CN111562295A - 一种用于镉离子高灵敏检测的光电化学适配体传感器的制备及应用 - Google Patents

一种用于镉离子高灵敏检测的光电化学适配体传感器的制备及应用 Download PDF

Info

Publication number
CN111562295A
CN111562295A CN202010368748.2A CN202010368748A CN111562295A CN 111562295 A CN111562295 A CN 111562295A CN 202010368748 A CN202010368748 A CN 202010368748A CN 111562295 A CN111562295 A CN 111562295A
Authority
CN
China
Prior art keywords
tio
zno
aptamer
ito
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010368748.2A
Other languages
English (en)
Inventor
孙伟
牛燕燕
罗贵铃
谢慧
张晓萍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hainan Normal University
Original Assignee
Hainan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hainan Normal University filed Critical Hainan Normal University
Priority to CN202010368748.2A priority Critical patent/CN111562295A/zh
Publication of CN111562295A publication Critical patent/CN111562295A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/301Reference electrodes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nanotechnology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种用于镉离子高灵敏检测的光电化学适配体传感器的制备及应用。采用水热法制备ZnO‑TiO2纳米复合材料,并以此为光电活性基元,将纳米Au、适配体S依次修饰于其表面,该适配体3’自由端预修饰有‑NH2,在偶联剂EDC的作用下,将羧基化g‑C3N4连接在适配体自由端,当该传感界面的适配体因识别靶标物镉离子而发生结构变化时,具有半导体特性的g‑C3N4靠近电极表明,并表现出光电流的增强。随着镉离子的浓度逐渐增大,其光电流信号呈现规律性的变化,这是实现镉离子定量分析的依据。研究表明该方法制备的光电化学适配体传感器具有较高的灵敏度和较低的检测限。

Description

一种用于镉离子高灵敏检测的光电化学适配体传感器的制备 及应用
技术领域
本发明涉及功能纳米复合材料和生物传感分析技术领域,提供了一种用于镉离子高灵敏检测的光电化学适配体传感器的制备及应用。
背景技术
适配体(Aptamer)是通过指数富集配体系统进化的体外筛选技术而获得的能够特异性结合离子、小分子、蛋白或其他靶标物的单链寡聚核苷酸。其本身具有形貌各异的三维结构,因此当靶标物存在时,其自身构象会发生变化,通过形状互补、静电作用或π键堆积等,形成适配体-靶标物的复合物,表现出选择性高和作用力强的优势。除此之外,适配体还具有化学性能稳定,可采用化学方法进行人工体外筛选与合成,结构易于修饰等诸多优点,其应用已延伸至食品安全、医疗诊断、药物载体、材料科学、环境监测等诸多领域。
大多数重金属时水溶性的,而且可以通过稳定的氧化态累积,并在较低的浓度下具有很强的反应性。而重金属污染的防治往往需要耗费大量的时间与资金,且技术要求高,给重金属污染的防治工作带来一定的困难。同时,存在于土壤或者水体中的重金属难以降解,而且会通过食物链或植物的吸收而富集,既影响生态环境的安全,又严重威胁人类健康和持续发展。因此,设计灵敏的检测方法,实现重金属离子的快速、实时、痕量、准确的检测,是必要且具有重要意义的,也是现阶段传感器研究领域亟待解决的技术难题。
发明内容
针对现有的镉离子检测方法存在的弊端,本发明旨在构建一种用于镉离子高灵敏检测的光电化学适配体传感器,结合了光电化学分析灵敏度高、分析速度快的优势和适配体识别元件特异性与结合力强的特点,实现镉离子高灵敏度的快速检测。
本发明的具体实施措施如下:
(1)ZnO-TiO2纳米复合物的制备:
分别称取1.62 g和0.66 g的Zn(NO3)2·6H2O和Ti(SO4)2,完全溶解于60 mL乙醇和水的混合溶液中(V乙醇:V=1:1),然后加入30 mL 0.6 mol/L的尿素,搅拌30 min后转移至水热反应釜中,水热反应的温度为150℃,反应时间为4 h,反应结束后,将产物离心过滤并洗涤,即得ZnO-TiO2纳米复合物;
(2)羧基化g-C3N4的制备:
称取3 g三聚氰胺,置于石英舟中,在氮气保护的管式炉中升温至500℃并保持4 h,得到浅黄色粉末状g-C3N4;取0.5 g制备好的g-C3N4于高压反应釜中,加入10 mL浓硝酸,水热110℃反应4 h;将所得的产物离心过滤、超纯水洗涤后,置于80℃烘箱中烘干,即得羧基化g-C3N4
(3)Au/ZnO-TiO2/ITO修饰电极的制备:
以ITO导电玻璃为基底电极,依次经丙酮、乙醇和超纯水超声清洗30 min,晾干备用;在洁净的ITO表面滴涂20μL 3.0 mg/mL ZnO-TiO2纳米复合材料的分散液,置于70℃烘箱中烘干,标记为ZnO-TiO2/ITO;继续滴涂20 μL Au纳米链溶液,置于70℃烘箱中10 min,标记为Au/ZnO-TiO2/ITO;
(4)适配体传感器的构建:
取20 μL 1.0 μmol/L巯基预修饰适配体S固定于Au/ZnO-TiO2/ITO表面,室温恒湿孵育120 min,并滴涂20 μL 0.1 mmol/L 巯基丙酸(MPA)保持室温恒湿60 min,封闭电极表面空余的活性结合位点,即得修饰电极S/Au/ZnO-TiO2/ITO,最后通过EDC偶联反应,将羧基化g-C3N4修饰于电极表面适配体S的3’自由端(该自由端预修饰有-NH2),即取5 mg羧基化g-C3N4分散于5 mL 10 mmol/L 1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐(EDC)和20 mmol/LN-羟基琥珀酰亚胺(NHS)混合溶液中,室温活化羧基60 min后,取20 μL滴涂于修饰电极S/Au/ZnO-TiO2/ITO表面,得到特异性识别Cd(II)的光电化学适配体传感器,标记为g-C3N4/S/Au/ZnO-TiO2/ITO。
本发明还提供了一种上述光电化学适配体传感器在镉离子检测中的应用,即将20μL不同浓度Cd(II)溶液孵育于传感器g-C3N4/S/Au/ZnO-TiO2/ITO表面,置于室温恒湿60min,记作Cd/g-C3N4/S/Au/ZnO-TiO2/ITO。
本发明的目的还可以通过如下光电化学分析的方法实现:
采用三电极电化学测试方法,以Ag/AgCl为参比电极,Pt丝电极为对电极,孵育Cd(II)前后的适配体传感器为工作电极,电解液为pH 7.0磷酸盐缓冲溶液,激发光波长365 nm,采用电流-时间(i-t)曲线法进行光电流测试。独立的激发信号和检测信号(分别为光信号和电信号)更有利于降低背景信号,降低信噪比,提高检测方法的灵敏度。
附图说明
图1为ZnO-TiO2和g-C3N4的SEM图,其中(A)为ZnO-TiO2,(B)为g-C3N4
图2为ZnO-TiO2和g-C3N4的XRD谱图,其中(A)为ZnO-TiO2,(B)为g-C3N4
图3为修饰电极(a)ZnO-TiO2/ITO,(b)Au/ZnO-TiO2/ITO,(c)S/Au/ZnO-TiO2/ITO,(d)g-C3N4/S/Au/ZnO-TiO2/ITO的光电响应曲线。
图4(A)为镉离子浓度依次为3.0×10-11,7.0×10-11,1.0×10-10,3.0×10-10,1.0×10-9,5.0×10-9,1.0×10-8和4.0×10-8 mol/L(曲线a至h)时,传感器的光电流响应曲线,(B)为光电流响应与镉离子浓度的线性关系曲线。
图5为不同干扰离子(浓度为5.0×10-9 mol/L)对光电化学适配体传感器检测的影响。
具体实施方式
以下结合实施例对本发明的技术方案做进一步详细介绍,但本发明的保护范围并不局限于此。
下述实施例中,所用的适配体S(5’-SH-GGA CTG TTG TGG TAT TAT TTT TGG TTGTGC AGT ATG-NH2-3’)购自生工生物工程上海股份有限公司。
实施例1:
一种用于镉离子高灵敏检测的光电化学适配体传感器的制备方法,其包括如下步骤:
(1)ZnO-TiO2纳米复合物的制备:
分别称取1.62 g和0.66 g的Zn(NO3)2·6H2O和Ti(SO4)2,完全溶解于60 mL乙醇和水的混合溶液中(V乙醇:V=1:1),然后加入30 mL 0.6 mol/L的尿素,搅拌30 min后转移至水热反应釜中,水热反应的温度为150℃,反应时间为4 h,反应结束后,将产物离心过滤并洗涤,即得ZnO-TiO2纳米复合物;
(2)羧基化g-C3N4的制备:
称取3 g三聚氰胺,置于石英舟中,在氮气保护的管式炉中升温至500℃并保持4 h,得到浅黄色粉末状g-C3N4;取0.5 g制备好的g-C3N4于高压反应釜中,加入10 mL浓硝酸,水热110℃反应4 h;将所得的产物离心过滤、超纯水洗涤后,置于80℃烘箱中烘干,即得羧基化g-C3N4
(3)Au/ZnO-TiO2/ITO修饰电极的制备:
以ITO导电玻璃为基底电极,依次经丙酮、乙醇和超纯水超声清洗30 min,晾干备用;在洁净的ITO表面滴涂20μL 3.0 mg/mL ZnO-TiO2纳米复合材料的分散液,置于70℃烘箱中烘干,标记为ZnO-TiO2/ITO;继续滴涂20 μL Au纳米链溶液,置于70℃烘箱中10 min,标记为Au/ZnO-TiO2/ITO;
(4)适配体传感器的构建:
取20 μL 1.0 μmol/L巯基预修饰适配体S固定于Au/ZnO-TiO2/ITO表面,室温恒湿孵育120 min,并滴涂20 μL 0.1 mmol/L 巯基丙酸(MPA)保持室温恒湿60 min,封闭电极表面空余的活性结合位点,即得修饰电极S/Au/ZnO-TiO2/ITO,最后通过EDC偶联反应,将羧基化g-C3N4修饰于电极表面适配体S的3’自由端(该自由端预修饰有-NH2),即取5 mg羧基化g-C3N4分散于5 mL 10 mmol/L 1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐(EDC)和20 mmol/LN-羟基琥珀酰亚胺(NHS)混合溶液中,室温活化羧基60 min后,取20 μL滴涂于修饰电极S/Au/ZnO-TiO2/ITO表面,得到特异性识别Cd(II)的光电化学适配体传感器,标记为g-C3N4/S/Au/ZnO-TiO2/ITO,将所制备好的修饰电极储存于4℃冰箱中保存备用。
对实施例1制备的材料ZnO-TiO2和g-C3N4进行形貌和结构表征。如图1所示,图A为ZnO-TiO2的SEM图,可观察到米粒状ZnO负载于球状TiO2表面,图B为g-C3N4的SEM图,呈疏松的海绵状多孔结构。
对实施例1制备的材料ZnO-TiO2和g-C3N4进行表面晶型和组成的表征。如图2所示,图A为ZnO-TiO2的XRD谱图,可清楚地看到该纳米复合材料的晶体结构中包含锐钛矿TiO2和ZnO,图B为g-C3N4的XRD谱图,27.4°的强特征衍射峰归属为g-C3N4结构中(002)晶面的特征峰,这是由于g-C3N4结构中共轭芳香体系的堆叠而形成的,说明具有类石墨相层状结构的g-C3N4制备成功。
实施例2
电流-时间曲线法监测适配体传感器的组装过程
图3为传感器制备过程中,每一步电极修饰后的光电响应曲线,曲线a到d分别代表实施例1中的修饰电极ZnO-TiO2/ITO,Au/ZnO-TiO2/ITO,S/Au/ZnO-TiO2/ITO和g-C3N4/S/Au/ZnO-TiO2/ITO的光电响应曲线,电极ZnO-TiO2/ITO在修饰纳米Au后(Au/ZnO-TiO2/ITO),光电流增大,说明Au良好的导电性和局域表面等离子体共振效应促进了光生电子-空穴对的分离和光生电子的转移。当适配体S通过Au-S共价键自组装于电极Au/ZnO-TiO2/ITO表面后(S/Au/ZnO-TiO2/ITO),其光电流减小,这是由于带负电荷的核苷酸序列阻碍了电子的传递和转移。当羧基化g-C3N4通过偶联剂作用结合在适配体S的自由端时(g-C3N4/S/Au/ZnO-TiO2/ITO),光电流有所增大,具有半导体特性的g-C3N4增强了传感器的光电性能。
实施例3
一种用于镉离子高灵敏检测的光电化学适配体传感器的应用,包括以下步骤:
将20 μL不同浓度的Cd(II)溶液分别孵育于实施例1中的适配体传感器g-C3N4/S/Au/ZnO-TiO2/ITO表面,保持室温恒湿孵育60 min。采用三电极电化学测试方法,对孵育Cd(II)后的传感器进行光电流测试,并根据Cd(II)浓度与光电流响应的关系构建线性回归方程。图4A为本发明实施例1中的传感器g-C3N4/S/Au/ZnO-TiO2/ITO分别孵育浓度依次为3.0×10-11,7.0×10-11,1.0×10-10,3.0×10-10,1.0×10-9,5.0×10-9,1.0×10-8和4.0×10-8 mol/L(曲线a至h)的Cd(II)后的光电流响应曲线,图4B为Cd(II)浓度与光电流响应的线性回归曲线。由图可知,在该浓度范围内,随着Cd(II)浓度的增加,传感器的光电流逐渐增大,线性方程为I (nA)=(111.51±3.12)logc (mol/L)+(1295.88±28.66) (R2=0.995,n=8),检测限为1.1×10-11 mol/L (S/N=3)。
实施例4
考察光电化学适配体传感器的选择性
为了进一步验证该传感器的选择性,以实施例1中的传感器g-C3N4/S/Au/ZnO-TiO2/ITO分别孵育浓度为5.0×10-9 mol/L的不同干扰离子,评价不同干扰离子孵育后的传感器的光电流响应。结果如图5所示,相较于其他金属离子而言,该传感器对Cd(II)具有良好的选择性响应,对其他金属离子不敏感,说明该传感器具有良好的抗干扰性。

Claims (2)

1.一种用于镉离子高灵敏检测的光电化学适配体传感器的制备,其特征在于,包括以下步骤:
(1)ZnO-TiO2纳米复合物的制备:
分别称取1.62 g和0.66 g的Zn(NO3)2·6H2O和Ti(SO4)2,完全溶解于60 mL乙醇和水的混合溶液中(V乙醇:V=1:1),然后加入30 mL 0.6 mol/L的尿素,搅拌30 min后转移至水热反应釜中,水热反应的温度为150℃,反应时间为4 h,反应结束后,将产物离心过滤并洗涤,即得ZnO-TiO2纳米复合物;
(2)羧基化g-C3N4的制备:
称取3 g三聚氰胺,置于石英舟中,在氮气保护的管式炉中升温至500℃并保持4 h,得到浅黄色粉末状g-C3N4;取0.5 g制备好的g-C3N4于高压反应釜中,加入10 mL浓硝酸,水热110℃反应4 h;将所得的产物离心过滤、超纯水洗涤后,置于80℃烘箱中烘干,即得羧基化g-C3N4
(3)Au/ZnO-TiO2/ITO修饰电极的制备:
以ITO导电玻璃为基底电极,依次经丙酮、乙醇和超纯水超声清洗30 min,晾干备用;在洁净的ITO表面滴涂20μL 3.0 mg/mL ZnO-TiO2纳米复合材料的分散液,置于70℃烘箱中烘干,标记为ZnO-TiO2/ITO;继续滴涂20 μL Au纳米链溶液,置于70℃烘箱中10 min,标记为Au/ZnO-TiO2/ITO;
(4)适配体传感器的构建:
取20 μL 1.0 μmol/L巯基预修饰适配体S固定于Au/ZnO-TiO2/ITO表面,室温恒湿孵育120 min,并滴涂20 μL 0.1 mmol/L 巯基丙酸(MPA)保持室温恒湿60 min,封闭电极表面空余的活性结合位点,即得修饰电极S/Au/ZnO-TiO2/ITO,最后通过EDC偶联反应,将羧基化g-C3N4修饰于电极表面适配体S的3’自由端(该自由端预修饰有-NH2),即取5 mg羧基化g-C3N4分散于5 mL 10 mmol/L 1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐(EDC)和20 mmol/LN-羟基琥珀酰亚胺(NHS)混合溶液中,室温活化羧基60 min后,取20 μL滴涂于修饰电极S/Au/ZnO-TiO2/ITO表面,得到特异性识别Cd(II)的光电化学适配体传感器,标记为g-C3N4/S/Au/ZnO-TiO2/ITO。
2.一种如权利要求1所述的用于镉离子高灵敏检测的光电化学适配体传感器的应用,其特征在于,包括如下步骤:
(1)将20 μL不同浓度Cd(II)溶液孵育于传感器g-C3N4/S/Au/ZnO-TiO2/ITO表面,置于室温恒湿60 min,记作Cd/g-C3N4/S/Au/ZnO-TiO2/ITO;
(2)采用三电极电化学测试方法,以Ag/AgCl为参比电极,Pt丝电极为对电极,孵育Cd(II)前后的适配体传感器为工作电极,电解液为pH 7.0磷酸盐缓冲溶液,激发光波长365nm,采用电流-时间(i-t)曲线法进行光电流测试。
CN202010368748.2A 2020-05-02 2020-05-02 一种用于镉离子高灵敏检测的光电化学适配体传感器的制备及应用 Pending CN111562295A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010368748.2A CN111562295A (zh) 2020-05-02 2020-05-02 一种用于镉离子高灵敏检测的光电化学适配体传感器的制备及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010368748.2A CN111562295A (zh) 2020-05-02 2020-05-02 一种用于镉离子高灵敏检测的光电化学适配体传感器的制备及应用

Publications (1)

Publication Number Publication Date
CN111562295A true CN111562295A (zh) 2020-08-21

Family

ID=72073323

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010368748.2A Pending CN111562295A (zh) 2020-05-02 2020-05-02 一种用于镉离子高灵敏检测的光电化学适配体传感器的制备及应用

Country Status (1)

Country Link
CN (1) CN111562295A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113358715A (zh) * 2021-04-06 2021-09-07 南京师范大学 一种基于适配体的重金属镉电化学传感器及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105645459A (zh) * 2016-01-15 2016-06-08 长沙理工大学 一种表面修饰海胆状ZnO/TiO2复合材料及其制备方法
CN108918873A (zh) * 2018-07-30 2018-11-30 济南大学 一种基于PS@Au双重抑制ZnCdS的光电化学凝血酶适配体传感器的制备方法及应用
KR20200025753A (ko) * 2018-08-31 2020-03-10 광주과학기술원 플라즈몬 금속 나노 입자가 꾸며진 광전기화학셀 광양극 제조 방법 및 광전기화학셀 광양극

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105645459A (zh) * 2016-01-15 2016-06-08 长沙理工大学 一种表面修饰海胆状ZnO/TiO2复合材料及其制备方法
CN108918873A (zh) * 2018-07-30 2018-11-30 济南大学 一种基于PS@Au双重抑制ZnCdS的光电化学凝血酶适配体传感器的制备方法及应用
KR20200025753A (ko) * 2018-08-31 2020-03-10 광주과학기술원 플라즈몬 금속 나노 입자가 꾸며진 광전기화학셀 광양극 제조 방법 및 광전기화학셀 광양극

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CDSOTIENO KEVIN OKOTH 等: "Label-free photoelectrochemical aptasensing of diclofenac based ongold nanoparticles and graphene-doped CdS", SENSORS AND ACTUATORS B, vol. 256, pages 334, XP085262052, DOI: 10.1016/j.snb.2017.10.089 *
JINGRAN XIAO 等: "A ternary g-C3N4/Pt/ZnO photoanode for efficient photoelectrochemical water splitting", INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, vol. 40, pages 9080 - 9087 *
文新宇 等: "ZnO/TiO2复合涂层电极的制备及其光电性能", 无机化学学报, vol. 27, no. 6, pages 1128 - 1132 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113358715A (zh) * 2021-04-06 2021-09-07 南京师范大学 一种基于适配体的重金属镉电化学传感器及其制备方法
CN113358715B (zh) * 2021-04-06 2022-11-08 南京师范大学 一种基于适配体的重金属镉电化学传感器及其制备方法

Similar Documents

Publication Publication Date Title
Kumar et al. Non-enzymatic electrochemical detection of urea on silver nanoparticles anchored nitrogen-doped single-walled carbon nanotube modified electrode
Salimi et al. Manganese oxide nanoflakes/multi-walled carbon nanotubes/chitosan nanocomposite modified glassy carbon electrode as a novel electrochemical sensor for chromium (III) detection
Lian et al. Electrochemical sensor using neomycin-imprinted film as recognition element based on chitosan-silver nanoparticles/graphene-multiwalled carbon nanotubes composites modified electrode
Chen et al. A novel electrochemical non-enzymatic glucose sensor based on Au nanoparticle-modified indium tin oxide electrode and boronate affinity
Castillo et al. Detection of cancer cells using a peptide nanotube–folic acid modified graphene electrode
Rezki et al. Amine-functionalized Cu-MOF nanospheres towards label-free hepatitis B surface antigen electrochemical immunosensors
Gupta et al. A novel sensitive Cu (II) and Cd (II) nanosensor platform: graphene oxide terminated p-aminophenyl modified glassy carbon surface
US9581590B2 (en) Metallic nanoparticle synthesis with carbohydrate capping agent
Tak et al. Zinc oxide–multiwalled carbon nanotubes hybrid nanocomposite based urea biosensor
Liu et al. Electrochemical DNA biosensor based on microspheres of cuprous oxide and nano-chitosan for Hg (II) detection
Tang et al. A novel label-free electrochemical sensor for Hg2+ based on the catalytic formation of metal nanoparticle
Viter et al. Metal oxide nanostructures in sensing
Wang et al. Photoelectrochemical immunosensor for N6-methyladenine detection based on Ru@ UiO-66, Bi2O3 and Black TiO2
CN110438200A (zh) 一种基于双信号放大的用于重金属铅离子检测的生物传感器
Li et al. A label-free electrochemiluminescence immunosensor based on KNbO3–Au nanoparticles@ Bi2S3 for the detection of prostate specific antigen
Rahmati et al. Label-free electrochemical aptasensor for rapid detection of SARS-CoV-2 spike glycoprotein based on the composite of Cu (OH) 2 nanorods arrays as a high-performance surface substrate
Gao et al. Synthesis of a CdS-decorated Eu-MOF nanocomposite for the construction of a self-powered photoelectrochemical aptasensor
Wang et al. Aptamer-binding zirconium-based metal-organic framework composites prepared by two conjunction approaches with enhanced bio-sensing for detecting isocarbophos
CN111562296A (zh) 一种以纳米金/氧化锌-石墨烯复合材料为光电敏感元件的适配体传感器的构建及应用
Tiwari et al. An ultra sensitive saccharides detection assay using carboxyl functionalized chitosan containing Gd 2 O 3: Eu 3+ nanoparticles probe
Yang et al. A feasible C-rich DNA electrochemical biosensor based on Fe3O4@ 3D-GO for sensitive and selective detection of Ag+
Jain et al. Synthesis of cadmium oxide and carbon nanotube based nanocomposites and their use as a sensing interface for xanthine detection
CN103743804A (zh) 一种基于纳米粒子吸附的有机磷电化学生物传感器
Guo et al. A novel label-free hypochlorite amperometric sensor based on target-induced oxidation of benzeneboronic acid pinacol ester
Mukherjee et al. Metal Organic Framework steered electrosynthesis of anisotropic gold nanorods for specific sensing of organophosphate pesticides in vegetables collected from the field

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200821