CN111574216B - 兼容金属锂负极的Li1.4Al0.4Ti1.6(PO4)3固态电解质及其制备方法 - Google Patents
兼容金属锂负极的Li1.4Al0.4Ti1.6(PO4)3固态电解质及其制备方法 Download PDFInfo
- Publication number
- CN111574216B CN111574216B CN202010473041.8A CN202010473041A CN111574216B CN 111574216 B CN111574216 B CN 111574216B CN 202010473041 A CN202010473041 A CN 202010473041A CN 111574216 B CN111574216 B CN 111574216B
- Authority
- CN
- China
- Prior art keywords
- latp
- aao template
- lithium
- solid electrolyte
- pass
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/01—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
- C04B35/447—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B38/00—Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4235—Safety or regulating additives or arrangements in electrodes, separators or electrolyte
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3201—Alkali metal oxides or oxide-forming salts thereof
- C04B2235/3203—Lithium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3231—Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
- C04B2235/3232—Titanium oxides or titanates, e.g. rutile or anatase
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Ceramic Engineering (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
本发明提供了一种兼容金属锂负极的Li1.4Al0.4Ti1.6(PO4)3固态电解质及其制备方法及其使用该固态电解质的锂离子电池。双通AAO模板孔径中的LATP纳米线的一端与正极直接接触,另一端与锂金属负极直接存在的空气间隙,避免LATP和锂金属负极之间直接接触会引发的副反应,提高了LATP结构的稳定性,防止副反应产物在界面聚集导致的全固态锂离子电池界面离子电导率降低。
Description
技术领域
本发明涉及一种兼容金属锂负极的Li1.4Al0.4Ti1.6(PO4)3 (LATP)固态电解质和制备方法及使用该固态电解质的全固态锂离子电池。
背景技术
随着锂离子电池向电动汽车、智能电网等领域的不断拓展,目前的商业化电池已经越来越难以满足人们对高能量密度的迫切需求,高能量密度带来的安全隐患也日益突出。因此,兼具高能量密度和高安全性能的全固态锂离子电池重新回归历史舞台,并引起了人们极大的研究兴趣。全固态电池采用不可燃、无腐蚀、不挥发、无漏液的固态电解质替代常规的可燃液态电解质,因此与热失控和电解质燃烧相关的安全问题将有望从根本上得以解决。此外,固态电解质一般具有较宽的电化学稳定窗口(5 V以上),便于匹配高电压正极和金属锂负极,实现电池的高质量能量密度;在工艺上,固态电解质具有柔性化发展前景,支持双极性堆叠电池,并可通过匹配更薄的集电器有效减少单体电池间的冗余空间,实现体积能量密度的提升。经过人们不断地探索和开发,目前一些固态电解质已经拥有了与液态电解质相比拟的离子电导率,但固态电池距离商业化仍有一段距离。研究者普遍认为,全固态电池进一步发展和应用的关键在于其中的界面问题。
作为一种典型的固态电解质,Li1.4Al0.4Ti1.6(PO4)3 (LATP)具有六方晶格结构,空间群为R3-c,Li、Al、Ti、P和O分别位于晶格中的6b、12c、18e和36f格点位,形成了TiO6/AlO6八面体和PO4四面体共同组成的共价Ti-Al-P-O骨架,锂离子在骨架中分布。该电解质不仅具有优越的离子传输能力(锂离子扩散系数接近10-3 S cm-1),而且其稳定的结构和廉价的成本吸引了众多研究者的关注。
作为典型的锂离子电池负极,金属锂的氧化还原电位很低(-3.04 V,相对标准氢电极),LATP和锂金属负极之间直接接触会产生严重的副反应,锂金属将LATP中的Ti4+还原为Ti3+,不仅破坏了LATP的结构稳定性,而且副反应产物在界面的聚集又降低了界面的离子电导率。
发明内容
为了解决LATP基全固态锂离子电池的上述技术问题,本发明提供了一种兼容金属锂负极的LATP固态电解质及其制备方法。
本发明的技术解决方案是:
一种兼容金属锂负极的Li1.4Al0.4Ti1.6(PO4)3固态电解质,其特征在于,正极和负极之间采用双通AAO模板作为固态电解质的结构骨架,在其中一端沿双通AAO模板的孔内壁向另一端致密生长连续均匀的LATP纳米颗粒,作为锂离子快速传导的路径。所述LATP纳米颗粒粒径均匀;所述LATP纳米颗粒未完全将双通AAO模板的孔径填充满,所述锂离子快速传导路径LATP的长度距另一端的具有一定的距离形成间隙;所述双通AAO模板具有间隙的一端与锂金属负极接触,另一端与正极直接接触,所述间隙能有效避免LATP与负极锂金属的直接接触而引起的不良副反应,又能够保证锂离子在电场作用下的有效输运。
具体的,所述LATP纳米颗粒粒径均匀,直径为20 – 30 nm。
具体的,所述锂离子快速传导路径LATP的长度距另一端的距离为10 – 50 nm。
一种兼容金属锂负极的LATP固态电解质的制备方法,包含以下步骤:
步骤1,制备一定浓度的LATP前驱体溶液;
步骤2,双通AAO模板预处理:在真空的状态下对双通AAO模板进行加热,以除掉其中的水分和杂质,然后保持负压冷却至室温。
步骤3,通过控制注入孔径的LATP与双通AAO模板的摩尔比,进而控制注入LATP固化后占据孔径的体积比。将适量的 LATP前驱体溶液在负压状态下喷注到经所述步骤2处理过的双通AAO模板上,由于毛细作用和负压、以及喷注压力的多重因素,LATP前驱体溶液会喷注进入到AAO模板的孔径内。优选地,AAO模板与LATP的摩尔比为1:5.00 – 4.99,其中AAO模板的孔隙率为50%-80%。
步骤4,对喷注了适量LATP前驱体溶液的AAO模板进行退火处理,获得一端具有空气间隙的兼容金属锂负极的LATP固态电解质。
优选地,空气间隙的长度为10 – 50 nm。
本发明的有益效果是:
提供了一种兼容金属锂负极的LATP固态电解质及其制备方法和使用该固态电解质的锂离子电池,避免了LATP和锂金属负极之间直接接触而引发的严重副反应对电池性能的损害。本发明通过控制AAO模板与LATP的摩尔比,在双通AAO模板孔中注入适量的LATP,以获得合适长度的空气间隙尺寸,较好的兼顾了LATP对锂离子良好的导通作用以及优越的界面稳定性。
附图说明
以下结合附图对本发明做进一步说明。
附图1为本发明中制备的LATP固态电解质的X射线衍射图谱。
附图2为AAO模板原始表面的SEM图。
附图3为采用了实施例1制备的LATP固态电解质的下表面SEM图。
附图4为采用实施例1制备的LATP固态电解质的上表面(具有空气间隙)SEM图。
附图5为采用实施例1制备的全固态锂离子电池的充放电测试图(正极材料和负极材料分别为磷酸铁锂和金属锂)。
具体实施方式
为了使本发明的目的、技术方案及优点更加清晰,下面通过实施例进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,但本发明的内容并非局限于此。
实施例1
一种兼容金属锂负极的Li1.4Al0.4Ti1.6(PO4)3固态电解质,其特征在于,正极和负极之间采用双通AAO模板作为固态电解质的结构骨架,在其中一端沿双通AAO模板的孔内壁向另一端致密生长连续均匀的LATP纳米颗粒,作为锂离子快速传导的路径。所述LATP纳米颗粒粒径均匀,直径为20nm;所述LATP纳米颗粒未完全将双通AAO模板的孔径填充满,所述锂离子快速传导路径LATP的长度距另一端的具有10 nm的距离形成空气间隙;所述双通AAO模板具有间隙的的一端与锂金属负极接触,另一端与正极直接接触,所述空气间隙能有效避免LATP与负极锂金属的直接接触而引起的不良副反应,又能够保证锂离子在电场作用下的有效输运。
一种兼容金属锂负极的LATP固态电解质的制备方法,包含以下步骤:
步骤1,制备LATP前驱体溶液:将0.27g硝酸锂、0.39g九水合硝酸铝、0.535ml磷酸分别溶于5 ml无水乙醇中,为防止九水合硝酸铝水解,滴加少量硝酸,搅拌30 min后,将硝酸锂滴加到九水合硝酸铝中,所得溶液记为溶液A。将1.305ml钛酸异丙酯溶于5 ml无水乙醇中,将溶液A缓慢滴加到钛酸异丙酯中,所得溶液记为溶液B。最后将磷酸滴入溶液B中,所得溶液即为LATP前驱体溶液。
步骤2,预处理双通AAO模板:将厚度为30μm、质量为25mg、孔隙率为60%的AAO模板放入玻璃瓶中,在200 °C加热状态下抽真空24 h,去除水蒸气和杂质,使AAO模板的孔径处于负压状态后自然冷却。
步骤3,取935μL的LATP前驱体溶液,在保持负压状态的前提下将前驱体溶液喷注入双通AAO模板的孔径中,静置24h,确保注入的LATP前驱体溶液位于双通AAO孔径的下端部,其中双通AAO与LATP的摩尔比为1:5.00,AAO模板的孔隙率为70%。
步骤4,将喷注过LATP前驱体溶液的AAO模板在空气氛围下进行煅烧(设定程序:先升温至500°C、保温5 h,再升温至750°C、保温15 h),以提高LATP纳米颗粒的均匀性,自然冷却后即可得到具有空气间隙(距离AAO模板孔道一端10 nm)且兼容金属锂负极的LATP固态电解质。制备后的LATP固态电解质的下表面SEM图如附图3所示,上表面(具有空气间隙)SEM图,如附图4所示。
步骤5,将所述步骤4制备的具有双通AAO模板的所述LATP固态电解质具有间隙的一端与锂金属负极接触,另一端与磷酸铁锂正极活性材料直接接触后获得全固态锂离子电池,充放电测试曲线如图5所示。
实施例2
一种兼容金属锂负极的LATP固态电解质的制备方法,包含以下步骤:
步骤1,制备Li1.4Al0.4Ti1.6(PO4)3前驱体溶液:将0.27g硝酸锂、0.39g九水合硝酸铝、0.535ml磷酸分别溶于5 ml无水乙醇中,为防止九水合硝酸铝水解,滴加少量硝酸,搅拌30 min后,将硝酸锂滴加到九水合硝酸铝中,所得溶液记为溶液A。将1.305ml钛酸异丙酯溶于5 ml无水乙醇中,将溶液A缓慢滴加到钛酸异丙酯中,所得溶液记为溶液B。最后将磷酸滴入溶液B中,所得溶液即为LATP前驱体溶液。
步骤2,预处理AAO模板:将厚度为30μm、质量为26 mg的AAO模板放入玻璃瓶中,在200 °C加热状态下真空抽滤24 h,去除水蒸气和杂质,使AAO模板的孔径处于负压状态后冷却。
步骤3,取195μl的LATP前驱体溶液,在不破坏保持负压状态的前提下将前驱体溶液喷注入双通AAO模板的孔径中,静置24h,其中AAO与LATP的摩尔比为1:4.99,AAO模板的孔隙率为70%。
步骤4,将喷注过LATP前驱体溶液的AAO模板在空气氛围下进行煅烧(设定程序:先升温至500 °C 、保温5 h,再升温至750 °C、保温15 h),以提高LATP纳米颗粒的均匀性,自然冷却后即可得到具有空气间隙(距离AAO模板孔道一端50 nm)且兼容金属锂负极的LATP固态电解质。
Claims (2)
1.一种兼容金属锂负极的Li1.4Al0.4Ti1.6(PO4)3固态电解质,其特征在于,正极和负极之间采用双通AAO模板作为固态电解质的结构骨架,在其中一端沿双通AAO模板的孔内壁向另一端致密生长连续均匀的LATP纳米颗粒,作为锂离子快速传导的路径,所述LATP纳米颗粒粒径均匀;所述LATP纳米颗粒未完全将双通AAO模板的孔径填充满,所述锂离子快速传导路径LATP的长度距另一端的具有一定的距离形成空闲间隙;所述双通AAO模板具有间隙的一端与锂金属负极接触,另一端与正极直接接触,所述间隙能有效避免LATP与负极锂金属的直接接触而引起的不良副反应,又能够保证锂离子在电场作用下的有效输运;
所述锂离子快速传导路径LATP的长度距另一端的距离为10 -50 nm;
所述LATP纳米颗粒的直径为20-30 nm;
所述兼容金属锂负极的LATP固态电解质的制备方法,包含以下步骤:
步骤1,制备一定浓度的LATP前驱体溶液;
步骤2,双通AAO模板预处理:在真空的状态下对双通AAO模板进行加热,以除掉其中的水分和杂质,然后保持负压冷却至室温;
步骤3,通过控制注入孔径的LATP与双通AAO模板的摩尔比,进而控制注入LATP固化后占据孔径的体积比;将适量的 LATP前驱体溶液在负压状态下喷注到经所述步骤2处理过的双通AAO模板上,由于毛细作用和负压、以及喷注压力的多重因素,LATP前驱体溶液会喷注进入到AAO模板的孔径内;AAO模板与LATP的摩尔比为1:5.00-4.99,其中AAO模板的孔隙率为50% - 80%;
步骤4,对喷注了适量LATP前驱体溶液的AAO模板进行退火处理,获得一端具有空气间隙的兼容金属锂负极的LATP固态电解质;
其中,AAO模板与LATP的摩尔比为1:5.00- 4.99,其中AAO模板的孔隙率为50% - 80%。
2.如权利要求1所述的兼容金属锂负极的Li1.4Al0.4Ti1.6(PO4)3 固态电解质,其特征在于,空气间隙的长度为10 - 50 nm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010473041.8A CN111574216B (zh) | 2020-05-29 | 2020-05-29 | 兼容金属锂负极的Li1.4Al0.4Ti1.6(PO4)3固态电解质及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010473041.8A CN111574216B (zh) | 2020-05-29 | 2020-05-29 | 兼容金属锂负极的Li1.4Al0.4Ti1.6(PO4)3固态电解质及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111574216A CN111574216A (zh) | 2020-08-25 |
CN111574216B true CN111574216B (zh) | 2021-07-23 |
Family
ID=72121638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010473041.8A Active CN111574216B (zh) | 2020-05-29 | 2020-05-29 | 兼容金属锂负极的Li1.4Al0.4Ti1.6(PO4)3固态电解质及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111574216B (zh) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9478809B2 (en) * | 2013-07-16 | 2016-10-25 | Ford Global Technologies, Llc | Flexible composite solid polymer electrochemical membrane |
US10205155B2 (en) * | 2014-10-14 | 2019-02-12 | Quantumscape Corporation | High surface area anode with volume expansion features |
CN105621353B (zh) * | 2015-12-31 | 2017-04-05 | 中山大学 | 一种基于多层阳极氧化铝模板的大面积纳米图形化方法 |
CN109935896A (zh) * | 2017-12-19 | 2019-06-25 | 成都英诺科技咨询有限公司 | 固态电解质及其锂电池电芯、锂电池 |
CN108933258A (zh) * | 2018-06-27 | 2018-12-04 | 淄博火炬能源有限责任公司 | 三维复合金属锂负极的全固态锂离子电池的制备方法 |
CN109698339A (zh) * | 2018-12-28 | 2019-04-30 | 安徽科达铂锐能源材料有限公司 | 一种钛酸锂复合材料及其制备方法和用途 |
CN110106526B (zh) * | 2019-05-07 | 2021-05-14 | 清华大学 | 基于固态电解质制备金属锂的方法 |
-
2020
- 2020-05-29 CN CN202010473041.8A patent/CN111574216B/zh active Active
Also Published As
Publication number | Publication date |
---|---|
CN111574216A (zh) | 2020-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110416507B (zh) | 一种原位自组装三维花状二硫化钴/MXene复合材料及其制备方法和应用 | |
CN102244250B (zh) | 石墨烯宏观体/氧化锡复合锂离子电池负极材料及其工艺 | |
CN105914369B (zh) | 一种纳米级碳包覆硫化锂复合材料及其制备方法和应用 | |
CN108511712B (zh) | 锂离子电子导电剂材料、制备方法、锂电池极片及锂电池 | |
CN110767891B (zh) | 一种多孔球形硅基复合负极材料的制备方法 | |
CN102104143A (zh) | 一种高性能动力电池用复合材料的水热合成法 | |
CN114220947B (zh) | 一种锂金属电池负极、集流体及其制备方法和电池 | |
CN111048750B (zh) | 一种石墨烯气凝胶/金属锂复合负极材料及其制备方法 | |
CN113745506B (zh) | 基于有机酸溶解法制备聚阴离子型钠电池正极材料的方法 | |
CN110165171B (zh) | 一种原位自组装纳米花状二硫化钴/rGO复合材料及其制备方法和应用 | |
CN107546380A (zh) | 一种锂离子电池复合正极材料及其制备方法 | |
CN109326798B (zh) | 一种用于金属锂负极保护层的制备方法及应用 | |
CN113363427A (zh) | 一种硫化物全固态电池用锂合金负极的制备方法及其电池 | |
CN103515581A (zh) | LiV3O8/石墨烯复合材料及其制备方法和应用 | |
CN109148851A (zh) | 一种双碳结构修饰的硅碳复合负极材料及其制备方法 | |
CN113363452A (zh) | 自支撑磷/碳三维导电网络复合电极材料及其制备方法和应用 | |
CN111574216B (zh) | 兼容金属锂负极的Li1.4Al0.4Ti1.6(PO4)3固态电解质及其制备方法 | |
CN110416508B (zh) | 一种静电自组装三维花状二硫化钴/MXene复合材料及其制备方法和应用 | |
CN113571708B (zh) | 基于锂硫全电池正负极保护的异质结ZnSe/CoSe2通用载体制备方法 | |
CN111628214B (zh) | 一种纳米线复合固态电解质的制备方法 | |
CN109065991A (zh) | 一种基于锂离子二次动力电池正极材料的充放电工艺 | |
CN111952595B (zh) | 一种基于尖端效应的无枝晶金属负极载体及其制备方法 | |
CN115172639A (zh) | 一种自支撑式钾离子预嵌入锰基正极及其制备方法与应用 | |
CN111600070B (zh) | 一种复合纳米线固态电解质 | |
CN116741998B (zh) | 一种锂金属电池负极界面修饰层的制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |