CN111564535A - 基于十字交叉微米线构筑的隧穿发光二极管及其制备方法 - Google Patents

基于十字交叉微米线构筑的隧穿发光二极管及其制备方法 Download PDF

Info

Publication number
CN111564535A
CN111564535A CN202010360720.4A CN202010360720A CN111564535A CN 111564535 A CN111564535 A CN 111564535A CN 202010360720 A CN202010360720 A CN 202010360720A CN 111564535 A CN111564535 A CN 111564535A
Authority
CN
China
Prior art keywords
zno
microwires
crossed
emitting diode
micron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010360720.4A
Other languages
English (en)
Other versions
CN111564535B (zh
Inventor
姜明明
季姣龙
阚彩侠
冒王琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Publication of CN111564535A publication Critical patent/CN111564535A/zh
Application granted granted Critical
Publication of CN111564535B publication Critical patent/CN111564535B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B1/00Devices without movable or flexible elements, e.g. microcapillary devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C3/00Assembling of devices or systems from individually processed components
    • B81C3/002Aligning microparts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0033Devices characterised by their operation having Schottky barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/025Physical imperfections, e.g. particular concentration or distribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/24Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate of the light emitting region, e.g. non-planar junction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/28Materials of the light emitting region containing only elements of Group II and Group VI of the Periodic Table
    • H01L33/285Materials of the light emitting region containing only elements of Group II and Group VI of the Periodic Table characterised by the doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明公开了基于十字交叉微米线构筑隧穿发光二极管及其制备方法,该隧穿发光二极管包括一石英衬底;两根不同Ga掺杂浓度ZnO微米线;用铟颗粒将交叉的两根不同Ga掺杂浓度氧化锌微米线固定在石英衬底上。两根微米线之间的I‑V特征曲线呈现明显Schottky接触特性,通过调节施加在两根微米线上的电压可以使得该器件的发光区局限于交叉区。通过光谱分析,发光峰位不同于两根微米线单独发光的峰位,并且通过改变实验条件可以控制交叉区发光峰位的移动。结合十字交叉区电子传输的特性分析:基于两根不同Ga掺杂浓度ZnO微米线构建的十字交叉结构实现了隧穿效应。

Description

基于十字交叉微米线构筑的隧穿发光二极管及其制备方法
技术领域
本发明涉及半导体光电子集成电路领域,涉及发光二极管,涉及电子传输调制方面,具体涉及十字交叉微米线构筑隧穿二极管及其制备方法。
背景技术
利用半导体一维微纳米线不同的物性可构建十字交叉结构,能够将光电器件一维、或者准一维的光电器件转变成亮度高度集中的点状光电器件,在光子器件、电子器件以及光电子器件中都有着十分广泛的应用。例如,十字交叉堆叠纳米线交叉点阵列可以为在每个交叉点上都有一个单独的可寻址功能的高密度集成器件的制造提供一种通用的可能性。在光伏/探测系统、信息存储、光电子集成电路等方面具有巨大的应用潜力。实现这些多功能应用将需要具备可调谐电子传输特性和波长可调谐发射的构件,这些构件能够合理地实现并集成到光电子设备中。实现器件元件主动可调的核心是对关键材料参数的合理控制,如化学成分、结构、尺寸、形貌、掺杂等。
现有发光二极管器件存在的问题是结构较为复杂,发光波长依赖结区耗尽层,很难对其发光波长进行调制。
发明内容
本发明的目的在于提供基于十字交叉微米线构筑隧穿发光二极管及其方法,采用简单的化学气相沉积方法实现了ZnO:Ga微米线的可控性生长,通过调控Ga施主杂质的含量,得到了不同Ga掺杂浓度的单根ZnO:Ga微米线。采用两根不同Ga掺杂浓度ZnO:Ga 微米线构筑的十字交叉结构,两根微米线之间的I-V特征曲线呈现明显Schottky接触特性,通过调节施加在两根微米线上的电压可以使得该器件的发光区局限于交叉区。通过控制实验条件可以控制交叉区发光峰位的移动,实现了隧穿效应,得到了一种波长可调谐发射的新型隧穿发光二极管。
为实现上述目的,本发明采用如下技术方案:
为实现上述目的,本发明所述基于十字交叉微米线构筑隧穿发光二极管的制备方法,包括以下步骤:
(1)采用化学气相沉积(CVD)方法生长ZnO:Ga微米线,基于单根Ga可控性掺杂ZnO微米线实现发光中心波长可调。
(2)在步骤(1)生长出的ZnO:Ga微米线中挑选两根不同Ga掺杂浓度的ZnO:Ga 微米线,两根微米线的导电能力存在巨大差异。
(3)用铟粒作电极将步骤(2)中挑选的两根微米线按照十字交叉结构固定在清洗后的石英片上。十字交叉可以最好的控制两根线接触区在线的中间,发光可以局域于中间。
(4)用另一相同大小的石英片轻轻按压在步骤(3)中制备好的交叉器件上,让两根微米线之间有良好的接触,即可构成完整的十字交叉微米线基隧穿发光二极管。
步骤(1)所述采用化学气相沉积(CVD)方法生长ZnO:Ga微米线,基于单根Ga 可控性掺杂ZnO微米线实现波长可调谐的电致发光器件的方法:选择特殊规格型号的刚玉舟,在反应过程中调控氩气和氧气的气流量比,可实现生长各种不同结构和横截面的ZnO微米线,由于Ga原子半径和Zn原子半径相近,且Ga-O键和Zn-O键键长相当,因此Ga作为有效施主掺杂源可用于调控和改善ZnO光学和电学特性。材料生长的过程如下:将反应源ZnO,C(石墨粉末),Ga2O3高纯粉末充分混合,在1150℃下反应60分钟,即可以在硅基片生长ZnO:Ga微米线。Ga元素得掺杂含量可以通过调控反应源质量比控制,如ZnO:Ga2O3:C=10:1:11,ZnO:Ga2O3:C=9:1:10,ZnO:Ga2O3:C=8:1:9, ZnO:Ga2O3:C=7:1:8,ZnO:Ga2O3:C=6:1:7。
步骤(2)所述在步骤(1)生长出的ZnO:Ga微米线中挑选两根不同Ga掺杂浓度的ZnO:Ga微米线,两根微米线的导电能力存在巨大差异的方法:
a)将石英衬底分别用丙酮、乙醇、去离子水超声清洗15min,然后选择单个ZnO:Ga微米线转移到石英衬底上。两个铟粒子固定在ZnO:Ga微米线两端作为电极,在200℃退火2min后,将ZnO:Ga微米线固定在衬底上,得到一个金属-半导体-金属结构的电致发光器件。
b)通过IV测试表明In颗粒作为电极和ZnO:Ga微米线形成欧姆接触,且随着微米线中Ga元素含量的增加,微米线的电阻持续降低。当单根ZnO:Ga微米线的注入电流达到一定阈值时,在微米线的中间区域可以观察到明亮的、可见光发射现象,随着注入电流的进一步增加,微米线发光的亮度和发光区也随之增加。同时,随着ZnO:Ga微米线中Ga元素含量的增加,单根微米线发光中心波长在可见光波段范围内出现明显的红移。因此,一种基于单根Ga可控性掺杂ZnO微米线实现波长可调谐的电致发光器件得以实现,类似于传统的灯丝。
c)再选取另一形貌尺寸相同(四边形微米线、长度2毫米、直径10微米)且掺杂浓度不同的ZnO:Ga微米线(通过I-V测试导电性差异),两根微米线电导率比值不低于一个数量级,以确保后面构筑的交叉结构有良好的肖特基结特性。
步骤(3)所述用铟粒作电极将步骤(2)中挑选的两根微米线按照十字交叉结构固定在清洗后的石英片上的方法:将步骤(2)中通过测试I-V特性选取的两根微米线移到新的清洗后的石英片上按照十字交叉结构用铟粒固定,交叉结构中上方的微米线存在微弯曲,确保两根微米线交叉区接触良好。
步骤(4)所述用另一相同大小的玻璃片轻轻按压在步骤(3)中制备好的交叉器件上的方法:将玻璃片切成与上述衬底相同大小经过三氯乙烯、丙酮、乙醇、去离子水清洗后,用氮气吹干。放置在步骤(3)中的交叉器件上轻轻按压以确保两根微米线接触良好同时贴敷在衬底上。
本发明的有益效果为:(1)采用化学气相沉积(CVD)方法生长不同Ga掺杂浓度ZnO:Ga微米线,不同掺杂浓度微米线之间存在巨大的导电性差异,并且这种单根ZnO:Ga微米线在强电场下实现EL发射。(2)两根不同Ga掺杂浓度单根ZnO微米线构筑的十字交叉结构。由于掺杂浓度的不同在交叉区存在肖特基结特性,在强电场下可以实现隧穿并且通过调控施加在微米线上的电压可以调制发射波长,得到发射波长可调的隧穿发光二极管。
附图说明
图1为本发明基于单根氧化锌微米线构筑隧穿发光二极管的示意图;
图2为AC微米线发光特性示意图包括(发光视频、I-V特性、光谱);
图3为BD微米线发光特性示意图包括(发光视频、I-V特性、光谱);
图4为电压施加在AB、BC、AD、CD端I-V特性曲线;
图5为AC、BD微米线同时发光且将发光区局域在交叉区的发光示意图;
图6为通过控制AC、BD端电压调控交叉区发光中心波长移动的光谱图,通过调控BD、 AC两端电压进一步调制交叉区域发光中心波长移动:(a)维持BD两端电压87V,增加AC两端电压64-80V得到交叉区发光中心波长543nm;(b)维持BD两端电压90V,增加AC两端电压64-80V得到交叉区发光中心波长545nm;(c)维持BD两端电压92V,增加AC两端电压64-80V得到交叉区发光中心波长549nm;(d)维持BD两端电压94V,增加AC两端电压64-80V得到交叉区发光中心波长551nm;(e)维持BD两端电压96V,增加AC两端电压64-80V得到交叉区发光中心波长552nm;(f)维持BD两端电压98V,增加AC两端电压64-80V得到交叉区发光中心波长558nm。
具体实施方式
下面结合实施例对本发明做更进一步的解释。
所述十字交叉微米线构筑隧穿发光二极管中,所述石英厚度0.8~1.2mm;所述ZnO:Ga微米线为两根表面光滑、长度2毫米、直径10微米的四边形微米线,电子浓度为1017~1019/cm3,电子迁移率为5~100cm2/V·s;所述铟电极厚度20~40nm。所述中十字交叉微米线构筑隧穿发光二极管实验测试所用设备:显微镜、CCD相机(在显微镜下拍摄微米线发光视频)、F-7000光谱仪、源表(可测I-V)。
第一步:将制备好的十字交叉器件四个铟电极标注A、B、C、D,其中AC微米线导电性较弱,BD微米线导电性较强。
第二步:通过对AC微米线施加电压,测试I-V特性、拍摄发光视频、采集发光光谱。I-V特性显示欧姆接触,EL发射特性表明可以观察到绿光发射,发光明亮稳定,发光中心波长在540nm左右,且发光中心在交叉区域的右下方,如图2所示。
第三步:通过对BD微米线施加电压,测试I-V特性、拍摄发光视频、采集发光光谱。I-V特性显示欧姆接触,导电性相对于AC微米线导电性强,EL发射特性表明观察到黄绿光发射,发光明亮稳定,发光中心波长在546nm左右,且发光中心位于交叉区域左下方,如图3所示。
第四步:分别对AB、BC、AD、CD微米线施加电压,测试I-V特性。I-V特性均呈现明显Schottky结接触特性,且EL发射明亮稳定,如图4所示。
第五步:维持BD微米线两端的电压在87V,逐渐增加AC微米线两端的电压。结果显示随着AC微米线两端的电压增加,原先位于BD微米线左下方的EL发射亮度逐渐变暗直到完全消失,这个过程中采集光谱显示在AC微米线两端电压0V时BD微米线发射强度最大且随着AC微米线两端电压增加发射强度降低直至消失,发光中心峰位位于546nm。继续增加AC微米线两端电压至60V时,结果显示在十字交叉区域AC、 BD微米线同时出现发射,且随着AC两端电压增加,交叉区域发射逐渐变强且发射峰位位于543nm。有趣的是该发射峰位不同于单独施加在AC、BD微米线两端电压的峰位540nm、546nm。结合十字交叉区电子传输的特性分析:基于两根不同Ga掺杂浓度ZnO微米线构建的十字交叉结构,实现了一种“tunnelingdiodes”,见图5。
第六步:针对该遂穿二极管形成的潜在机制,以及电驱动下光发射的奇异现象,继续进行以下研究。同样的方式维持BD微米线两端电压为90V、92V、94V、96V、98V 我们得到交叉区域发光中心峰位分别对应为545nm、549nm、551nm、552nm、558nm,如图所示。至此,十字交叉微米线在强电场实现隧穿并且通过调控施加在微米线上的电压可以调制交叉区发射波长,得到发射波长可调的隧穿发光二极管,见图6。

Claims (7)

1.基于十字交叉微米线构筑的隧穿发光二极管,其特征在于,包括石英衬底、固定于所述石英衬底上的两根在中点十字交叉的不同Ga掺杂浓度的ZnO:Ga微米线、设置于所述ZnO:Ga微米线两端作为电极的铟粒,以及覆盖于所述ZnO:Ga微米线上的石英片。
2.根据权利要求1所述的基于十字交叉微米线构筑的隧穿发光二极管,其特征在于,所述ZnO:Ga微米线为表面光滑的四边形微米线,长度为2厘米,线宽为10微米。
3.根据权利要求1所述的基于十字交叉微米线构筑的隧穿发光二极管,其特征在于,所述石英厚度0.8~1.2mm;所述ZnO:Ga微米线的电子浓度为1017~1019/cm3,电子迁移率为5~100cm2/V·s;所述铟粒厚度20~40nm。
4.根据权利要求1所述的基于十字交叉微米线构筑的隧穿发光二极管,其特征在于,所述两根十字交叉的不同Ga掺杂浓度的ZnO:Ga微米线的电导率比值不低于一个数量级。
5.权利要求4所述隧穿发光二极管的制备方法,其特征在于,包括如下步骤:
步骤1:生长两根不同Ga掺杂浓度的ZnO:Ga微米线;
步骤2:用铟粒作电极分别将两根ZnO:Ga微米线按照十字交叉结构固定在石英衬底上;
步骤3:用石英片按压在步骤2制得的交叉器件上。
6.根据权利要求5所述的制备方法,其特征在于,步骤1采用化学气相沉积方法生长ZnO:Ga微米线。
7.根据权利要求5所述的制备方法,其特征在于,步骤2的具体步骤包括:
步骤2.1:将石英衬底分别用丙酮、乙醇、去离子水超声清洗15min,然后选择单个ZnO:Ga微米线转移到石英衬底上,两个铟粒固定在ZnO:Ga微米线两端作为电极,在200℃退火2min后,将ZnO:Ga微米线固定在衬底上,得到一个金属-半导体-金属结构的电致发光器件;
步骤2.2:再选取另一形貌尺寸相同且掺杂浓度不同的ZnO:Ga微米线转移到石英衬底上,用两个铟粒固定在ZnO:Ga微米线两端作为电极,在200℃退火2min后,将该ZnO:Ga微米线固定在石英衬底上。
CN202010360720.4A 2020-04-17 2020-04-30 基于十字交叉微米线构筑的隧穿发光二极管及其制备方法 Active CN111564535B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2020103038608 2020-04-17
CN202010303860 2020-04-17

Publications (2)

Publication Number Publication Date
CN111564535A true CN111564535A (zh) 2020-08-21
CN111564535B CN111564535B (zh) 2023-02-07

Family

ID=72073201

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010360720.4A Active CN111564535B (zh) 2020-04-17 2020-04-30 基于十字交叉微米线构筑的隧穿发光二极管及其制备方法

Country Status (1)

Country Link
CN (1) CN111564535B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112467001A (zh) * 2020-11-05 2021-03-09 南京航空航天大学 一种波长可动态调控的电致发光器件及其调控方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101870454A (zh) * 2010-05-19 2010-10-27 青岛大学 一种导电聚合物交叉纳米线器件的组装制备方法
CN109698278A (zh) * 2018-12-18 2019-04-30 哈尔滨工业大学 一种有机无机复合结构自驱动日盲紫外探测器及制备方法
CN110137315A (zh) * 2019-04-25 2019-08-16 南京航空航天大学 单根ZnO:Ga微米线异质结基点光源器件及制备方法
CN110137317A (zh) * 2019-04-29 2019-08-16 南京航空航天大学 一种新型电致发光器件及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101870454A (zh) * 2010-05-19 2010-10-27 青岛大学 一种导电聚合物交叉纳米线器件的组装制备方法
CN109698278A (zh) * 2018-12-18 2019-04-30 哈尔滨工业大学 一种有机无机复合结构自驱动日盲紫外探测器及制备方法
CN110137315A (zh) * 2019-04-25 2019-08-16 南京航空航天大学 单根ZnO:Ga微米线异质结基点光源器件及制备方法
CN110137317A (zh) * 2019-04-29 2019-08-16 南京航空航天大学 一种新型电致发光器件及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112467001A (zh) * 2020-11-05 2021-03-09 南京航空航天大学 一种波长可动态调控的电致发光器件及其调控方法

Also Published As

Publication number Publication date
CN111564535B (zh) 2023-02-07

Similar Documents

Publication Publication Date Title
JP4781821B2 (ja) 量子ドット分散発光素子およびその製造方法
TWI412153B (zh) 發光二極體及其製造方法
Li et al. Progress in semiconducting oxide-based thin-film transistors for displays
Prabaswara et al. Direct growth of III-nitride nanowire-based yellow light-emitting diode on amorphous quartz using thin Ti interlayer
CN111564535B (zh) 基于十字交叉微米线构筑的隧穿发光二极管及其制备方法
KR100901427B1 (ko) 반도체 재료 및 이를 이용한 반도체 소자
Benhaliliba A rectifying Al/ZnO/pSi/Al heterojunction as a photodiode
CN102623605B (zh) 半导体发光器件及其制造方法
CN111525011B (zh) Pt修饰ZnO微米线异质结发光二极管及其制备方法
KR101517995B1 (ko) 그래핀에 의하여 광증폭된 발광 소자 및 이의 제조방법
Singh et al. Effect of mesa structure formation on the electrical properties of zinc oxide thin film transistors
CN208385439U (zh) 一种新型金属掺杂ito透明导电薄膜
CN111180558A (zh) 一种ZnO微米线异质结紫外发光二极管及其制备方法
Chen et al. GaN-based metal–insulator–semiconductor ultraviolet photodetectors with CsF current-suppressing layer
CN111613705A (zh) 低维高亮绿光发射InGaN基异质结二极管及其制备方法
RU2323872C1 (ru) СТРУКТУРА ГЕТЕРОГЕННОГО р-n ПЕРЕХОДА НА ОСНОВЕ НАНОСТЕРЖНЕЙ ОКСИДА ЦИНКА И ПОЛУПРОВОДНИКОВОЙ ПЛЕНКИ
CN111613706B (zh) 硅基红光发射增强异质结二极管及其制备方法
KR101920289B1 (ko) 그래핀에 의하여 광증폭된 발광 소자 및 이의 제조방법
Khan et al. Rectifying behavior and light emission from nickel oxide MIS structures
CN112909213B (zh) 一种电驱动量子点单光子源及其制备方法
CN112531122B (zh) 一种氧化锡基p/n结宽谱紫外光电探测器及其制备方法
Pauporté et al. Electrochemical and hydrothermal synthesis of epitaxial arrays of doped ZnO nanowire emitters for light emitting diodes with tunable emission from near-UV to blue
Jahed et al. Systematic control of carrier concentration and resisitivity in RF sputtered Zinc oxide thin films
Chiou et al. The characteristics of transparent metal-ZnO contacts and ZnO-based photodiodes
CN117253938A (zh) 一种SnO2微米线异质结基自驱动紫外探测器及其制法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant