CN111554678B - 高密度低寄生跨接电容和应用其的直流降压转换器 - Google Patents

高密度低寄生跨接电容和应用其的直流降压转换器 Download PDF

Info

Publication number
CN111554678B
CN111554678B CN202010378596.4A CN202010378596A CN111554678B CN 111554678 B CN111554678 B CN 111554678B CN 202010378596 A CN202010378596 A CN 202010378596A CN 111554678 B CN111554678 B CN 111554678B
Authority
CN
China
Prior art keywords
well
capacitance
parasitic
capacitor
pmos
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010378596.4A
Other languages
English (en)
Other versions
CN111554678A (zh
Inventor
周健军
金晶
王霄飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Jicui Intelligent Integrated Circuit Design Technology Research Institute Co ltd
Original Assignee
Jiangsu Jicui Intelligent Integrated Circuit Design Technology Research Institute Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Jicui Intelligent Integrated Circuit Design Technology Research Institute Co ltd filed Critical Jiangsu Jicui Intelligent Integrated Circuit Design Technology Research Institute Co ltd
Priority to CN202010378596.4A priority Critical patent/CN111554678B/zh
Publication of CN111554678A publication Critical patent/CN111554678A/zh
Application granted granted Critical
Publication of CN111554678B publication Critical patent/CN111554678B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0805Capacitors only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/0805Capacitors only
    • H01L27/0811MIS diodes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明涉及一种高密度低寄生跨接电容,包括金属插值电容(MOM电容)、金属氧化物半导体(MOS)栅电容和阱之间及阱与衬底之间的寄生电容;金属插值电容由同层金属和多层堆叠金属组成,金属氧化物半导体栅电容包括交替布局的若干NMOS和PMOS的栅电容,阱之间的寄生电容由PMOS的N阱到NMOS的P阱的二极管结电容、深N阱到NMOS的P阱的二极管结电容组成,阱与衬底之间的寄生电容由深N阱到P型衬底的二极管结电容和PMOS的N阱到P型衬底的二极管结电容组成。本发明还提供一种包括前述的高密度低寄生跨接电容的直流降压转换器。本发明的电容具有较小的对地寄生电容和较高的电容密度,能够提高直流降压转换器的传输效率。

Description

高密度低寄生跨接电容和应用其的直流降压转换器
技术领域
本发明属于半导体技术领域,具体涉及一种高密度低寄生跨接电容,以及应用该跨接电容的直流降压转换器。
背景技术
为了满足多电源轨需求并降低电源走线的欧姆损耗和片外设计复杂度,在大部分的系统级芯片(system-on-chips, SoC)中需要集成直流降压转换器(DC-DC BuckConverter)以实现优异的性能。开关电容(Switched-capacitor, SC)DC-DC较传统电感DC-DC可以同时实现高的效率和高的能量密度,但是需要解决跨接电容(Cfly)的对地寄生电容(Cpar)对传输效率的影响。
在先进标准CMOS工艺中,金属氧化物半导体(metal oxide semiconductor, MOS)电容相比其他类型的电容具有更高的电容密度而被广泛应用。其中常见的MOS电容有N型(N-type)MOS、P型(P-type)MOS和PMOS三种,如图1所示。
在图1中,跨接电容Cfly均由MOS的栅端(G)电容Cg组成。在图1(a)中,N阱(N-well)到P型衬底(P-substrate)二极管Jw的寄生结电容Cw成为N型MOS电容的主要对地寄生电容,等效跨接在Bottom和Sub端;在图1(b)中,在不考虑VNW连接情况下,对地寄生电容由P阱(P-well)到深N阱(Deep N-well)的二极管Jdnwpw寄生结电容Cdnwpw和深N阱到P型衬底的二极管Jdnwpsub寄生结电容Cdnwpsub组成;在图1(c)中,在不考虑VNW连接情况下,对地寄生电容主要由Cw和Cp组成,其中Cp为源端和漏端到N-well的二极管Jp的寄生结电容。
在图1(a)中,片上N型MOS的对地寄生电容引入寄生损耗,降低开关电容DC-DC转换器的能量转换效率。在一些方案中,N-well电位VNW由串联大阻抗的固定电位提供,使得对地寄生电容变成由两部分寄生电容串联组成,减小了对地寄生电容,但是所需大阻抗将降低开关电容DC-DC转换器的能量密度,即使大阻抗由两个背对背的二极管连接的PMOS晶体管实现。还有一些方案中,采用两倍于输入电源的高电位电压偏置深N阱以降低结电容大小,但是需要片上电源电压加倍电路或者片外电源。此外,上述MOS电容均仅有一种类型结构实现,不利于提高电容密度。
发明内容
本发明的目的是提供一种具有较高的电容密度,且具有较小的对地寄生电容的跨接电容。
为达到上述目的,本发明采用的技术方案是:
一种高密度低寄生跨接电容,包括金属插值电容(MOM电容)、金属氧化物半导体(MOS)栅电容和阱之间及阱与衬底之间的寄生电容;所述金属插值电容由同层金属和多层堆叠金属组成,所述金属氧化物半导体栅电容包括交替布局的若干NMOS和PMOS的栅电容,阱之间的寄生电容由PMOS的N阱到NMOS的P阱的二极管结电容、深N阱到NMOS的P阱的二极管结电容组成,阱与衬底之间的寄生电容由深N阱到P型衬底的二极管结电容和PMOS的N阱到P型衬底的二极管结电容组成。
所述金属插值电容、所述NMOS栅电容、所述PMOS栅电容、所述PMOS的N阱到所述NMOS的P阱的二极管结电容、所述深N阱到所述NMOS的P阱的二极管结电容转化为跨接在正端和负端之间的跨接电容。
深N阱到所述P型衬底的二极管结电容、所述PMOS的N阱到所述P型衬底的二极管结电容转化为正端对地寄生电容。
所述金属氧化物半导体栅电容和阱之间及阱与衬底之间的寄生电容基于先进标准CMOS工艺形成。
所述金属插值电容从CMOS工艺的第二层金属到顶层金属插值形成。
基于上述高密度低寄生跨接电容方案,本发明还提供一种能够解决跨接电容的对地寄生电容影响能量转换效率问题的直流降压转换器,该所述直流降压转换器包括前述的高密度低寄生跨接电容。
由于上述技术方案运用,本发明与现有技术相比具有下列优点:本发明的跨接电容具有较小的对地寄生电容和较高的电容密度;本发明的直流降压转换器的能够提高能量转换效率和能量密度。
附图说明
附图1为现有的MOS电容的结构示意图
附图2为本发明的高密度低寄生跨接电容的纵切面示意图。
附图3为本发明的高密度低寄生跨接电容中栅电容和阱之间及阱和衬底之间寄生电容的电路示意图。
具体实施方式
下面结合附图所示的实施例对本发明作进一步描述。
实施例一:如附图2和附图3所示,一种高密度低寄生跨接电容,包括金属插值电容(MOM电容)、金属氧化物半导体(MOS)栅电容、阱之间及阱与衬底之间的寄生电容。金属插值电容由同层金属和多层堆叠金属组成。金属氧化物半导体栅电容包括交替布局的若干NMOS和PMOS的栅电容Cg_NMOS、Cg_PMOS。阱之间的寄生电容由PMOS的N阱到NMOS的P阱的二极管Jnwpw结电容、深N阱到NMOS的P阱的二极管Jdnwpw结电容组成。阱与衬底之间的寄生电容由深N阱到P型衬底的二极管Jdnwpsub结电容和PMOS的N阱到P型衬底的二极管Jnwpsub结电容组成。金属插值电容、NMOS栅电容Cg_NMOS、PMOS栅电容Cg_PMOS、PMOS的N阱到NMOS的P阱的二极管Jnwpw结电容、深N阱到NMOS的P阱的二极管Jdnwpw结电容转化为跨接在正端(top端)和负端(bottom端)之间的跨接电容。深N阱到P型衬底的二极管Jdnwpsub结电容、PMOS的N阱到P型衬底的二极管Jnwpsub结电容转化为正端(top端)对地寄生电容。可以利用该高密度低寄生跨接电容来装配开关电容型直流降压转换器。
上述方案的高密度低寄生跨接电容中,金属氧化物半导体栅电容和阱之间及阱与衬底的寄生电容基于先进标准CMOS工艺形成,金属插值电容从CMOS工艺的第二层金属M2到顶层金属插值形成。该高密度低寄生跨接电容由金属插值电容(MOM-CAP)、PMOS和NMOS栅电容以及PMOS、NMOS对应的P-well和N-well间形成的阱与阱的二极管结电容组成,采用多种电容组合的方式提升了电容密度,降低极板寄生电容,将原本对开关电容DC-DC转换器能量转换效率有不利影响的部分N-well到衬底寄生电容转换为跨接电容的一部分。
由图3可知,跨接在Top和Bottom端的电容除了NMOS和PMOS电容的栅电容Cg_NMOS和Cg_PMOS外,还包括N-well到P-well的二极管Jnwpw结电容和Deep N-well到P-well的二极管Jdnwpw结电容。图1(b)中作为对地寄生电容的一部分的Deep N-well到P-well的二极管结电容被转化为跨接电容。Deep N-well到P型衬底的二极管Jdnwpsub的结电容和N-well到P型衬底的二极管Jnwpsub的结电容表现为Top端的对地寄生电容,其中Jdnwpsub的结电容的大小和Deep N-well的横向面积有关,N-well到P型衬底的二极管Jnwpsub的结电容和N-well的纵向面积有关。本发明N-well和P-well交替出现,Jnwpsub的结电容约为图1(a)中N-well纵向截面到P型衬底二极管结电容的一半,且二极管Jnwpsub的结电容和二极管Jnwpsub的结电容均为Top端对地寄生。基于现有的开关电容型直流降压转换器方案可知,当开关电容DC-DC转换器的内阻RS相比负载阻抗RL满足γ=RL/(RL+RS)>0.8时,由跨接电容Top端对地寄生电容对负载端的能量输出大于其引起输入能量损耗。在开关电容DC-DC中γ限制其最大理论能量转换效率,通常γ接近于1,因此Top端对地寄生电容相比Bottom端对地寄生电容对于开关电容DC-DC转换器的能量转换效率的影响更小。
综上所述,本发明中的MOS电容和阱与阱及阱与衬底寄生电容的设计:1)将N-well到P-well的二极管Jnwpw结电容和Deep N-well到P-well的二极管Jdnwpw结电容转化为跨接电容,在提升跨接电容密度的同时减小对地寄生电容;2)通过NMOS和PMOS交替布局,减小N-well到P型衬底的二极管结电容,且对地寄生电容均为Top端对地寄生电容,整体具有更小的寄生电容损耗。
本申请的有益效果在于:
1)跨接电容密度提升约15%,跨接电容与对地寄生电容的比值提升约25%;
2)采用本发明方案的开关电容DC-DC转换器在最高可以实现85%的能量转换效率以及在设计的最大电流输出时0.174 W/mm2的能量密度。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (4)

1.一种高密度低寄生跨接电容,其特征在于:所述高密度低寄生跨接电容包括金属插值电容、金属氧化物半导体栅电容和阱之间及阱与衬底之间的寄生电容;所述金属插值电容由同层金属和多层堆叠金属组成,所述金属氧化物半导体栅电容包括交替布局的若干NMOS栅电容和PMOS的栅电容,阱之间的寄生电容由PMOS的N阱到NMOS的P阱的二极管结电容、深N阱到NMOS的P阱的二极管结电容组成,阱与衬底之间的寄生电容由深N阱到P型衬底的二极管结电容和PMOS的N阱到P型衬底的二极管结电容组成;
所述金属插值电容、所述NMOS栅电容、所述PMOS栅电容、所述PMOS的N阱到所述NMOS的P阱的二极管结电容、所述深N阱到所述NMOS的P阱的二极管结电容转化为跨接在正端和负端之间的跨接电容;
深N阱到所述P型衬底的二极管结电容、所述PMOS的N阱到所述P型衬底的二极管结电容转化为正端对地寄生电容。
2.根据权利要求1所述的高密度低寄生跨接电容,其特征在于:所述金属氧化物半导体栅电容和阱之间及阱与衬底之间的寄生电容基于先进标准CMOS工艺形成。
3.根据权利要求1所述的高密度低寄生跨接电容,其特征在于:所述金属插值电容从CMOS工艺的第二层金属到顶层金属插值形成。
4.一种直流降压转换器,其特征在于:所述直流降压转换器包括如权利要求1至3中任一项所述的高密度低寄生跨接电容。
CN202010378596.4A 2020-05-07 2020-05-07 高密度低寄生跨接电容和应用其的直流降压转换器 Active CN111554678B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010378596.4A CN111554678B (zh) 2020-05-07 2020-05-07 高密度低寄生跨接电容和应用其的直流降压转换器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010378596.4A CN111554678B (zh) 2020-05-07 2020-05-07 高密度低寄生跨接电容和应用其的直流降压转换器

Publications (2)

Publication Number Publication Date
CN111554678A CN111554678A (zh) 2020-08-18
CN111554678B true CN111554678B (zh) 2023-09-22

Family

ID=72008010

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010378596.4A Active CN111554678B (zh) 2020-05-07 2020-05-07 高密度低寄生跨接电容和应用其的直流降压转换器

Country Status (1)

Country Link
CN (1) CN111554678B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116130466B (zh) * 2023-04-13 2023-06-20 江苏润石科技有限公司 降低寄生电容的米勒补偿电容及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1443362A (zh) * 2000-04-10 2003-09-17 皇家菲利浦电子有限公司 用于深亚微米cmos的带有交替连接的同心线的多层电容器结构
CN1622459A (zh) * 2004-12-22 2005-06-01 东南大学 互补金属氧化物半导体比较器
US20090039916A1 (en) * 2007-08-07 2009-02-12 International Business Machines Corporation Systems and Apparatus for Providing a Multi-Mode Memory Interface
CN101789430A (zh) * 2010-03-11 2010-07-28 中国科学院半导体研究所 一种高密度低寄生的电容装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1443362A (zh) * 2000-04-10 2003-09-17 皇家菲利浦电子有限公司 用于深亚微米cmos的带有交替连接的同心线的多层电容器结构
CN1622459A (zh) * 2004-12-22 2005-06-01 东南大学 互补金属氧化物半导体比较器
US20090039916A1 (en) * 2007-08-07 2009-02-12 International Business Machines Corporation Systems and Apparatus for Providing a Multi-Mode Memory Interface
CN101789430A (zh) * 2010-03-11 2010-07-28 中国科学院半导体研究所 一种高密度低寄生的电容装置

Also Published As

Publication number Publication date
CN111554678A (zh) 2020-08-18

Similar Documents

Publication Publication Date Title
US10673426B2 (en) Switch bootstrap charging circuit suitable for gate drive circuit of GaN power device
CN102460709B (zh) 电力变换装置
US7535032B2 (en) Single-chip common-drain JFET device and its applications
US9444445B2 (en) Power switch driving circuits and power converters thereof
DE112017007345T5 (de) Halbleitervorrichtung
CN111554678B (zh) 高密度低寄生跨接电容和应用其的直流降压转换器
US12046594B1 (en) Monolithically integrated GaN-based half-bridge circuit and half-bridge circuit
US20060133176A1 (en) Charge pump with ensured pumping capability
CN108322043A (zh) 一种单级有源阻抗网络dc-dc变换器
Hoque et al. A high voltage Dickson charge pump in SOI CMOS
JP2022033165A (ja) 素子ユニット
DE102012222871A1 (de) Leistungsmodul und Klimagerät
CN100592618C (zh) 半导体电力变换装置
CN102545560B (zh) 一种功率开关驱动器、ic芯片及直流-直流转换器
CN116525612A (zh) 一种单片集成式GaN基半桥电路及半桥电路
Shen et al. Fully integratable 4-phase charge pump architecture for high voltage applications
KR100654108B1 (ko) 바이폴라 트랜지스터를 이용한 dc/dc 변환기, 그의제조 방법 및 그것을 이용한 dc 전원 모듈
EP2306626A1 (en) Voltage conversion circuit
US20100102875A1 (en) Substrate noise passive cancellation method for buck converter
CN114268219A (zh) 一种驱动高边nmos管的自举电路
Wen et al. Evaluations of gan-on-si devices for power electronics applications
JP2021048437A (ja) 半導体装置
CN109742146A (zh) 一种碳化硅mosfet器件
TWI814209B (zh) 用於寬電源電壓範圍的半導體裝置結構
CN114927579A (zh) 一种mos电容及电子设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant