CN111561884A - 一种用于预制混凝土叠合板表面粗糙度检测的方法 - Google Patents

一种用于预制混凝土叠合板表面粗糙度检测的方法 Download PDF

Info

Publication number
CN111561884A
CN111561884A CN202010350805.4A CN202010350805A CN111561884A CN 111561884 A CN111561884 A CN 111561884A CN 202010350805 A CN202010350805 A CN 202010350805A CN 111561884 A CN111561884 A CN 111561884A
Authority
CN
China
Prior art keywords
measuring
concave
precast concrete
area
areas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010350805.4A
Other languages
English (en)
Other versions
CN111561884B (zh
Inventor
顾盛
吴玉龙
李涵清
孙彬
崔咏军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KUNSHAN CONSTRUCT ENGINEERING QUALITY TESTING CENTER
Original Assignee
KUNSHAN CONSTRUCT ENGINEERING QUALITY TESTING CENTER
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KUNSHAN CONSTRUCT ENGINEERING QUALITY TESTING CENTER filed Critical KUNSHAN CONSTRUCT ENGINEERING QUALITY TESTING CENTER
Priority to CN202010350805.4A priority Critical patent/CN111561884B/zh
Publication of CN111561884A publication Critical patent/CN111561884A/zh
Priority to PCT/CN2020/128255 priority patent/WO2021218114A1/zh
Application granted granted Critical
Publication of CN111561884B publication Critical patent/CN111561884B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

本发明公开了一种用于预制混凝土叠合板表面粗糙度检测的方法,主要包括以下步骤:S1:测区布置;S2:数据采集,获取原始的三维点云数据;S3:选取其中一个测区进行坐标转换;S4:截取凹槽选定区;S5:测点布置,利用点云数据处理软件的贯穿截面功能,生成4条粗糙面高程曲线;S6:凹凸深度值测量,获取所有的4条高程曲线的16个凹凸深度值;S7:将16个凹凸深度值,依次剔除3个最大值和3个最小值,剩余10个凹凸深度值的平均值作为该测区的平均凹凸深度值;S8:对剩余的各个测区进行测试;S9:综合各测区的测试结果得到所测预制混凝土叠合板表面粗糙度推定值,并按照设计指标值进行比对,得到评价结果。本发明操作简单,检测效率高,结果精准。

Description

一种用于预制混凝土叠合板表面粗糙度检测的方法
技术领域
本发明涉及装配式建筑技术领域,具体涉及一种用于预制混凝土叠合板表面粗糙度检测的方法。
背景技术
装配式建筑具有工业化水平高、安装施工快、减少人力成本、节能环保等优点,已成为国内外建筑业发展的主流方向。在装配式混凝土结构中存在大量的接缝,且接缝往往处于结构受力较大或较复杂的部位,因此接缝的性能对结构的承载力、刚度都会有很大的影响。
有关接缝结合面抗剪性能的研究成果表明,预制构件结合面的粗糙程度是影响其抗剪性能的一个重要因素,不同粗糙度的结合面对其抗剪性能有着显著的影响。为此,行业标准《装配式混凝土结构技术规程》JGJ 1—2014规定,预制构件结合面制作时应按设计要求进行粗糙面处理,设计无具体要求时,可用化学处理、拉毛或凿毛等方法制作粗糙面并且规定“粗糙面的面积不宜小于结合面的80%,预制板的粗糙面凹凸深度不应小于4mm,预制混凝土梁端、柱端、墙端的粗糙面凹凸深度不应小于6mm。”同时,国家标准《混凝土结构工程施工质量验收规范》GB50204-2015中将“预制构件的粗糙面的质量及键槽的数量”作为预制构件进场一项验收内容。然而,粗糙度如何测定和评价是一个关键问题。
根据国际结构混凝土协会(FIB)发布的《模式规范》(MC 2010)对粗糙度有两种定义,一种是平均粗糙度Rm,另一种是峰谷粗糙度Rz。其中,平均粗糙度Rm表示的是混凝土表面边缘轮廓相对于中线的平均偏移量,峰谷粗糙度Rz表示的是表面轮廓峰谷高度差,显然JGJ 1—2014中所规定的粗糙面凹凸深度指标采用的是峰谷粗糙度Rz。目前,根据粗糙度的两种定义,针对预制构件表面粗糙度的检测方法分为灌注体积法和深度测量法两大类。
灌注体积法主要包括铺砂法、硅粉堆落法和细小铁珠测定法,其测试的结果为平均粗糙度Rm,不能直接按照JGJ 1—2014中给出的粗糙面凹凸深度指标进行评判。尽管也有研究人员提出将铺砂法的测试结果通过推定系数转换成峰谷粗糙度Rz,但由于结合面的凹凸形状并不规则,推定系数的确定成为一大难题。此外,灌注体积法本身也存在一定的局限性和缺点:(1)只能适用于所测结合面是水平面的情况;(2)测区内灌注物的铺设高度与结合面的最高点齐平,灌注体积超出了测区内大多数“凹坑或凹槽”实际所需的填充体积,带来了一定的误差;(3)操作过程比较繁琐。近年来,也有研究人员提出利用三维扫描技术来模拟灌注体积法,可以较好的克服灌注体积法的上述缺点(1)和(3),但仍无法克服缺点(2)。
深度测量法主要包括凹凸仪测试法和基准面测深尺法,其中凹凸仪测试法目前只能在实验室进行,基准面测深尺法能够在现场操作,该方法通过将透明多孔基准板紧贴在预制构件粗糙面上,测深尺的探针穿过透明多孔基准板的孔洞测量凹凸深度,其测试结果为峰谷粗糙度Rz,原则上可以按照JGJ 1—2014中给出的粗糙面凹凸深度指标进行评判。峰谷粗糙度Rz是指相邻峰谷的高度差,在基准面测深尺法中,由于粗糙面上各凸点的高度有所差异,基准面仅代表几处较高凸点的基准高度,会导致多处深度测量值被“放大”的问题。另外,该方法在使用时,叠合板表面的凹面必须刚好位于多孔基准板的孔洞的正下方时才能测试,但叠合板表面的拉毛凹槽并非是严格的直线,相邻凹槽的间距也不一定与孔洞的间距相符合,检测过程中需要多次调整基准板的位置以使得凹槽尽可能多的位于孔洞下方,操作比较繁琐。
综上,有必要提供一种测试结果直接为凹凸深度,且技术先进、快速高效、结果精准的预制混凝土叠合板表面粗糙度的检测方法。
发明内容
本发明要解决的技术问题是提供一种用于预制混凝土叠合板表面粗糙度检测的方法,操作简单,检测效率高,结果精准。
为了解决上述技术问题,本发明提供了一种用于预制混凝土叠合板表面粗糙度检测的方法,包括以下步骤:
S1:测区布置,在预制混凝土叠合板表面布置若干个测区,并做好标记,所述测区的面积应能容纳长300mm、宽200mm的长方形,测区的长度方向平行于凹糟,宽度方向应至少包含4条连续的凹槽;
S2:数据采集,利用手持式三维白光扫描仪对步骤S1中布置的测区进行逐个扫描,获取原始的三维点云数据;
S3:坐标转换,对其中一个测区的原始的三维点云数据进行坐标转换,经坐标转换后的三维点云数据以预制混凝土叠合板凹槽结合面所在平面为x-y平面,垂直于x-y平面为z轴向;
S4:截取凹槽选定区,在转换后的三维点云数据中随机选择连续的4条凹槽,利用点云数据处理软件的平面截取功能,截取一个矩形的凹槽选定区,所述凹槽选定区的长度为250mm~300mm,宽度方向仅包含4条选定的凹槽;
S5:测点布置,利用点云数据处理软件的贯穿截面功能,在凹槽选定区上沿其宽度方向截取4个断面,断面设置在z轴向上,断面的长度应为凹槽选定区的宽度,每个断面与4条选定的凹槽的交接处作为测点,共计16个测点,同时利用点云数据处理软件分别生成4条粗糙面高程曲线;
S6:凹凸深度值测量,利用点云数据处理软件的尺寸测量功能,对每条粗糙面高程曲线上出现的4对凹凸位置计算峰谷点高差,获取所有的4条高程曲线的16个凹凸深度值;
S7:将获取的16个凹凸深度值,依次剔除3个最大值和3个最小值,剩余10个凹凸深度值的平均值作为该测区的平均凹凸深度值μ1
S8:对剩余的各个测区重复步骤S3~S7,得到各测区的平均凹凸深度值μj
S9:综合各测区的测试结果得到所测预制混凝土叠合板表面粗糙度推定值,并与粗糙度设计指标值进行比对,得到预制混凝土叠合板表面粗糙度的评价结果。
进一步地,在S1中,所述测区的数量不少于6个,且在预制混凝土叠合板的条状凹槽结合面上均匀分布,测区的标记为采用记号笔手工绘制的边框线,相邻测区之间的距离大于等于0.3m;当预制混凝土叠合板上设置有桁架筋时,测区布置在相邻桁架筋之间且测区避开干扰部件。
进一步地,在S2中,利用手持式三维白光扫描仪对测区进行扫描时,扫描面积覆盖整个测区。
进一步地,在S4中,位于宽度方向上,凹槽选定区的边缘与相邻凹槽之间的间距大于等于10mm。
进一步地,在S5中,相邻两个断面的间距大于等于50mm。
进一步地,在S6中,对粗糙面高程曲线上的4对凹凸位置,利用点云数据处理软件的矩形套索功能,分别套取凹凸位置所处区域,套取的区域包含峰点和谷点,再利用尺寸测量功能,在套取的区域自动识别峰点与谷点,并计算峰谷点高差,获得该处的凹凸深度值。
进一步地,在S9中,先计算所有测区的平均凹凸深度值μ、各测区凹凸深度值的标准差s及各测区凹凸深度值的变异系数η,计算公式如下:
Figure BDA0002471879580000051
Figure BDA0002471879580000052
Figure BDA0002471879580000053
式中:n—测区数量;
μj—第j个测区的平均凹凸深度值;
得到所有测区的平均凹凸深度值μ和各测区凹凸深度值的变异系数η后,按下列规定确定预制混凝土叠合板表面粗糙度推定值μe
当η不大于0.3时,μe=μ
当η大于0.3时,
Figure BDA0002471879580000054
式中:μj,min—所有测区中最小测区的凹凸深度值;
最后将预制混凝土叠合板表面粗糙度推定值与粗糙度设计指标值进行比对,若μe≥4.0mm,则判定粗糙度符合要求,否则判定为不符合要求。
本发明的有益效果:
1、本发明的方法,采用三维扫描的方式能够快速采集预制混凝土叠合板粗糙面数据,通过图像处理和计算分析获得粗糙度检测结果,避免了现有方法繁杂和费时的检测过程,方便快捷,检测效率高。
2、本发明引入凹槽选定区的概念,通过选取连续的四条凹槽和连续的四个贯穿截面获得的四条高程曲线和16个凹凸深度值,使测点布置更具有代表性,也有效防止检测人员在测点选择时存在倾向性从而影响检测结果的公正性。
3、采用点云数据处理软件的测距功能自动计算波峰最高点和波谷最低点的高度差,选点精准,规避了人为误差,大大提高了检测结果的准确度。
附图说明
图1是本发明的流程图;
图2是本发明经坐标转换后的三维点云数据示意图;
图3是本发明在转换后的三维点云数据中布置凹槽选定区的示意图;
图4是本发明将凹槽选定区独立截取后的示意图;
图5是本发明对测区内测点选取示意图;
图6是本发明四个断面截取示意图;
图7是本发明粗糙面高程曲线图;
图8是本发明凹凸深度值测量示意图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
参照图1所示,本发明的用于预制混凝土叠合板表面粗糙度检测的方法的一实施例,针对某预制混凝土叠合板进行检测,预制混凝土叠合板的尺寸为2820mm×2260mm×60mm,其中布置有桁架钢筋3道,采用三维扫描法进行结合面粗糙度检测具体包括以下步骤:
首先进行测区布置,在预制混凝土叠合板表面布置6个测区,测区在预制混凝土叠合板的条状凹槽结合面上均匀分布,相邻测区之间的距离大于等于0.3m,并采用记号笔手工绘制的边框线做标记,测区的面积应能容纳长300mm、宽200mm的长方形,测区的长度方向平行于凹糟,宽度方向应至少包含4条连续的凹槽;由于具有桁架钢筋,因此测区布置在相邻桁架筋之间且测区避开预埋件、预留孔洞等干扰部件,避免对后续检测产生干扰。
然后进行数据采集,利用手持式三维白光扫描仪对布置的测区进行逐个扫描,获取原始的三维点云数据,扫描面积应覆盖整个测区;
接着对第一个测区的原始的三维点云数据进行坐标转换,经坐标转换后的三维点云数据以预制混凝土叠合板凹槽结合面所在平面为x-y平面,垂直于x-y平面为z轴向,参照图2所示;
随后在三维点云数据上截取凹槽选定区,随机选择连续的4条凹槽,利用点云数据处理软件的平面截取功能,截取一个矩形的凹槽选定区,参照图3所示,凹槽选定区的长度为250mm~300mm,宽度方向仅包含4条选定的凹槽,且位于宽度方向上,凹槽选定区的边缘与相邻凹槽之间的间距大于等于10mm,最终将凹槽选定区独立选取出来,参照图4所示;
在独立选取出的凹槽选定区内进行测点布置,利用点云数据处理软件的贯穿截面功能,在凹槽选定区上沿其宽度方向截取4个断面,参照图5所示,断面设置在z轴向上,参照图6所示,四个断面分别与凹槽选定区贯穿设置,形成截面,断面的长度应为凹槽选定区的宽度且相邻两个断面的间距大于等于50mm,避免数据过于集中,每个断面与4条选定的凹槽的交接处作为测点,共计16个测点,同时利用点云数据处理软件分别生成4条粗糙面高程曲线,参照图7所示;
随后可以进行凹凸深度值测量,利用点云数据处理软件的尺寸测量功能,参照图7所示,对每条粗糙面高程曲线上出现的4对凹凸位置计算峰谷点高差,获取所有的4条高程曲线的16个凹凸深度值;在单个凹凸位置计算过程中,利用点云数据处理软件的矩形套索功能,分别套取凹凸位置所处区域,套取的区域包含峰点和谷点,再利用尺寸测量功能,在套取的区域自动识别峰点与谷点,并计算峰谷点高差,获得该处的凹凸深度值,参照图8所示。
对测量后获取的16个凹凸深度值,依次剔除3个最大值和3个最小值,将剩余10个凹凸深度值的平均值作为第一个测区的平均凹凸深度值μ1
将剩余的5个测区依次进行凹凸深度值测量及平均凹凸深度值计算,得到各测区的平均凹凸深度值μj。具体结果如下表所示:
表1各测区粗糙面凹凸深度值测量及计算结果(单位mm)
Figure BDA0002471879580000081
Figure BDA0002471879580000091
计算方式如下:
根据公式
Figure BDA0002471879580000092
计算得:
μ1=4.92mm,μ2=3.09mm,μ3=4.73mm,μ4=4.89mm,μ5=3.10mm,μ6=5.01mm
根据公式
Figure BDA0002471879580000093
计算得:
μ=4.29mm
根据公式
Figure BDA0002471879580000101
Figure BDA0002471879580000102
计算得:
s=0.93mm,η=0.22<0.3
由于η≤0.3,推定值μe=μ,即μe=4.29mm
最终判定:μe=4.29mm>4.0mm,判定该预制混凝土叠合板表面粗糙度符合要求。
本方法利用三维扫描设备快速有效地获取预制混凝土叠合板粗糙面三维点云数据,在合理的布置测区及选取测点后,采用点云数据处理软件的测距功能自动计算波峰最高点和波谷最低点的高度差,选点精准,规避了人为误差,大大提高了检测结果的准确度,操作简单,易于推广使用。
以上所述实施例仅是为充分说明本发明而所举的较佳的实施例,本发明的保护范围不限于此。本技术领域的技术人员在本发明基础上所作的等同替代或变换,均在本发明的保护范围之内。本发明的保护范围以权利要求书为准。

Claims (7)

1.一种用于预制混凝土叠合板表面粗糙度检测的方法,其特征在于,包括以下步骤:
S1:测区布置,在预制混凝土叠合板表面布置若干个测区,并做好标记,所述测区的面积应能容纳长300mm、宽200mm的长方形,测区的长度方向平行于凹糟,宽度方向应至少包含4条连续的凹槽;
S2:数据采集,利用手持式三维白光扫描仪对S1中布置的测区进行逐个扫描,获取原始的三维点云数据;
S3:坐标转换,对其中一个测区的原始的三维点云数据进行坐标转换,经坐标转换后的三维点云数据以预制混凝土叠合板凹槽结合面所在平面为x-y平面,垂直于x-y平面为z轴向;
S4:截取凹槽选定区,在转换后的三维点云数据中随机选择连续的4条凹槽,利用点云数据处理软件的平面截取功能,截取一个矩形的凹槽选定区,所述凹槽选定区的长度为250mm~300mm,宽度方向仅包含4条选定的凹槽;
S5:测点布置,利用点云数据处理软件的贯穿截面功能,在凹槽选定区上沿其宽度方向截取4个断面,断面设置在z轴向上,断面的长度应为凹槽选定区的宽度,每个断面与4条选定的凹槽的交接处作为测点,共计16个测点,同时利用点云数据处理软件分别生成4条粗糙面高程曲线;
S6:凹凸深度值测量,利用点云数据处理软件的尺寸测量功能,对每条粗糙面高程曲线上出现的4对凹凸位置计算峰谷点高差,获取所有的4条高程曲线的16个凹凸深度值;
S7:将获取的16个凹凸深度值,依次剔除3个最大值和3个最小值,剩余10个凹凸深度值的平均值作为该测区的平均凹凸深度值μ1
S8:对剩余的各个测区重复步骤S3~S7,得到各测区的平均凹凸深度值μj
S9:综合各测区的测试结果得到所测预制混凝土叠合板表面粗糙度推定值,并与粗糙度设计指标值进行比对,得到预制混凝土叠合板表面粗糙度的评价结果。
2.如权利要求1所述的用于预制混凝土叠合板表面粗糙度检测的方法,其特征在于,在S1中,所述测区的数量不少于6个,且在预制混凝土叠合板的条状凹槽结合面上均匀分布,测区的标记为采用记号笔手工绘制的边框线,相邻测区之间的距离大于等于0.3m;当预制混凝土叠合板上设置有桁架筋时,测区布置在相邻桁架筋之间且测区避开干扰部件。
3.如权利要求1所述的用于预制混凝土叠合板表面粗糙度检测的方法,其特征在于,在S2中,利用手持式三维白光扫描仪对测区进行扫描时,扫描面积覆盖整个测区。
4.如权利要求1所述的用于预制混凝土叠合板表面粗糙度检测的方法,其特征在于,在S4中,位于宽度方向上,凹槽选定区的边缘与相邻凹槽之间的间距大于等于10mm。
5.如权利要求1所述的用于预制混凝土叠合板表面粗糙度检测的方法,其特征在于,在S5中,相邻两个断面的间距大于等于50mm。
6.如权利要求1所述的用于预制混凝土叠合板表面粗糙度检测的方法,其特征在于,在S6中,对粗糙面高程曲线上的4对凹凸位置,利用点云数据处理软件的矩形套索功能,分别套取凹凸位置所处区域,套取的区域包含峰点和谷点,再利用尺寸测量功能,在套取的区域自动识别峰点与谷点,并计算峰谷点高差,获得该处的凹凸深度值。
7.如权利要求1所述的用于预制混凝土叠合板表面粗糙度检测的方法,其特征在于,在S9中,先计算所有测区的平均凹凸深度值μ、各测区凹凸深度值的标准差s及各测区凹凸深度值的变异系数η,计算公式如下:
Figure FDA0002471879570000031
Figure FDA0002471879570000032
Figure FDA0002471879570000033
式中:n—测区数量;
μj—第j个测区的平均凹凸深度值;
得到所有测区的平均凹凸深度值μ和各测区凹凸深度值的变异系数η后,按下列规定确定预制混凝土叠合板表面粗糙度推定值μe
当η不大于0.3时,μe=μ
当η大于0.3时,
Figure FDA0002471879570000034
式中:μj,min—所有测区中最小测区的凹凸深度值;
最后将预制混凝土叠合板表面粗糙度推定值与粗糙度设计指标值进行比对,若μe≥4.0mm,则判定粗糙度符合要求,否则判定为不符合要求。
CN202010350805.4A 2020-04-28 2020-04-28 一种用于预制混凝土叠合板表面粗糙度检测的方法 Active CN111561884B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010350805.4A CN111561884B (zh) 2020-04-28 2020-04-28 一种用于预制混凝土叠合板表面粗糙度检测的方法
PCT/CN2020/128255 WO2021218114A1 (zh) 2020-04-28 2020-11-12 一种用于预制混凝土叠合板表面粗糙度检测的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010350805.4A CN111561884B (zh) 2020-04-28 2020-04-28 一种用于预制混凝土叠合板表面粗糙度检测的方法

Publications (2)

Publication Number Publication Date
CN111561884A true CN111561884A (zh) 2020-08-21
CN111561884B CN111561884B (zh) 2021-01-19

Family

ID=72073217

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010350805.4A Active CN111561884B (zh) 2020-04-28 2020-04-28 一种用于预制混凝土叠合板表面粗糙度检测的方法

Country Status (2)

Country Link
CN (1) CN111561884B (zh)
WO (1) WO2021218114A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112179303A (zh) * 2020-09-10 2021-01-05 河南中原特钢装备制造有限公司 一种磁粉标准试片的测量方法
CN112414326A (zh) * 2020-11-10 2021-02-26 浙江华睿科技有限公司 物体表面平整度的检测方法、装置、电子装置和存储介质
CN112414327A (zh) * 2020-11-17 2021-02-26 中国三峡建设管理有限公司 一种手持式混凝土粗糙度三维检测装置及方法
CN113340241A (zh) * 2021-06-09 2021-09-03 河南德朗智能科技有限公司 一种双目视觉混凝土结合面粗糙度测量方法及系统
WO2021218114A1 (zh) * 2020-04-28 2021-11-04 昆山市建设工程质量检测中心 一种用于预制混凝土叠合板表面粗糙度检测的方法
CN113758459A (zh) * 2021-09-07 2021-12-07 郑州大学 定量表征高聚物注浆材料与混凝土接触面形貌特征的方法
CN114119488A (zh) * 2021-10-29 2022-03-01 成都建工第一建筑工程有限公司 一种面向工厂化的预制叠合板尺寸质量智能检测方法
CN114608492A (zh) * 2022-04-14 2022-06-10 上海市建筑科学研究院有限公司 一种预制混凝土构件结合面粗糙度评价指标测评方法
CN114119488B (zh) * 2021-10-29 2024-05-10 成都建工第一建筑工程有限公司 一种面向工厂化的预制叠合板尺寸质量智能检测方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114370844B (zh) * 2021-12-20 2024-03-22 包头钢铁(集团)有限责任公司 一种板材表面特征值均匀度统计方法
CN114235028A (zh) * 2022-01-24 2022-03-25 上海市建筑科学研究院有限公司 一种同层即时灌浆构件受后续施工扰动的检测方法
CN114707206B (zh) * 2022-03-10 2022-11-29 北京梦诚科技有限公司 一种识别公路方柱墩箍筋信息的方法、系统、设备及介质
CN114858071B (zh) * 2022-05-07 2024-01-30 浙江翰达工程检测有限公司 一种预制混凝土构件叠合面粗糙度的测量装置及方法
CN116929257B (zh) * 2023-07-25 2024-01-26 昆山市建设工程质量检测中心 基于测量型内窥镜的预制叠合剪力墙表面粗糙度采集方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145174A (ja) * 2006-12-07 2008-06-26 Sumitomo Mitsui Construction Co Ltd コンクリート打継面の評価方法、評価装置及びコンピュータプログラム
US20150287179A1 (en) * 2014-04-07 2015-10-08 Disco Corporation Unevenness detecting device
CN206347978U (zh) * 2016-12-27 2017-07-21 嘉兴高维智控有限公司 一种表面加工精度检测设备
CN107063058A (zh) * 2016-12-13 2017-08-18 上海市建筑科学研究院 一种预制混凝土构件结合面粗糙度的测评方法
CN208653420U (zh) * 2018-08-15 2019-03-26 武汉港湾工程质量检测有限公司 面层平整度激光测量装置
JP2020009924A (ja) * 2018-07-09 2020-01-16 株式会社Sumco シリコンウェーハの検査方法、検査装置、製造方法
CN110763166A (zh) * 2019-10-31 2020-02-07 江苏省建筑工程质量检测中心有限公司 一种用于预制混凝土叠合板表面粗糙度检测的测试系统及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6853021B2 (ja) * 2016-11-17 2021-03-31 大成建設株式会社 コンクリート表面形状の品質管理装置
JP2019174207A (ja) * 2018-03-27 2019-10-10 太平洋セメント株式会社 評価方法および評価システム
CN109612412B (zh) * 2018-11-28 2021-02-02 同济大学 一种预制混凝土构件结合面粗糙度计算方法及评价系统
CN110940299B (zh) * 2019-11-04 2020-11-13 浙江大学 一种混凝土表面三维粗糙度的测量方法
CN110864610B (zh) * 2019-11-04 2021-08-03 杭州都市高速公路有限公司 基于3d扫描重构混凝土表面三维粗糙度的测试方法
CN111561884B (zh) * 2020-04-28 2021-01-19 昆山市建设工程质量检测中心 一种用于预制混凝土叠合板表面粗糙度检测的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008145174A (ja) * 2006-12-07 2008-06-26 Sumitomo Mitsui Construction Co Ltd コンクリート打継面の評価方法、評価装置及びコンピュータプログラム
US20150287179A1 (en) * 2014-04-07 2015-10-08 Disco Corporation Unevenness detecting device
CN107063058A (zh) * 2016-12-13 2017-08-18 上海市建筑科学研究院 一种预制混凝土构件结合面粗糙度的测评方法
CN206347978U (zh) * 2016-12-27 2017-07-21 嘉兴高维智控有限公司 一种表面加工精度检测设备
JP2020009924A (ja) * 2018-07-09 2020-01-16 株式会社Sumco シリコンウェーハの検査方法、検査装置、製造方法
CN208653420U (zh) * 2018-08-15 2019-03-26 武汉港湾工程质量检测有限公司 面层平整度激光测量装置
CN110763166A (zh) * 2019-10-31 2020-02-07 江苏省建筑工程质量检测中心有限公司 一种用于预制混凝土叠合板表面粗糙度检测的测试系统及方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
栾利影: "预制构件结合面的构造设计与抗剪性能研究", 《中国优秀硕士学位论文全文数据库》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021218114A1 (zh) * 2020-04-28 2021-11-04 昆山市建设工程质量检测中心 一种用于预制混凝土叠合板表面粗糙度检测的方法
CN112179303A (zh) * 2020-09-10 2021-01-05 河南中原特钢装备制造有限公司 一种磁粉标准试片的测量方法
CN112414326A (zh) * 2020-11-10 2021-02-26 浙江华睿科技有限公司 物体表面平整度的检测方法、装置、电子装置和存储介质
CN112414327A (zh) * 2020-11-17 2021-02-26 中国三峡建设管理有限公司 一种手持式混凝土粗糙度三维检测装置及方法
CN113340241A (zh) * 2021-06-09 2021-09-03 河南德朗智能科技有限公司 一种双目视觉混凝土结合面粗糙度测量方法及系统
CN113340241B (zh) * 2021-06-09 2022-12-02 河南德朗智能科技有限公司 一种双目视觉混凝土结合面粗糙度测量方法及系统
CN113758459A (zh) * 2021-09-07 2021-12-07 郑州大学 定量表征高聚物注浆材料与混凝土接触面形貌特征的方法
CN114119488A (zh) * 2021-10-29 2022-03-01 成都建工第一建筑工程有限公司 一种面向工厂化的预制叠合板尺寸质量智能检测方法
CN114119488B (zh) * 2021-10-29 2024-05-10 成都建工第一建筑工程有限公司 一种面向工厂化的预制叠合板尺寸质量智能检测方法
CN114608492A (zh) * 2022-04-14 2022-06-10 上海市建筑科学研究院有限公司 一种预制混凝土构件结合面粗糙度评价指标测评方法

Also Published As

Publication number Publication date
CN111561884B (zh) 2021-01-19
WO2021218114A1 (zh) 2021-11-04

Similar Documents

Publication Publication Date Title
CN111561884B (zh) 一种用于预制混凝土叠合板表面粗糙度检测的方法
CN112325835B (zh) 预制混凝土构件点状凹坑结合面粗糙度检测方法
CN111561885B (zh) 基于白光扫描的预制构件条状凹槽结合面粗糙度测评方法
CN108824816B (zh) 一种高空大跨网架滑移定位安装及监测方法
CN104483330A (zh) 混凝土表面裂缝实时监测系统与开裂风险的动态评估方法
CN104834806A (zh) 结构面粗糙度系数尺寸效应取样代表性评价方法
CN109781561A (zh) 基于三维激光扫描技术在结构鉴定中的应用方法
CN113124782B (zh) 一种基于点云抗差自适应的建构筑物垂直度检测方法
CN104776810A (zh) 一种基于3d线激光设备的坑槽三维指标提取计算方法
WO2021087842A1 (zh) 一种混凝土表面三维粗糙度的测量方法
CN110763166A (zh) 一种用于预制混凝土叠合板表面粗糙度检测的测试系统及方法
CN112560573B (zh) 一种建筑物震害信息检测提取方法
CN106769276B (zh) 基于Dice相似度量的三维结构面代表性试样选取方法
CN107288016A (zh) 一种基于三维激光检测技术的沥青路面铣刨质量评价方法
CN114511199A (zh) 一种工程项目交付验收管理方法、设备及计算机存储介质
CN114046749B (zh) 预制混凝土构件点状凹坑结合面粗糙度检测方法及系统
CN115014198A (zh) 一种基于三维激光扫描的钢筋安装检测方法
CN110706153A (zh) 一种基于原始点云数据的隧道断面快速提取方法
CN113158329A (zh) 一种对在役桥梁结构恒载状况快速定位测量的方法
Sadowski Application of three-dimensional optical laser triangulation method for concrete surface morphology measurement
CN112330733A (zh) 一种基于激光扫描点云的装配式预制构件质量控制方法
CN113240637B (zh) 一种基于机器学习的墙面平整度信息化检测方法和系统
CN115775335A (zh) 一种基于图像识别的建筑拆除智能监测管理方法及系统
CN114398705A (zh) 一种基于大数据分析的水利工程浆砌石挡墙建造质量智能分析系统
CN111380475A (zh) 一种基于三维扫描仪技术的桁吊轨道检查方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant