
进一步地,各所述进气道形成微流道。
进一步地,所述连接体为金属连接体。
进一步地,所述金属连接体材料为热导率大于20W/(m·K)的不锈钢材料。
进一步地,所述阳极作为固体氧化物燃料电池的支撑体,所述阳极的厚度大于所述电解质层的厚度,并大于所述阴极的厚度,所述支撑体为YSZ+Ni阳极支撑体。
进一步地,所述阴极层的材料为包括镧系元素以及过渡族元素组成的钙钛矿结构复合氧化物。具体地,所述阴极层的材料为(La,Sr)(Co,Fe)O、(La,Sr)CoO或(La,Sr)MnO。
进一步地,所述电堆包括密封装置,所述密封装置的材料为可压缩的云母片、蛭石片或耐高温玻璃,或其它的可以提供固体氧化物燃料电池高温密封性能的材料。
传统的固体氧化物燃料电池电堆,高功率密度运行时电堆进出口区域温度梯度较大,再加上电堆长期运行阻抗增加导致发热量增大,存在明显的热管理问题,需要通入大量的空气进行电堆冷却。但阴极侧进口空气量过大会降低进口空气温度,从而导致电堆进、出口区域温差较大,大大影响了电堆长期使用的可靠性以及无法让电堆高功率密度运行,充分发挥其性能,且制备成本较高。上述电堆采用外置式空气气流分配方式,以及阴极侧空气进口预热通道的设计,可方便调控进口的空气量及预热温度,有效优化电堆的热管理、可靠性,使电堆可以实现高功率密度运行,降低电堆的制备成本。
附图说明
图1是一实施例中连接体和固体氧化物燃料电池单电池的相对位置示意图;
图2是一实施例中连接体的俯视图;
图3是图2所示实施例中连接体的右视图;
图4是图2所示实施例中连接体的仰视图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“竖直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的。当元件或层被称为“在...上”、“与...相邻”、“连接到”或“耦合到”其它元件或层时,其可以直接地在其它元件或层上、与之相邻、连接或耦合到其它元件或层,或者可以存在居间的元件或层。相反,当元件被称为“直接在...上”、“与...直接相邻”、“直接连接到”或“直接耦合到”其它元件或层时,则不存在居间的元件或层。应当明白,尽管可使用术语第一、第二、第三等描述各种元件、部件、区、层和/或部分,这些元件、部件、区、层和/或部分不应当被这些术语限制。这些术语仅仅用来区分一个元件、部件、区、层或部分与另一个元件、部件、区、层或部分。因此,在不脱离本发明教导之下,下面讨论的第一元件、部件、区、层或部分可表示为第二元件、部件、区、层或部分。
当在本说明书中使用术语“包含”和/或“包括”时,其指明存在所述特征、整体、步骤、操作、元件和/或组件,但不排除存在或附加一个或多个其他特征、整体、步骤、操作、元件、组件和/或它们的组合。单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。
电堆是将电化学反应燃料如氢气、天然气等以及氧化剂中的化学能直接转化为电能的高效发电装置。电堆产生电能的原理为:高温下,空气中的O2在阴极催化裂解成O2-,在电化学势差的作用下,O2-离子穿过陶瓷电解质隔膜片,到达阳极和电解质界面,与燃气发生还原反应,生成水和CO2,对外放出电流。固体氧化物燃料电池电堆包括多片固体氧化物燃料电池单电池,这些单体之间通过连接体进行连接,以使多片固体氧化物燃料电池单电池堆叠形成电堆。例如可以在两相邻的固体氧化物燃料电池单电池之间设置一连接体,连接体用于为固体氧化物燃料电池单电池提供空气通道和燃气通道,可以通过在连接体上开孔、开槽、设置气管等方式形成空气通道/燃气通道。
图1是一实施例中连接体100和固体氧化物燃料电池单电池20的相对位置示意图,固体氧化物燃料电池单电池20包括阳极22、阴极26及设于阳极22和阴极26之间的电解质层24。连接体100包括设有空气通道的阴极侧101和设有燃气通道的阳极侧103,阴极侧101与阴极26相对设置从而为阴极26提供空气通道,阳极侧103与阳极22相对设置从而为阳极22提供燃气通道。连接体100还能够起到隔离阳极22和阴极26的不同气氛的作用。图1中的省略号表示省略循环出现的重复单元。
图2是一实施例中连接体100的俯视图,图3是同一实施例中连接体100的右视图,图4是同一实施例中连接体100的仰视图。在该实施例中,固体氧化物燃料电池电堆采用阴极侧空气外置气流分配的方式,阴极侧101的空气通道包括设于阴极侧101边缘的空气进口区域的空气预热区110,空气预热区110包括多条从阴极侧101边缘向阴极侧101的中部延伸的进气道102。其中,外置气流分配是指电堆所有层的空气气体从外部进入,没有内部分配气体的通道;相对地,内置气流分配是指在每块连接体上开孔,若干层开的孔连起来形成气体分配的通道,也就是说通道在内部。上述实施例中电堆的空气直接与外界大气连通,空气采用外置气流分配的方式。
上述电堆采用外置式空气气流分配方式,以及阴极侧空气进口预热通道的设计,可方便调控进口的空气量及温度,有效优化电堆的热管理、可靠性,同时降低电堆的制备成本。
在其中一个实施例中,各固体氧化物燃料电池单电池20还包括阻挡层。阻挡层位于电解质层24和阴极26之间,用于隔离电解质层24和阴极26,以防止电解质层24和阴极26发生化学反应。
在其中一个实施例中,各进气道102的长度a为1-10mm,空气预热区110的纵向间隙b(即进气道102的高度)为0.2-2mm。
在进一步的实施例中,进气道102的长度a为5mm,进气道102的高度b为1mm。空气预热区110加工成微流道,流道数量为13。该阴极侧空气预热区110适用于空气外置式气流分配方式的电堆设计,不限于同流、错流、逆流或其它复合气流分配方式的电堆设计。通过在连接体100上阴极侧101加工预热区域流道,可有效改善电堆热管理。如电堆提高功率密度运行或者电堆长期运行后衰减,导致电堆整体发热量增加,需要通过提高空气流量来有效降低电堆进、出口温度梯度,而增加空气流量会降低系统效率及增加电堆空气侧压损,因此有必要优化电堆设计,让更低温的空气进入电堆入口,在电堆阴极侧空气进口区域设计一空气预热通道,有效将进口空气预热。
在其中一个实施例中,连接体为金属连接体。金属连接体的导热系数高,有利于提高电堆的转换效率。在其中一个实施例中,金属连接体为热导率大于20W/(m·K)的不锈钢连接体。
在其中一个实施例中,阻挡层材料可为GDC(钆掺杂氧化铈)或者SDC(钐掺杂氧化铈)。通过选择合适的材料,使得阻挡层材料的热膨胀系数介于阳极材料的膨胀系数和阴极材料的膨胀系数之间,可以有效改善两者之间的热膨胀匹配。
在其中一个实施例中,阳极22可作为固体氧化物燃料电池单电池20的支撑体,阳极支撑体的厚度大于电解质层24的厚度,并大于阴极26的厚度,阳极支撑体为YSZ(Yttria-Stabilized Zirconia,氧化钇掺杂的氧化锆)+Ni阳极支撑体。本发明不限于采用阳极22作为固体氧化物燃料电池单电池20的支撑体,也可采用阴极26或电解质层24作为固体氧化物燃料电池单电池20的支撑体。同理,阴极26作为固体氧化物燃料电池单电池20的支撑体时,阴极26的厚度要大于阳极22的厚度,并大于电解质层24的厚度;当电解质层24作为固体氧化物燃料电池单电池20的支撑体时,电解质层24的厚度要大于阳极22的厚度,并大于阴极26的厚度。
在其中一个实施例中,阴极26的材料可包括镧系元素以及过渡族元素组成的具有钙钛矿结构的复合氧化物。具体地,阴极26的材料可为(La,Sr)(Co,Fe)O、(La,Sr)CoO或(La,Sr)MnO。(La,Sr)(Co,Fe)O(LSCF)、(La,Sr)CoO(LSC)或(La,Sr)MnO(LSM)混合电导率较高,可提高电堆性能。其中,LSCF(镧锶钴铁)是La Sr Co Fe O的简称,LSC是(La,Sr)CoO的简称,LSM是(La,Sr)MnO的简称。
在其中一个实施例中,电堆还包括密封装置,密封装置能够用于防止固体氧化物燃料电池单电池20的阴极26与相邻的固体氧化物燃料电池单电池20的阳极侧发生交叉泄漏,还可用于防止固体氧化物燃料电池单电池20的阴极26同外部空气发生化学反应导致泄漏。采用密封装置密封,有利于电堆进行化学反应,提高电堆的能量转换效率。
在其中一个实施例中,密封装置的材料为可压缩的云母片、蛭石片或耐高温玻璃,或其它的可以提供固体氧化物燃料电池高温密封性能的材料。耐高温指玻璃的Tg点(玻璃化温度点)为650℃以上。
本发明的电堆,通过在阴极侧空气进口区域设计一空气预热区域,该区域可加工成流道形式,流道数量可调整,再配合优化的电池电极材料和电池结构、高导热的金属连接体材料,制备的电堆能有效进行电堆热管理,能有效克服电堆在高功率密度下运行或者长期老化后运行进、出口温差较大的问题,有效提高电堆长期使用的可靠性。
一个具体实施例中的电堆包括:多个固体氧化物燃料电池单电池以及用于将各固体氧化物燃料电池单电池进行密封的密封装置。固体氧化物燃料电池单电池包括阳极支撑体、电解质层、阴极、阻挡层以及热导率大于20W/(m·K)的不锈钢连接体。其中,电解质层设置在阳极支撑体的外表面上。阻挡层用于隔离电解质层和阴极,以防止电解质和阴极材料发生化学反应。金属连接体用于连接相邻的阳极支撑体和阴极,以使多个固体氧化物燃料电池单电池形成电堆。阻挡层材料为GDC或者SDC。阳极支撑体为YSZ+Ni阳极支撑体。阴极层的材料为(La,Sr)(Co,Fe)O(LSCF)。密封装置的材料为耐高温玻璃,耐高温玻璃的Tg点为650℃以上。
传统的固体氧化物燃料电池电堆由于在电堆气流分配方式的设计、电池结构的选择、连接体材料的选择等方面存在不足,导致电堆无法在高功率密度下运行,电堆性能也不能完全发挥,且制备成本较高。上述具体实施例中的电堆,可实现电堆较高功率密度运行,该功率密度范围为400-1200mW/cm2,主要通过增大空气流量有效降低电堆的热梯度(简称,dT),电堆阴极侧空气进口区域设计有空气预热区,将较低温度的空气预热至电堆需要的工作温度,提高SOFC电堆可靠性。上述具体实施例中的电堆是高功率密度运行的电堆,可以有效降低单位输出功率的成本,充分发挥电堆的性能,且制备成本低。
申请人在电堆平均运行温度为730℃的条件下,对本具体实施例的电堆进行了性能测试,表1为性能测试数据。
表1
电堆设计方案 本具体实施例的电堆
功率密度 500mW/cm<sup>2</sup>
初始燃料利用率 85%
初始直流电效率 67%
电堆热梯度dT 65℃
空气进口温度 550℃
经过电堆进口预热后温度 700℃
从表1中可知,本具体实施例中的电堆进口较低温度的空气经空气预热区预热后,能满足进入电池活化区域温度达到700℃,达到该实施例阳极支撑SOFC电堆的运行温度要求。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能组合都进行描述,然而只要这些技术特征的组合不存在矛盾,都应当是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施例,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种电堆,包括多片固体氧化物燃料电池单电池,以及设于各相邻的固体氧化物燃料电池单电池之间的连接体,所述连接体用于为固体氧化物燃料电池单电池提供空气通道和燃气通道,其特征在于,所述电堆采用阴极侧空气外置气流分配的方式,所述连接体包括设有空气通道的阴极侧和设有燃气通道的阳极侧,所述空气通道包括设于所述阴极侧边缘的空气进口区域的空气预热区,所述空气预热区包括多条从所述阴极侧边缘向所述阴极侧的中部延伸的进气道。
2.根据权利要求1所述的电堆,其特征在于,各所述固体氧化物燃料电池单电池均包括阳极、阴极及设于所述阳极和阴极之间的电解质层,连接体阴极侧与单电池阴极相对设置从而为单电池阴极提供空气通道,所述连接体阳极侧与单电池阳极相对设置从而为单电池阳极提供燃气通道。
3.根据权利要求2所述的电堆,其特征在于,各所述固体氧化物燃料电池单电池还包括阻挡层,所述阻挡层位于所述电解质层和阴极之间,用于隔离所述电解质层和所述阴极,以防止电解质层和阴极发生化学反应。
4.根据权利要求3所述的电堆,其特征在于,所述阻挡层材料为GDC或SDC材料。
5.根据权利要求1所述的电堆,其特征在于,各所述进气道的长度为1-10mm,所述空气预热区的纵向间隙为0.2-2mm。
6.根据权利要求5所述的电堆,其特征在于,各所述进气道形成微流道。
7.根据权利要求1所述的电堆,其特征在于,所述连接体为金属连接体。
8.根据权利要求7所述的电堆,其特征在于,所述金属连接体的材料为热导率大于20W/(m·K)的不锈钢材料。
9.根据权利要求2所述的电堆,其特征在于,所述阳极作为固体氧化物燃料电池单电池的支撑体,所述阳极的厚度大于所述电解质层的厚度,并大于所述阴极的厚度,所述支撑体为YSZ+Ni阳极支撑体。
10.根据权利要求1-9任一项所述的电堆,所述电堆包括密封装置,所述密封装置的材料为可压缩的云母片、蛭石片或耐高温玻璃。
CN202010253248.4A 2020-04-02 2020-04-02 电堆 Active CN111584912B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010253248.4A CN111584912B (zh) 2020-04-02 2020-04-02 电堆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010253248.4A CN111584912B (zh) 2020-04-02 2020-04-02 电堆

Publications (2)

Publication Number Publication Date
CN111584912A true CN111584912A (zh) 2020-08-25
CN111584912B CN111584912B (zh) 2022-11-15

Family

ID=72112517

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010253248.4A Active CN111584912B (zh) 2020-04-02 2020-04-02 电堆

Country Status (1)

Country Link
CN (1) CN111584912B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114361505A (zh) * 2022-03-17 2022-04-15 武汉氢能与燃料电池产业技术研究院有限公司 三流道固体氧化物燃料电池单元结构及电池堆
CN116072944A (zh) * 2022-12-07 2023-05-05 山东大学 一种单堆兆瓦级燃料电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101017909A (zh) * 2007-03-08 2007-08-15 上海交通大学 可拆卸的平板式中温固体氧化物燃料电池堆
CN101373843A (zh) * 2007-08-20 2009-02-25 中国科学院过程工程研究所 一种可拆卸的燃料密封平板式固体氧化物燃料电池堆
CN201845831U (zh) * 2010-11-17 2011-05-25 武汉银泰科技燃料电池有限公司 空冷电堆燃料电池系统
US20140093805A1 (en) * 2012-09-28 2014-04-03 Korea Institute Of Energy Research Solid oxide fuel cell stack with uniform flow distribution structure and metal sealing member
WO2014112378A1 (ja) * 2013-01-18 2014-07-24 株式会社デンソー 燃料電池装置
CN110890572A (zh) * 2019-11-06 2020-03-17 华中科技大学 一种基于油类燃料的固体氧化物燃料电池发电系统
WO2020055639A1 (en) * 2018-09-13 2020-03-19 Bloom Energy Corporation Fuel cell system including high-temperature desulfurization subsystem and method of operating the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101017909A (zh) * 2007-03-08 2007-08-15 上海交通大学 可拆卸的平板式中温固体氧化物燃料电池堆
CN101373843A (zh) * 2007-08-20 2009-02-25 中国科学院过程工程研究所 一种可拆卸的燃料密封平板式固体氧化物燃料电池堆
CN201845831U (zh) * 2010-11-17 2011-05-25 武汉银泰科技燃料电池有限公司 空冷电堆燃料电池系统
US20140093805A1 (en) * 2012-09-28 2014-04-03 Korea Institute Of Energy Research Solid oxide fuel cell stack with uniform flow distribution structure and metal sealing member
WO2014112378A1 (ja) * 2013-01-18 2014-07-24 株式会社デンソー 燃料電池装置
WO2020055639A1 (en) * 2018-09-13 2020-03-19 Bloom Energy Corporation Fuel cell system including high-temperature desulfurization subsystem and method of operating the same
CN110890572A (zh) * 2019-11-06 2020-03-17 华中科技大学 一种基于油类燃料的固体氧化物燃料电池发电系统

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114361505A (zh) * 2022-03-17 2022-04-15 武汉氢能与燃料电池产业技术研究院有限公司 三流道固体氧化物燃料电池单元结构及电池堆
CN116072944A (zh) * 2022-12-07 2023-05-05 山东大学 一种单堆兆瓦级燃料电池
CN116072944B (zh) * 2022-12-07 2024-06-07 山东大学 一种单堆兆瓦级燃料电池

Also Published As

Publication number Publication date
CN111584912B (zh) 2022-11-15

Similar Documents

Publication Publication Date Title
CN100536203C (zh) 用于燃料电池的双极板
CA2391487C (en) Planar solid oxide fuel cell stack with metallic foil interconnect
CN104412434B (zh) 用于燃料电池的气体分布元件
CN109755622B (zh) 一种中空对称的双阴极高温固态燃料电池堆
EP1443583A2 (en) Fuel cell stack and fuel cell module
CN100382369C (zh) 蜂窝型固体电解质燃料电池
CN112713295B (zh) 一种蛇形气道平板式固体氧化物燃料电池电堆
CN111584912B (zh) 电堆
CN108110300B (zh) 固体氧化物燃料电池电堆及为其分配气体的气流分配板
KR20110022907A (ko) 평관형 고체 산화물 연료전지 모듈
EP3147984A1 (en) Fuel cell module including heat exchanger and method of operating such method
KR101287286B1 (ko) 경사형 유로를 갖는 평관형 고체 산화물 연료전지 모듈
CN111564644A (zh) 一种小功率的高温质子交换膜燃料电池电堆
JP3516325B2 (ja) ハニカム構造固体電解質型燃料電池
EP2643876B1 (en) Co-flow / counter-flow fuel cell or electrolysis cell
KR101120134B1 (ko) 평관형 고체산화물 셀 스택
CN201402834Y (zh) 一种平板式中温固体氧化物燃料电池堆
AU2003231695A1 (en) Flow disruptor enhanced fuel cell
KR101180161B1 (ko) 서펜틴 유로가 삽입된 고체산화물 연료전지 및 그 제조방법
KR20200094876A (ko) 고체산화물 연료전지와 고체산화물 전해셀
EP4243129A1 (en) Solid oxide cell chip with double-electrolyte structure and preparation method
CN112993304B (zh) 一种梯度波纹状流场结构
KR101081019B1 (ko) 연료전지용 연결재
CN215184078U (zh) 一种燃料电池双极板及其电池电堆
CN115621495A (zh) 一种气体分配器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant