CN111579173A - Automatic detection equipment and detection method for three-cavity pressure maintaining air tightness of fuel cell system - Google Patents
Automatic detection equipment and detection method for three-cavity pressure maintaining air tightness of fuel cell system Download PDFInfo
- Publication number
- CN111579173A CN111579173A CN202010438146.XA CN202010438146A CN111579173A CN 111579173 A CN111579173 A CN 111579173A CN 202010438146 A CN202010438146 A CN 202010438146A CN 111579173 A CN111579173 A CN 111579173A
- Authority
- CN
- China
- Prior art keywords
- pressure
- air
- valve
- storage device
- fuel cell
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 80
- 238000001514 detection method Methods 0.000 title claims abstract description 76
- 239000007789 gas Substances 0.000 claims abstract description 105
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 65
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 33
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 40
- 239000001257 hydrogen Substances 0.000 claims description 39
- 229910052739 hydrogen Inorganic materials 0.000 claims description 39
- 238000012360 testing method Methods 0.000 claims description 34
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 26
- BGRDGMRNKXEXQD-UHFFFAOYSA-N Maleic hydrazide Chemical compound OC1=CC=C(O)N=N1 BGRDGMRNKXEXQD-UHFFFAOYSA-N 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 6
- 238000007789 sealing Methods 0.000 claims description 4
- 230000001105 regulatory effect Effects 0.000 claims 4
- 230000001276 controlling effect Effects 0.000 claims 3
- 238000007599 discharging Methods 0.000 claims 1
- 239000012528 membrane Substances 0.000 abstract description 5
- 239000003570 air Substances 0.000 description 104
- 210000004027 cell Anatomy 0.000 description 55
- 238000010586 diagram Methods 0.000 description 5
- 238000010276 construction Methods 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 230000006837 decompression Effects 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000011897 real-time detection Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M3/00—Investigating fluid-tightness of structures
- G01M3/02—Investigating fluid-tightness of structures by using fluid or vacuum
- G01M3/26—Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Fuel Cell (AREA)
Abstract
本发明公开了一种燃料电池系统三腔保压气密性自动检测设备及其检测方法,设备包括:包括经储气管道与氮气瓶连通的储气装置,所述储气管道上沿进气方向设有减压阀和进气阀,所述储气装置上设有三路并联的出气管道分别与燃料电池系统的三腔对应,各出气管道上均沿出气方向设置三通阀、流量计和对外接口,所述储气装置上还设有压力传感器和排气管道,所述排气管道上设有第一排气阀,各出气管道的三通阀上还设有相互连通、用于检测燃料电池系统腔室间泄露的检测管道。本发明的设备中增加了储气装置,能保证燃料电池系统三腔中气压一致性,避免燃料电池膜电极受损,提高燃料电池寿命。
The invention discloses a three-chamber pressure-maintaining air-tightness automatic detection device of a fuel cell system and a detection method thereof. The device comprises: a gas storage device communicated with a nitrogen cylinder through a gas storage pipeline; There are a pressure reducing valve and an intake valve. The gas storage device is provided with three parallel outlet pipes corresponding to the three cavities of the fuel cell system, and each outlet pipe is provided with a three-way valve, a flow meter and an external interface along the gas outlet direction. , the gas storage device is also provided with a pressure sensor and an exhaust pipe, the exhaust pipe is provided with a first exhaust valve, and the three-way valve of each gas outlet pipe is also connected with each other for detecting fuel cells. Leak detection piping between system chambers. A gas storage device is added to the equipment of the invention, which can ensure the uniformity of the air pressure in the three chambers of the fuel cell system, avoid damage to the membrane electrode of the fuel cell, and improve the life of the fuel cell.
Description
技术领域technical field
本发明涉及氢燃料电池系统测试技术领域,具体地指一种氢燃料电池系统三腔保压气密性自动检测设备及其检测方法。The invention relates to the technical field of hydrogen fuel cell system testing, in particular to an automatic detection device and a detection method for the three-chamber pressure-maintaining air tightness of a hydrogen fuel cell system.
背景技术Background technique
为了应对国际环境问题与能源危机,氢燃料电池汽车成为世界各国发展战略。而随着氢燃料电池汽车的普及,越来越多的问题得以显现,其中燃料电池系统气密性保压检测存在诸多问题,所谓的气密性检测是指向燃料电池内部各个腔室通一定量气体,保压一段时间,检测三个腔室向大气泄漏量以及各个腔室互串量。传统的气密性保压检测针对不同的燃料电池系统,其供氢路、空气路和水路三路保压管路和保压装置都需要重新搭建,在进行对外泄漏保压和各个腔室互串检测时,需要不停的手动改装检测设备进行相应的密封测试,无法实现自动气密性检测,不具备通用性和实用性,同时由于无压力控制,无法实现自动补偿和校正,会导致在测试过程中燃料电池各个腔室之间存在较大的压差,使得燃料电池膜电极遭到永久性损伤,影响燃料电池寿命。In order to cope with international environmental problems and energy crisis, hydrogen fuel cell vehicles have become the development strategies of countries around the world. With the popularization of hydrogen fuel cell vehicles, more and more problems have emerged. Among them, there are many problems in the detection of air tightness and pressure maintenance of the fuel cell system. The gas is kept under pressure for a period of time, and the leakage of the three chambers to the atmosphere and the inter-connection of each chamber are detected. The traditional air-tightness and pressure-maintaining testing is aimed at different fuel cell systems, and the three-way pressure-maintaining pipelines and pressure-retaining devices of the hydrogen supply circuit, air circuit and water circuit need to be rebuilt. During serial testing, it is necessary to continuously manually modify the testing equipment to perform the corresponding sealing test, which cannot realize automatic air tightness testing, and has no versatility and practicability. During the test, there is a large pressure difference between the various chambers of the fuel cell, which makes the membrane electrode of the fuel cell permanently damaged and affects the life of the fuel cell.
公开号为CN205879471U的中国实用新型专利公开了一种燃料电池气密性检测系统,结构中包括各种二通球阀、三通球阀,导致整个检测系统管道布置以及操作都极为复杂。公开号为CN 108120568 A的中国发明专利公开了一种燃料电池电堆气密性实时检测设备,该系统连接的是电堆三腔的6个出口(三个进气+三个出气),还原剂、氧化剂的检测进气管道、出气管道上均需设置阀门、流量计、压力计等,外泄露测试时甚至需要通过检测进气管道、检测出气管道上的多个参数对比处理才能得出结果,检测效率较低。而且以上两个专利中无部件可使燃料电池各个腔室通气时气压一致,燃料电池膜电极极易受损。The Chinese utility model patent with publication number CN205879471U discloses a fuel cell air tightness detection system. The structure includes various two-way ball valves and three-way ball valves, resulting in extremely complicated pipeline layout and operation of the entire detection system. The Chinese invention patent with publication number CN 108120568 A discloses a real-time detection device for the air tightness of a fuel cell stack. For the detection of oxidants and oxidants, valves, flow meters, pressure gauges, etc. are required to be installed on the inlet and outlet pipes. During the external leakage test, it is even necessary to compare and process multiple parameters on the inlet and outlet pipes to obtain the results. , the detection efficiency is low. Moreover, there is no component in the above two patents that can make the air pressure uniform when each chamber of the fuel cell is ventilated, and the membrane electrode of the fuel cell is easily damaged.
因此,需要开发出一种燃料电池系统三腔保压气密性自动检测设备,实现自动气密性检测和气压控制,减少保压测试系统搭建时间和手动操作气密性检测系统的时间,提高检测系统的通用性和实用性,操作更加简单快捷,避免燃料电池膜电极受损,提高燃料电池寿命。Therefore, it is necessary to develop a three-chamber pressure-holding and air-tightness automatic detection equipment for fuel cell systems, which can realize automatic air-tightness detection and air-pressure control, reduce the construction time of the pressure-holding test system and the time of manual operation of the air-tightness detection system, and improve the detection efficiency. The versatility and practicability of the system, the operation is simpler and faster, the damage to the membrane electrode of the fuel cell is avoided, and the life of the fuel cell is improved.
发明内容SUMMARY OF THE INVENTION
本发明的目的就是要解决上述背景技术的不足,提供一种结构简单、通用性高、操作快捷、保障各腔室气压一致的燃料电池系统三腔保压气密性自动检测设备及其检测方法。The purpose of the present invention is to solve the above-mentioned deficiencies of the background technology, and to provide a three-chamber pressure-keeping and air-tightness automatic detection device and a detection method for a fuel cell system with simple structure, high versatility, fast operation, and consistent air pressure in each chamber.
本发明的技术方案为:一种燃料电池系统三腔保压气密性自动检测设备,其特征在于,包括储气装置,所述储气装置上设置储气管道与氮气瓶连通,所述储气管道上沿进气方向设有减压阀和进气阀,所述储气装置上设有三路并联的出气管道分别与燃料电池系统的三腔对应,各出气管道上均沿出气方向设置三通阀、流量计和对外接口,所述储气装置上还设有压力传感器和排气管道,所述排气管道上设有第一排气阀,各出气管道的三通阀上还设有相互连通、用于检测燃料电池系统腔室间泄露的检测管道。The technical scheme of the present invention is as follows: an automatic detection device for the pressure-maintaining air-tightness of a fuel cell system with three cavities, which is characterized in that it includes a gas storage device, and a gas storage pipe is arranged on the gas storage device to communicate with a nitrogen cylinder, and the gas storage pipe A pressure reducing valve and an intake valve are arranged on the channel along the intake direction. The gas storage device is provided with three parallel outlet pipes corresponding to the three cavities of the fuel cell system, and each outlet pipe is provided with a three-way valve along the outlet direction. , flowmeter and external interface, the gas storage device is also provided with a pressure sensor and an exhaust pipe, the exhaust pipe is provided with a first exhaust valve, and the three-way valve of each gas outlet pipe is also provided with mutual communication . The detection pipeline used to detect the leakage between the chambers of the fuel cell system.
优选的,三路并联的出气管道分别为第一出气管道、第二出气管道、第三出气管道,所述第一出气管道上沿出气方向依次设有第一三通阀、第一流量计和第一对外接口,所述第二出气管道上沿出气方向依次设有第二三通阀、第二流量计和第二对外接口,所述第三出气管道上沿出气方向依次设有第三三通阀、第三流量计和第三对外接口;Preferably, the three-way parallel air outlet pipes are respectively a first air outlet pipe, a second air outlet pipe and a third air outlet pipe, and the first air outlet pipe is provided with a first three-way valve, a first flow meter and a The first external interface, the second air outlet pipeline is provided with a second three-way valve, a second flow meter and a second external interface in sequence along the air outlet direction, and the third air outlet pipeline is sequentially provided with a third three-way valve along the air outlet direction. through valve, third flow meter and third external interface;
所述第一三通阀、第二三通阀、第三三通阀均为其中两个通道与第一出气管道、第二出气管道、第三出气管道连接,所述检测管道将第一三通阀、第二三通阀、第三三通阀的另一个通道连接合并后设置第二排气阀通向排气管道上第一排气阀后方。The first three-way valve, the second three-way valve, and the third three-way valve are two of which are connected with the first air outlet pipe, the second air outlet pipe, and the third air outlet pipe, and the detection pipe connects the first and third air outlets. After the through valve, the second three-way valve, and the other channel of the third three-way valve are connected and merged, a second exhaust valve is arranged to lead to the rear of the first exhaust valve on the exhaust pipeline.
进一步的,所述储气管道上设置进气端口与氮气瓶对应连接,所述排气管端部设置排气端口与大气连通。Further, an air inlet port is provided on the gas storage pipeline to be connected to the nitrogen cylinder correspondingly, and an exhaust port is provided at the end of the exhaust pipe to communicate with the atmosphere.
进一步的,还包括压力显示和控制装置,所述压力显示和控制装置包括显示器和系统控制器,所述系统控制器与第一排气阀、第二排气阀、减压阀、进气阀、第一三通阀、第二三通阀、第三三通阀、压力传感器、第一流量计、第二流量计、第三流量计信号连接,所述显示器与系统控制器信号连接用于显示压力传感器、第一流量计、第二流量计、第三流量计的检测数据。Further, it also includes a pressure display and control device, the pressure display and control device includes a display and a system controller, the system controller and the first exhaust valve, the second exhaust valve, the pressure reducing valve, the intake valve , The first three-way valve, the second three-way valve, the third three-way valve, the pressure sensor, the first flowmeter, the second flowmeter, and the third flowmeter are signally connected, and the display is connected to the system controller for signal connection. Displays the detection data of the pressure sensor, the first flowmeter, the second flowmeter, and the third flowmeter.
本发明还提供一种上述的燃料电池系统三腔保压气密性自动检测设备的检测方法,其特征在于,包括对外泄漏保压检测工作模式、氢气腔和空气腔互串检测工作模式、气腔和水腔互串检测工作模式;The present invention also provides a detection method for the above-mentioned three-chamber pressure-maintaining and air-tightness automatic detection device for a fuel cell system, which is characterized in that it includes a working mode for external leakage and pressure-maintaining detection, a working mode for detecting the inter-connection of hydrogen cavity and air cavity, and an air cavity. And the water cavity inter-series detection working mode;
以上工作模式启动前先确保储气管道与氮气瓶间以及第一出气管道、第二出气管道、第三出气管道分别与燃料电池氢气腔、空气腔和水腔管路间形成密封连接,第一排气阀、第二排气阀、减压阀、进气阀处于关闭状态;Before starting the above working mode, make sure that the gas storage pipeline and the nitrogen cylinder, as well as the first gas outlet pipeline, the second gas outlet pipeline, and the third gas outlet pipeline, form a sealed connection with the hydrogen chamber, air chamber and water chamber pipelines of the fuel cell respectively. The exhaust valve, the second exhaust valve, the pressure reducing valve and the intake valve are closed;
所述对外泄漏保压检测工作模式为:The working mode of the external leakage and pressure-retaining detection is:
充气调压:打开进气阀,缓慢调节减压阀,让氮气瓶中氮气减压后进入储气装置中;打开第一三通阀、第二三通阀、第三三通阀使储气装置与燃料电池系统间导通给各个腔室充气;压力传感器检测储气装置内压力,通过减压阀、第一排气阀调节储气装置中压力稳定为阈值Pt;Inflation and pressure regulation: open the intake valve, slowly adjust the pressure reducing valve, and let the nitrogen in the nitrogen bottle decompress and enter the gas storage device; open the first three-way valve, the second three-way valve, and the third three-way valve to store the gas The device and the fuel cell system are connected to inflate each chamber; the pressure sensor detects the pressure in the gas storage device, and adjusts the pressure in the gas storage device to a threshold value P t through the pressure reducing valve and the first exhaust valve;
检测数据:关闭进气阀和第一排气阀,持续时间T1后,通过压力传感器检测储气装置中压力值并记录,将减压阀调节至零点,储气装置内不再进气,再次打开第一排气阀,将系统内部气体排出,将电堆内部气压降到大气压一致,重复以上步骤n次,获取记录的P1、P2…Pn,共n个压力值;Test data: close the intake valve and the first exhaust valve. After the duration of T1, the pressure value in the gas storage device is detected and recorded by the pressure sensor, and the pressure reducing valve is adjusted to zero. No more intake air in the gas storage device, again Open the first exhaust valve, discharge the gas inside the system, reduce the internal pressure of the stack to the same atmospheric pressure, repeat the above steps n times, and obtain the recorded P1, P2...Pn, a total of n pressure values;
检验结果:计算压差△P=Pt-(P1+P2+…Pn)/n,Test result: Calculate the differential pressure △P=P t -(P1+P2+…Pn)/n,
若△P<设定值△Pmax,则代表三腔对外泄露检测合格,If △P < set value △P max , it means that the external leakage detection of the three cavities is qualified.
若△P≥设定值△Pmax,则代表三腔对外泄露检测不合格。If △P ≥ the set value △P max , it means that the external leakage detection of the three cavities is unqualified.
优选的,所述氢气腔和空气腔互串检测工作模式步骤为:Preferably, the steps of detecting the working mode of the hydrogen cavity and the air cavity in series are:
所述氢气腔和空气腔互串检测工作模式步骤为:The working mode steps of the hydrogen cavity and the air cavity inter-series detection are as follows:
充气调压:打开进气阀,缓慢调节减压阀,氮气减压后进入储气装置中;控制第一三通阀使储气装置与燃料电池系统间导通给氢气腔充气,控制第二三通阀、第三三通阀使燃料电池系统与检测管道间导通;压力传感器检测储气装置内压力,通过减压阀、第一排气阀调节储气装置中压力稳定为阈值PH2;Inflation and pressure regulation: open the intake valve, slowly adjust the pressure reducing valve, and then enter the gas storage device after decompression of nitrogen; control the first three-way valve to connect the gas storage device and the fuel cell system to inflate the hydrogen chamber, and control the second The three-way valve and the third three-way valve connect the fuel cell system and the detection pipeline; the pressure sensor detects the pressure in the gas storage device, and adjusts the pressure in the gas storage device to a threshold value P H2 through the pressure reducing valve and the first exhaust valve. ;
检测数据:同时关闭第一排气阀、打开第二排气阀,通过第二流量计检测空气路流量值并记录;将减压阀调节至零点,储气装置内不再进气,再次打开第一排气阀,将系统内部气体排出,将电堆内部气压降到大气压一致,重复以上步骤n次,获取记录的Fair1,Fair2…Fairn,共n个流量值;Test data: close the first exhaust valve and open the second exhaust valve at the same time, detect and record the air flow value through the second flow meter; adjust the pressure reducing valve to the zero point, no more intake air in the air storage device, and open it again The first exhaust valve discharges the gas inside the system, reduces the internal pressure of the stack to the same atmospheric pressure, repeats the above steps n times, and obtains the recorded Fair1, Fair2...Fairn, a total of n flow values;
检验结果:计算流量平均值Fair=(Fair1+Fair2+…Fairn)/n,Test result: Calculate the flow average value Fair=(Fair1+Fair2+…Fairn)/n,
若Fair<设定值Fairmax,则代表氢气腔和空气腔互串检测合格,若Fair≥设定值Fairmax,则氢气腔和空气腔互串检测不合格。If Fair < the set value Fair max , it means that the hydrogen chamber and the air chamber pass the mutual test. If Fair ≥ the set value Fair max , the hydrogen chamber and the air chamber fail to pass the test.
优选的,所述气腔和水腔互串检测工作模式为:Preferably, the working mode of the air cavity and the water cavity mutual series detection is:
充气调压:打开进气阀,缓慢调节减压阀,氮气减压后进入储气装置中;控制第一三通阀、第二三通阀使储气装置与燃料电池系统间导通给氢气腔和空气腔充气,控制第三三通阀使燃料电池系统与检测管道间导通;压力传感器检测储气装置内压力,通过减压阀、第一排气阀调节储气装置中压力稳定为阈值Pt;Inflation and pressure regulation: open the intake valve, slowly adjust the pressure reducing valve, and then enter the gas storage device after the nitrogen is decompressed; control the first three-way valve and the second three-way valve to conduct the gas storage device and the fuel cell system to hydrogen The cavity and the air cavity are inflated, and the third three-way valve is controlled to make the fuel cell system and the detection pipeline conduct; the pressure sensor detects the pressure in the gas storage device, and adjusts the pressure in the gas storage device through the pressure reducing valve and the first exhaust valve. threshold P t ;
检测数据:同时关闭第一排气阀、打开第二排气阀,通过第三流量计检测水路流量值并记录;将减压阀调节至零点,储气装置内不再进气,再次打开第一排气阀,将系统内部气体排出,将电堆内部气压降到大气压一致,重复以上步骤n次,获取记录的Fwt1、Fwt2…Fwtn共n个流量值;Test data: close the first exhaust valve and open the second exhaust valve at the same time, detect and record the water flow value through the third flow meter; adjust the pressure reducing valve to zero point, no more intake air in the gas storage device, open the third flow meter again. An exhaust valve, which discharges the gas inside the system, reduces the internal pressure of the stack to the same atmospheric pressure, repeats the above steps n times, and obtains a total of n flow values of Fwt1, Fwt2...Fwtn;
检验结果:计算流量平均值Fwt=(Fwt1+Fwt2+…Fwtn)/n,Test result: Calculate the flow average value Fwt=(Fwt1+Fwt2+...Fwtn)/n,
若Fwt<设定值Fwtmax,则代表气腔和水腔互串检测合格,If Fwt < the set value Fwt max , it means that the air cavity and the water cavity are tested in series.
若Fwt≥设定值Fwtmax,则代表气腔和水腔互串检测不合格。If Fwt ≥ the set value Fwt max , it means that the air cavity and the water cavity fail to pass the test.
进一步的,调节储气装置中压力稳定为阈值Pt具体操作为:将压力传感器测得压力值与阈值Pt比较,当压力值低于阈值Pt时,调节减压阀加压;当压力值高于阈值Pt时,打开第一排气阀减压。Further, the specific operation of adjusting the pressure in the gas storage device to be the threshold value P t is: compare the pressure value measured by the pressure sensor with the threshold value P t , and when the pressure value is lower than the threshold value P t , adjust the pressure reducing valve to pressurize; When the value is higher than the threshold value Pt , the first exhaust valve is opened to reduce pressure.
本发明的有益效果为:The beneficial effects of the present invention are:
1、本设备可以适配不同燃料电池系统管路接口,管路和装置,无需区分空气路、氢气路和水路,可以任意连接到燃料电池系统氢气、空气和水三腔中,同时也不必在测试现场搭建和改动气密性检测管路和装置,提升了系统的通用性和实用性。除了检测燃料电堆三腔的气密性以外,同时还检测燃电系统三腔进出管道的气密性。1. The equipment can be adapted to different fuel cell system pipeline interfaces, pipelines and devices, without distinguishing air, hydrogen and water, it can be connected to the three cavities of hydrogen, air and water in the fuel cell system, and it does not need to be in the fuel cell system. The test site builds and modifies the air tightness detection pipeline and device, which improves the versatility and practicability of the system. In addition to testing the air tightness of the three cavities of the fuel stack, it also detects the air tightness of the inlet and outlet pipes of the three cavities of the fuel power system.
2、实现了燃料电池系统可以自动气密性检测和气压控制,减少保压测试系统搭建时间和手动操作气密性检测设备的时间,使得操作更加简单快捷,通过压力控制也可以避免燃料电池膜电极受损,提高燃料电池寿命。2. Realize the automatic air tightness detection and air pressure control of the fuel cell system, reduce the construction time of the pressure holding test system and the time to manually operate the air tightness detection equipment, making the operation simpler and faster, and the fuel cell membrane can also be avoided through pressure control. Electrodes are damaged, increasing fuel cell life.
3、系统中增加了一个储气装置,能保证燃料电池系统三腔中气压一致性。3. An air storage device is added to the system to ensure the consistency of air pressure in the three chambers of the fuel cell system.
附图说明Description of drawings
图1为本发明氢燃料电池三腔保压气密性检测设备示意图Fig. 1 is the schematic diagram of the three-chamber pressure-maintaining air-tightness testing equipment of the hydrogen fuel cell according to the present invention
图2为本发明氢燃料电池三腔保压气密性检测设备电气连接图Fig. 2 is the electrical connection diagram of the three-chamber pressure-maintaining air-tightness testing equipment of the hydrogen fuel cell of the present invention
图3为对外泄漏保压检测工作模式时气体流向示意图Figure 3 is a schematic diagram of the gas flow in the working mode of external leakage and pressure-maintaining detection
图4为氢气腔和空气腔互串检测工作模式时气体流向示意图Figure 4 is a schematic diagram of the gas flow when the hydrogen cavity and the air cavity are connected in series detection mode
图5为气腔和水腔互串检测工作模式时气体流向示意图Figure 5 is a schematic diagram of the gas flow when the air cavity and the water cavity are in the working mode of mutual series detection
其中:1-氮气瓶 2-减压阀 3-进气阀 4-压力传感器 5-储气装置 6-出气管道(61-第一出气管道 62-第二出气管道 63-第三出气管道)7-三通阀(71-第一三通阀 72-第二三通阀 73-第三三通阀)8-流量计(81-第一流量计 82-第二流量计 83-第三流量计)9-对外接口(91-第一对外接口 92-第二对外接口 93-第三对外接口)10-检测管道 11-显示器 12-系统控制器 13-燃料电池系统 14-储气管道 15-排气管道 16-排气端口 17-进气端口 601-第一排气阀 602-第二排气阀。Among them: 1-nitrogen cylinder 2-pressure reducing valve 3-inlet valve 4-pressure sensor 5-gas storage device 6-air outlet pipeline (61-first air outlet 62-second air outlet 63-third air outlet) 7 -Three-way valve (71-first three-way valve 72-second three-way valve 73-third three-way valve) 8-flowmeter (81-first flowmeter 82-second flowmeter 83-third flowmeter ) 9-external interface (91-first external interface 92-second external interface 93-third external interface) 10-detection pipeline 11-display 12-system controller 13-fuel cell system 14-gas storage pipeline 15-row Air duct 16 - exhaust port 17 - intake port 601 - first exhaust valve 602 - second exhaust valve.
具体实施方式Detailed ways
下面具体实施例对本发明作进一步的详细说明。The following specific examples will further illustrate the present invention in detail.
如图1-2所示,本发明提供一种氢燃料电池系统三腔保压气密性自动检测设备,包括储气装置5,储气装置5上设置储气管道14与氮气瓶1连通,储气管道14上沿进气方向设有减压阀2和进气阀3,储气装置5上设有三路并联的出气管道6分别与燃料电池系统13的三腔对应,各出气管道6上均沿储气装置5出气方向设置三通阀7、流量计8和对外接口9,储气装置5上还设有压力传感器4和排气管道15,排气管道15上设有第一排气阀601,各出气管道6的三通阀7上还设有相互连通、用于检测燃料电池系统13腔室间泄露的检测管道10。As shown in Figures 1-2, the present invention provides an automatic detection device for the pressure-keeping and air-tightness of the three-chamber hydrogen fuel cell system, including a
三路并联的出气管道6分别为第一出气管道61、第二出气管道62、第三出气管道63,第一出气管道61上沿储气装置5出气方向依次设有第一三通阀71、第一流量计81和第一对外接口91,第二出气管道62上沿出气方向依次设有第二三通阀72、第二流量计82和第二对外接口92,第三出气管道63上沿出气方向依次设有第三三通阀73、第三流量计83和第三对外接口93;第一三通阀71、第二三通阀72、第三三通阀73均为其中两个通道与第一出气管道61、第二出气管道62、第三出气管道63连接,第一三通阀71、第二三通阀72、第三三通阀73的另一个通道由检测管道10连接合并后设置第二排气阀602通向排气管道15上第一排气阀601后方。本实施例中,第一三通阀71、第二三通阀72、第三三通阀73均为两位三通电磁阀,三个通道中必有两个通道开启,一个关闭,第一三通阀71、第二三通阀72、第三三通阀73的三个通道均为通道1、通道2、通道3。第一三通阀71、第二三通阀72、第三三通阀73均是经通道1和2分别与第一出气管道61、第二出气管道62、第三出气管道63连接,第一三通阀71、第二三通阀72、第三三通阀73的通道3由检测管道10连接合并至排气管道15。本实施例中前后向为管道上沿气流流向。The three-way parallel
本设备还包括压力显示和控制装置,压力显示和控制装置包括显示器11和系统控制器12,系统控制器12与第一排气阀601、第二排气阀601、减压阀2、进气阀3、第一三通阀71、第二三通阀72、第三三通阀73、压力传感器4、第一流量计81、第二流量计82、第三流量计83信号连接,显示器11与系统控制器12信号连接,显示器11用于显示压力传感器4、第一流量计81、第二流量计82、第三流量计83的检测数据。系统控制器12用于控制第一排气阀601、第二排气阀601、减压阀2、进气阀3、第一三通阀71、第二三通阀72、第三三通阀73的启闭状态,系统控制器12会根据需要对压力传感器4、第一流量计81、第二流量计82、第三流量计83的测定结果进行记录和处理。The device also includes a pressure display and control device, the pressure display and control device includes a
排气管15端部设有排气端口16,储气管道14上设置进气端口17与氮气瓶1连通。本实施例设备上共有五个接口:进气端口17、第一对外接口91、第二对外接口92、第三对外接口93和排气端口16。进气端口17输入端与外部氮气瓶1连接,为整个系统提供气密性保压气体,第一对外接口91对应燃料电池系统13氢气回路管道,用于检测氢气回路密封性;第二对外接口92对应燃料电池系统13空气回路管道,用于检测空气回路气密性;第三对外接口93对应燃料电池系统13冷却水路管道,用于冷却水路气密性检测。第一对外接口91、第二对外接口92、第三对外接口93配有不同管径的管径转换接口,可以适配燃料电池系统13不同管径的管路,同时无需区分空气路、氢气路和水路,可以任意连接到燃料电池系统13氢气、空气和水三腔中,通用性强。排气端口16和系统外部大气相连,用于多余气体排放。An
气体经过二级减压阀2后进入进气阀3,减压阀2主要用于将氮气瓶1中高压氮气进行减压调节,供给燃料电池系统13进行气密性测试,以免气体压力过大对燃料电池电堆造成损伤。进气阀3主要控制进气回路开启和关闭。The gas enters the
储气装置5,主要用于保证氢气路、空气路和水路三路腔室气压的一致性。第一三通阀71通道1和通道2开启主要用于氮气进入氢气腔,通道2和通道3开启主要用于氢气腔中气体排出大气,第二三通阀72通道1和通道2开启主要用于氮气进入空气腔,通道2和通道3开启主要用于空气腔中气体排出大气,第三三通阀73通道1和通道2开启主要用于氮气进入水腔,通道2和通道3开启主要用于水腔中气体排出大气。The
压力传感器4,用于监控储气装置5中的压力,当储气装置5中的压力值未达到阈值Pt时,调节减压阀2,增加储气装置5中压力,若压力值超过阈值Pt时,打开第一排气阀601,泄放掉多余气体,使得压力控制在一定的范围内。保证进入燃料电池系统氢气路、空气路和水路三个腔室的压力在合适的范围内,不会出现压力过大对燃料电池造成损伤情况。The
第一流量计81、第二流量计82、第三流量计83主要用于监控各个腔室回路中气体流量值。The
气压显示和控制装置中,显示器11可以显示储气装置5中的气压值,方便操作人员随时查看气压大小,其中控制装置12控制整个燃料电池系统三腔保压气密性自动检测设备各个部件协调工作。In the air pressure display and control device, the
本发明还提供上述燃料电池系统三腔保压气密性自动检测设备的检测方法,包括对外泄漏保压检测工作模式、氢气腔和空气腔互串检测工作模式、气腔和水腔互串检测工作模式;The present invention also provides a detection method for the above-mentioned three-chamber pressure-maintaining and air-tightness automatic detection equipment of the fuel cell system, including the external leakage and pressure-maintaining detection working mode, the hydrogen cavity and the air cavity inter-connection detection work mode, and the air cavity and the water cavity inter-connection detection work. model;
各工作模式启动前先确保储气管道14与氮气瓶1间以及第一出气管道61、第二出气管道62、第三出气管道63分别与燃料电池氢气腔、空气腔和水腔管路密封连接,第一排气阀601、第二排气阀601、减压阀2、进气阀3处于关闭状态。Before starting each working mode, ensure that the
模式一、对外泄漏保压检测工作模式,具体步骤如下:
步骤1:系统初始化,计数器清零并打开计数器,Step 1: System initialization, the counter is cleared and the counter is turned on,
步骤2:打开进气阀3,缓慢调节减压阀2,让氮气瓶1中氮气减压后进入储气装置5中;Step 2: Open the
步骤3:打开第一三通阀71通道1和通道2、第二三通阀72通道1和通道2、第三三通阀73通道1和通道2,给各个腔室充气,三个出气管道上气流方向如图3所示;Step 3: Open the first three-
步骤4:通过压力传感器4检测储气装置5中压力值,通过减压阀2、第一排气阀601调节储气装置5中压力稳定为阈值Pt(电堆允许最大压力值),具体操作为将压力传感器4压力值与阈值Pt比较,当压力值低于阈值Pt时,调节减压阀2加压,当压力值高于阈值Pt时,打开第一排气阀601减压,系统可采用PID算法实现压力控制,但不限于PID算法;Step 4: The pressure value in the
步骤5:关闭进气阀3和第一排气阀601,持续时间T1后,通过压力传感器4检测储气装置5中压力值并记录,计数器计数一次;Step 5: close the
步骤6:将减压阀2调节至零点,再次打开第一排气阀601,将系统内部气体排出,将电堆内部气压降到大气压一致;Step 6: Adjust the
步骤7:重复上述步骤2-6一共n次(n为正整数,可自行设定),获取记录经压力传感器4检测的P1、P2…Pn共n个压力值;Step 7: Repeat the above steps 2-6 for a total of n times (n is a positive integer, which can be set by yourself), and obtain and record a total of n pressure values of P1, P2...Pn detected by the
步骤8:计算压差△P=Pt-(P1+P2+…Pn)/n,本实施例设定值△Pmax为10kPa,Step 8: Calculate the differential pressure ΔP=Pt-(P1+P2+…Pn)/n, the set value ΔP max in this embodiment is 10kPa,
若△P<10kPa,则代表三腔对外泄露检测合格,燃料电池堆各个腔对外密封性能良好,If △P<10kPa, it means that the external leakage detection of the three cavities is qualified, and the external sealing performance of each cavity of the fuel cell stack is good.
若△P≥10kPa,则代表三腔对外泄露检测不合格,向系统报警。If △P ≥ 10kPa, it means that the external leakage detection of the three chambers is unqualified, and the system is alarmed.
模式二:氢气腔和空气腔互串检测工作模式Mode 2: Hydrogen cavity and air cavity mutual detection working mode
步骤1:系统初始化,计数器清零并打开计数器,Step 1: System initialization, the counter is cleared and the counter is turned on,
步骤2:打开进气阀3,缓慢调节减压阀2,让氮气瓶1中氮气减压后进入储气装置5中;Step 2: Open the
步骤3:打开第一三通阀71通道1和通道2、第二三通阀72通道2和通道3、第三三通阀73通道2和通道3,让氮气充满整个氢气腔;Step 3: Open the
步骤4:通过压力传感器4检测储气装置5中压力值,通过减压阀2、第一排气阀601调节储气装置5中压力稳定为阈值PH2(氢气腔和空气腔最大压差,本实施例中设定为50kPa);具体操作为将压力传感器4测得的储气装置5内压力值与阈值PH2比较,当压力值低于阈值PH2时,调节减压阀2加压,当压力值高于阈值PH2时,打开第一排气阀601减压,系统可采用PID算法实现压力控制但不限于PID算法;Step 4: The pressure value in the
步骤5:关闭第一排气阀601、打开第二排气阀602,三个出气管道上气流方向如图4所示,通过第二流量计82检测空气路流量值并记录,计数器计数一次;Step 5: close the
步骤6:将减压阀2调节至零点,再次打开第一排气阀601,将系统内部气体排出,将电堆内部气压降到大气压一致;Step 6: Adjust the
步骤7:重复上述步骤2-6一共n次(n为正整数,可自行设定),获取记录第二流量计82检测的Fair1、Fair2…Fairn共n个空气路流量值;Step 7: Repeat the above steps 2-6 for a total of n times (n is a positive integer, which can be set by yourself), and obtain and record a total of n air flow values of Fair1, Fair2...Fairn detected by the
步骤8:计算流量平均值Fair=(Fair1+Fair2+…Fairn)/n,本实施例设定值Fairmax为145ml/min,Step 8: Calculate the average flow rate Fair=(Fair1+Fair2+...Fairn)/n, the set value Fair max in this embodiment is 145ml/min,
若Fair<145ml/min,则代表氢气腔和空气腔互串检测合格,燃料电池堆膜密封性完好,If Fair<145ml/min, it means that the hydrogen chamber and the air chamber are tested in series, and the fuel cell stack membrane is well sealed.
若Fair≥145ml/min,则代表氢气腔和空气腔互串检测不合格,向系统报警。If Fair ≥ 145ml/min, it means that the hydrogen chamber and the air chamber fail to pass the test of each other, and the system will be alarmed.
模式三、所述气腔和水腔互串检测工作模式为:
步骤1:系统初始化,计数器清零并打开计数器,Step 1: System initialization, the counter is cleared and the counter is turned on,
步骤2:打开进气阀3,缓慢调节减压阀2,让氮气瓶1中氮气减压后进入储气装置5中;Step 2: Open the
步骤3:打开第一三通阀71通道1和通道2、第二三通阀72通道1和通道2、第三三通阀73通道2和通道3,让氮气充满整个氢气腔;Step 3: Open the first three-
步骤4:通过减压阀2、第一排气阀601调节储气装置5中压力稳定为阈值Pt(电堆允许最大压力值);具体操作为将压力传感器4测得的储气装置5内压力值与阈值Pt比较,当压力值低于阈值Pt时,调节减压阀2加压,当压力值高于阈值Pt时,打开第一排气阀601减压,系统可采用PID算法实现压力控制但不限于PID算法;Step 4: Adjust the pressure in the
步骤5:同时关闭第一排气阀601、打开第二排气阀602,三个出气管道上气流方向如图5所示,通过第三流量计83检测水路流量值并记录,计数器计数一次;Step 5: close the
步骤6:将减压阀2调节至零点,再次打开第一排气阀601,将装置内部气体排出,将电堆内部气压降到大气压一致;Step 6: Adjust the
步骤7:重复上述步骤2-6一共n次(n为正整数,可自行设定),获取记录第三流量计83检测的Fwt1、Fwt2…Fwtn共n个流量值;Step 7: Repeat the above steps 2-6 for a total of n times (n is a positive integer, which can be set by yourself), and obtain and record a total of n flow values of Fwt1, Fwt2...Fwtn detected by the
步骤8:计算流量平均值Fwt=(Fwt1+Fwt2+…Fwtn)/n,本实施例设定值Fwtmax为10ml/min,Step 8: Calculate the average flow rate Fwt=(Fwt1+Fwt2+...Fwtn)/n, the set value Fwt max in this embodiment is 10ml/min,
若Fwt<10ml/min,则代表气腔和水腔互串检测合格,燃料电池堆双极板与密封垫的密封性完好,If Fwt<10ml/min, it means that the air cavity and the water cavity are tested in series, and the sealing performance between the fuel cell stack bipolar plate and the gasket is good.
若Fwt≥10ml/min,则代表气腔和水腔互串检测不合格,向系统报警。If Fwt≥10ml/min, it means that the air chamber and water chamber fail to pass the mutual test, and alarm to the system.
可通过系统控制器12设定当模式一完成后自动进入模式二,再进行模式三,直接完成全部燃料电池系统13气密性检测。The
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010438146.XA CN111579173B (en) | 2020-05-21 | 2020-05-21 | Automatic detection equipment and detection method for three-cavity pressure maintaining air tightness of fuel cell system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010438146.XA CN111579173B (en) | 2020-05-21 | 2020-05-21 | Automatic detection equipment and detection method for three-cavity pressure maintaining air tightness of fuel cell system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111579173A true CN111579173A (en) | 2020-08-25 |
CN111579173B CN111579173B (en) | 2021-03-19 |
Family
ID=72123328
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010438146.XA Active CN111579173B (en) | 2020-05-21 | 2020-05-21 | Automatic detection equipment and detection method for three-cavity pressure maintaining air tightness of fuel cell system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111579173B (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112304532A (en) * | 2020-11-27 | 2021-02-02 | 上海捷氢科技有限公司 | Fuel cell air tightness detection device and detection method |
CN112345176A (en) * | 2020-11-10 | 2021-02-09 | 上海唐锋能源科技有限公司 | Stack leak detection structure, stack leak detection method and fuel cell test bench |
CN113447835A (en) * | 2021-06-25 | 2021-09-28 | 中国汽车技术研究中心有限公司 | Test evaluation method for reliability of fuel cell system |
CN113776755A (en) * | 2021-09-14 | 2021-12-10 | 天津新氢动力科技有限公司 | A forklift fuel cell system pipeline detection method |
CN113884253A (en) * | 2021-09-30 | 2022-01-04 | 潍柴巴拉德氢能科技有限公司 | Air tightness detection method, equipment and system |
CN114608766A (en) * | 2022-05-12 | 2022-06-10 | 河南豫氢动力有限公司 | Fuel cell air tightness detection device and detection method thereof |
CN114791341A (en) * | 2022-06-23 | 2022-07-26 | 北京迈世高科电子技术有限公司 | Air tightness detection method and detector |
CN114878106A (en) * | 2022-05-30 | 2022-08-09 | 大连锐格新能源科技有限公司 | Clamp and air supply line system with air valve structure for shortening leak detection auxiliary time and method thereof |
CN115127749A (en) * | 2022-06-20 | 2022-09-30 | 潍柴动力股份有限公司 | Fuel cell stack airtightness testing method and device and electronic equipment |
CN115406600A (en) * | 2022-09-19 | 2022-11-29 | 上海重塑能源科技有限公司 | Detection device and detection method |
WO2023051526A1 (en) * | 2021-09-28 | 2023-04-06 | 国家能源投资集团有限责任公司 | Fuel cell and airtightness detection method thereof |
CN116118992A (en) * | 2022-11-11 | 2023-05-16 | 中国船舶集团有限公司第七○八研究所 | A Ventilation System for the Empty Space of Type B LNG Fuel Tanks |
CN116429346A (en) * | 2023-05-08 | 2023-07-14 | 上海锐唯新能源科技有限公司 | Pressure maintaining test method for fuel cell engine |
CN117330258A (en) * | 2023-11-29 | 2024-01-02 | 广东国玉科技股份有限公司 | Leakage test method, leakage test gas circuit and storage medium |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3838592C2 (en) * | 1988-11-15 | 1991-10-31 | Mauser-Werke Gmbh, 5040 Bruehl, De | |
CN103837311A (en) * | 2014-02-20 | 2014-06-04 | 广东鸿图科技股份有限公司 | Method and device for detecting internal leakage of multi-cavity valve |
CN108168790A (en) * | 2017-12-28 | 2018-06-15 | 上海神力科技有限公司 | A kind of leakage detection apparatus for fuel cell pile |
CN108168798A (en) * | 2017-12-28 | 2018-06-15 | 上海神力科技有限公司 | A kind of air-tightness detection device for fuel cell pile |
CN109167088A (en) * | 2018-09-04 | 2019-01-08 | 新源动力股份有限公司 | Leakage detection method for bipolar plate in fuel cell stack |
CN109990952A (en) * | 2019-01-25 | 2019-07-09 | 上海神力科技有限公司 | A kind of fuel cell pile membrane electrode string leak detection system and method |
CN110487488A (en) * | 2019-08-09 | 2019-11-22 | 武汉中极氢能产业创新中心有限公司 | The device and method of full-automation detection fuel cell pile air-tightness |
CN210071257U (en) * | 2019-05-27 | 2020-02-14 | 中汽研汽车检验中心(天津)有限公司 | Gas tightness test bed for fuel cell |
-
2020
- 2020-05-21 CN CN202010438146.XA patent/CN111579173B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3838592C2 (en) * | 1988-11-15 | 1991-10-31 | Mauser-Werke Gmbh, 5040 Bruehl, De | |
CN103837311A (en) * | 2014-02-20 | 2014-06-04 | 广东鸿图科技股份有限公司 | Method and device for detecting internal leakage of multi-cavity valve |
CN108168790A (en) * | 2017-12-28 | 2018-06-15 | 上海神力科技有限公司 | A kind of leakage detection apparatus for fuel cell pile |
CN108168798A (en) * | 2017-12-28 | 2018-06-15 | 上海神力科技有限公司 | A kind of air-tightness detection device for fuel cell pile |
CN109167088A (en) * | 2018-09-04 | 2019-01-08 | 新源动力股份有限公司 | Leakage detection method for bipolar plate in fuel cell stack |
CN109990952A (en) * | 2019-01-25 | 2019-07-09 | 上海神力科技有限公司 | A kind of fuel cell pile membrane electrode string leak detection system and method |
CN210071257U (en) * | 2019-05-27 | 2020-02-14 | 中汽研汽车检验中心(天津)有限公司 | Gas tightness test bed for fuel cell |
CN110487488A (en) * | 2019-08-09 | 2019-11-22 | 武汉中极氢能产业创新中心有限公司 | The device and method of full-automation detection fuel cell pile air-tightness |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112345176A (en) * | 2020-11-10 | 2021-02-09 | 上海唐锋能源科技有限公司 | Stack leak detection structure, stack leak detection method and fuel cell test bench |
CN112304532A (en) * | 2020-11-27 | 2021-02-02 | 上海捷氢科技有限公司 | Fuel cell air tightness detection device and detection method |
CN112304532B (en) * | 2020-11-27 | 2023-05-05 | 上海捷氢科技股份有限公司 | Fuel cell air tightness detection equipment and detection method |
CN113447835A (en) * | 2021-06-25 | 2021-09-28 | 中国汽车技术研究中心有限公司 | Test evaluation method for reliability of fuel cell system |
CN113776755A (en) * | 2021-09-14 | 2021-12-10 | 天津新氢动力科技有限公司 | A forklift fuel cell system pipeline detection method |
WO2023051526A1 (en) * | 2021-09-28 | 2023-04-06 | 国家能源投资集团有限责任公司 | Fuel cell and airtightness detection method thereof |
CN113884253A (en) * | 2021-09-30 | 2022-01-04 | 潍柴巴拉德氢能科技有限公司 | Air tightness detection method, equipment and system |
CN113884253B (en) * | 2021-09-30 | 2024-04-12 | 潍柴巴拉德氢能科技有限公司 | Air tightness detection method, equipment and system |
CN114608766B (en) * | 2022-05-12 | 2022-07-26 | 河南豫氢动力有限公司 | Fuel cell air tightness detection device and detection method thereof |
CN114608766A (en) * | 2022-05-12 | 2022-06-10 | 河南豫氢动力有限公司 | Fuel cell air tightness detection device and detection method thereof |
CN114878106A (en) * | 2022-05-30 | 2022-08-09 | 大连锐格新能源科技有限公司 | Clamp and air supply line system with air valve structure for shortening leak detection auxiliary time and method thereof |
CN115127749A (en) * | 2022-06-20 | 2022-09-30 | 潍柴动力股份有限公司 | Fuel cell stack airtightness testing method and device and electronic equipment |
CN114791341A (en) * | 2022-06-23 | 2022-07-26 | 北京迈世高科电子技术有限公司 | Air tightness detection method and detector |
CN114791341B (en) * | 2022-06-23 | 2022-09-13 | 北京迈世高科电子技术有限公司 | Air tightness detection method and detector |
CN115406600A (en) * | 2022-09-19 | 2022-11-29 | 上海重塑能源科技有限公司 | Detection device and detection method |
CN116118992A (en) * | 2022-11-11 | 2023-05-16 | 中国船舶集团有限公司第七○八研究所 | A Ventilation System for the Empty Space of Type B LNG Fuel Tanks |
CN116429346A (en) * | 2023-05-08 | 2023-07-14 | 上海锐唯新能源科技有限公司 | Pressure maintaining test method for fuel cell engine |
CN117330258A (en) * | 2023-11-29 | 2024-01-02 | 广东国玉科技股份有限公司 | Leakage test method, leakage test gas circuit and storage medium |
CN117330258B (en) * | 2023-11-29 | 2024-03-08 | 广东国玉科技股份有限公司 | Leakage test method, leakage test gas circuit and storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN111579173B (en) | 2021-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111579173A (en) | Automatic detection equipment and detection method for three-cavity pressure maintaining air tightness of fuel cell system | |
CN104180958B (en) | A kind of fuel cell pile slip test device and method | |
CN110487488A (en) | The device and method of full-automation detection fuel cell pile air-tightness | |
CN110987324A (en) | Fuel cell air tightness testing device and testing method | |
CN104215290B (en) | Differential pressure type volume measurement method | |
CN107014598A (en) | A kind of air valve air inlet performance testing device and method of testing | |
CN212432449U (en) | Automatic leakage detection device for fuel cell stack | |
CN116565263A (en) | A fuel cell stack air tightness rapid detection system and method | |
CN114865017A (en) | Leak detection tool for fuel cell stack | |
CN110553802A (en) | Leakage detection device and method for large leakage measurement | |
CN210426918U (en) | External air tightness testing device | |
CN118565569A (en) | Air leakage quantity detection device and method for air pipe | |
TWI541524B (en) | Automatic leakage detection apparatus and method for single cell module | |
CN215178450U (en) | Detection apparatus for graphite bipolar plate runner crackle | |
CN207703414U (en) | A kind of air-tightness detection device for fuel cell pile | |
CN114076661A (en) | A fuel cell stack automatic leak detection device and method | |
CN221055991U (en) | A fuel cell single cell airtight flow resistance detection device | |
CN217059301U (en) | A positive and negative pressure test device | |
CN113782783A (en) | Fuel cell stack air tightness testing device and method | |
CN222882243U (en) | A PEM bipolar plate airtightness detection component | |
CN106500977A (en) | Turbocharger detection test method | |
CN111912583A (en) | Leakage detection device for membrane electrode of galvanic pile | |
CN217424757U (en) | Hydrogen fuel cell engine test system | |
CN219692373U (en) | Integrated valve island structure of airtight test equipment | |
CN221898709U (en) | Device for testing the air tightness of PEM electrolyzers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |