CN111551478A - Method for evaluating filtering precision and efficiency of submicron-grade liquid-solid separation system - Google Patents

Method for evaluating filtering precision and efficiency of submicron-grade liquid-solid separation system Download PDF

Info

Publication number
CN111551478A
CN111551478A CN202010401040.2A CN202010401040A CN111551478A CN 111551478 A CN111551478 A CN 111551478A CN 202010401040 A CN202010401040 A CN 202010401040A CN 111551478 A CN111551478 A CN 111551478A
Authority
CN
China
Prior art keywords
filtration
efficiency
submicron
filter
precision
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010401040.2A
Other languages
Chinese (zh)
Other versions
CN111551478B (en
Inventor
李生勇
郑之寿
陈利军
杨军军
曹延玮
李继慧
范胜
吴小波
平韶波
李华辉
商文靓
陈红霞
王跃成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Advanced Technology and Materials Co Ltd
AT&M Environmental Engineering Technology Co Ltd
Original Assignee
Advanced Technology and Materials Co Ltd
AT&M Environmental Engineering Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Technology and Materials Co Ltd, AT&M Environmental Engineering Technology Co Ltd filed Critical Advanced Technology and Materials Co Ltd
Priority to CN202010401040.2A priority Critical patent/CN111551478B/en
Publication of CN111551478A publication Critical patent/CN111551478A/en
Application granted granted Critical
Publication of CN111551478B publication Critical patent/CN111551478B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M99/00Subject matter not provided for in other groups of this subclass
    • G01M99/008Subject matter not provided for in other groups of this subclass by doing functionality tests
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N2015/084Testing filters

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Filtering Materials (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

The invention belongs to the technical field of nuclear power water filtration performance evaluation, and particularly relates to a method for evaluating the filtration precision and efficiency of a submicron-grade liquid-solid separation system, which is suitable for the filtration performance evaluation and design selection of a submicron-grade liquid-solid separation filter. According to the evaluation method, the existing test device and method are used for correspondingly testing parameters such as filter precision, pore size and filter efficiency of particles with the particle size of more than 1 mu m, the filter performance of the particles with the particle size of more than 1 mu m, namely a relation curve of filter material pore size/filter precision (Y) -filter precision (X) is obtained under the condition of specified filter efficiency, an X-Y-based regression equation is obtained through fitting, the regression equation obtained through fitting extends to a submicron interval, and the relation among the filter precision X, the filter pore size D and the filter efficiency eta in the submicron interval is calculated, so that the effective evaluation of the submicron liquid-solid separation filter performance is realized.

Description

Method for evaluating filtering precision and efficiency of submicron-grade liquid-solid separation system
Technical Field
The invention belongs to the technical field of nuclear power water filtration performance evaluation, and particularly relates to a method for evaluating the filtration precision and efficiency of a submicron-grade liquid-solid separation system, which is suitable for the filtration performance evaluation and design selection of a submicron-grade liquid-solid separation filter.
Background
At present, the reactor types of a common nuclear power plant are a pressurized water reactor type and a heavy water reactor type, and dozens of radioactive water filters are installed in each nuclear power plant regardless of the reactor type. The core component of the water filter is a filter element, in the prior art, besides filter elements with common precision of 2 μm, 5 μm, 20 μm and the like, submicron filter elements with filter precision of 0.1 μm, 0.2 μm, 0.45 μm and 1 μm are required to be used in some water treatment systems, and the filter efficiency of the submicron filter elements is generally required to be more than 98%, while the filter precision and the filter efficiency are the most critical parameters for describing the performance of the filter element and play a critical role in the water filtering effect.
At present, for the detection of the filtering performance of the nuclear power water filter element, in NB/T20486-. However, in practical application, the following problems are found in the process of detecting the filtering performance of the water filter element by adopting the standard:
(1) the filter medium adopted by the test equipment used in the standard is hydraulic oil with a designated mark, which is not in accordance with the working condition that the actually used medium of the water filter element is water;
(2) the highest detectable filtration accuracy of this standard is only 4 μm, and no detection method or suggestion is given for an accuracy of 1 μm or less, and it is not suitable for evaluation of filtration accuracy and filtration efficiency of a submicron-order liquid-solid separation system.
Therefore, the method suitable for effectively evaluating the filtration precision and the filtration efficiency of the submicron liquid-solid separation system is developed, and has positive significance for evaluating and monitoring the performance of the water filtration equipment in the nuclear power field.
Disclosure of Invention
Therefore, the technical problem to be solved by the invention is to provide a method for evaluating the filtration precision and efficiency of a submicron-grade liquid-solid separation system, which solves the evaluation problems of the filtration precision and the filtration efficiency of the submicron-grade liquid-solid separation system which is difficult to directly detect by test equipment by combining test detection and mathematical analysis, has the advantage of reducing the engineering trial and error amount, and is suitable for evaluating the filtration performance of the submicron-grade liquid-solid separation system including a nuclear power high-precision water filter element.
In order to solve the technical problems, the method for evaluating the filtration precision and efficiency of the submicron-scale liquid-solid separation system comprises the following steps:
(1) testing the filtering precision X, the filtering efficiency eta and the filtering material aperture D of the selected filtering material on particles with the particle size of more than 1 mu m by using a detection method in the prior art, and further obtaining corresponding numerical values of the filtering efficiency eta, the aperture D and the filtering precision X of the selected filtering material;
(2) setting a parameter Y as D/X, and calculating ratio data Y values of different filtering precision X values and corresponding aperture D values under the reference of the selected filtering efficiency eta when X is larger than 1 mu m so as to obtain a plurality of groups of different X values and corresponding Y value data;
(3) fitting a regression equation by respectively taking the obtained Y value as a vertical coordinate and the obtained X value as a horizontal coordinate, and obtaining an X-Y relation curve equation of the selected filter material under the selected filter efficiency eta through fitting;
(4) extending the obtained fitting equation to a submicron interval, namely setting X to be less than or equal to 1 mu m, so as to obtain a Y value corresponding to the filtering precision X in the submicron interval through calculation, and further calculating according to the set relation of Y to D/X to obtain a theoretical filtering precision X value corresponding to the submicron interval;
(5) and evaluating the filtration performance of the submicron liquid-solid separation system according to the X, Y and eta values obtained by the calculation.
Specifically, in the step (1), the step of calculating the filtering efficiency η includes:
uniformly mixing test dust into purified water to prepare a raw material liquid, performing a plurality of filtration tests on a selected material filter element by using a filtration performance test device, and actually detecting the M value of each precision particle number in the raw material liquid before filtration under the filtration precision X of more than 1 mu M and the N value of each precision particle number in the raw material liquid after filtration under the filtration precision X of more than 1 mu M by using a particle counter;
the measured data M, N values are used to perform mathematical analysis, and the filtration ratio beta of the selected filter medium under different filtration precisions X larger than 1 μ M is calculated to be M/N, and the filtration efficiency eta is calculated to be 1-1/beta.
Specifically, selected values for the test filtration precision X include 2 μm, 5 μm, 10 μm, 15 μm, and 20 μm.
Specifically, in the step (1), the calculated selected filtration efficiencies include 95%, 96%, 97%, 98% and 99%.
Specifically, in the step (1), the value of the pore diameter D of the selected material filter element is measured by using a pore diameter measuring instrument.
Specifically, in the step (3), the regression equation fitting step uses a cubic spline interpolation method to obtain a fitting equation Y ═ aX3+bX2+ cX + d, wherein X>1。
Specifically, in the step (5), the filtering performance evaluation includes a filtering efficiency evaluation and/or a filtering accuracy evaluation.
Specifically, the filtering performance evaluation comprises calculating the submicron filtering precision X of the filtering material at X less than or equal to 1 μm if the actual aperture D and the filtering efficiency eta of the filtering material are known, and evaluating whether the filtering material can meet the requirement.
Specifically, the filtering performance evaluation comprises the steps of calculating the theoretical aperture D of the filter material to be selected and evaluating the rationality of the filter material selection if the filtering efficiency eta and the submicron-level filtering precision X of the given filter material are less than or equal to 1 mu m.
Specifically, the filtering performance evaluation comprises the step of evaluating whether the filtering efficiency eta meets the specified requirement or not if the aperture D of the known filter material and the submicron filtering precision X of which X is less than or equal to 1 mu m are known.
The invention relates to a method for evaluating the filtration precision and efficiency of a submicron-grade liquid-solid separation system, which is an evaluation method combining actual measurement inspection and mathematical analysis, and comprises the steps of firstly utilizing the existing test device and means to correspondingly test parameters such as filtration precision, aperture, filtration efficiency and the like on particles with the particle size of more than 1 mu m, drawing a relation curve of the filtration performance of the particles with the particle size of more than 1 mu m, namely the aperture/filtration precision (Y) -filtration precision (X) under the condition of appointed filtration efficiency through actual measurement data, and further carrying out mathematical treatment and fitting on the curve to obtain a regression equation based on X-Y (namely Y is aX)3+bX2+cX+d,X>1) Further, the regression equation obtained by fitting is extended to a submicron interval (namely X is less than or equal to 1 mu m), the relation among the filtering precision X, the filtering pore diameter D (Y is D/X) and the filtering efficiency η in the submicron interval is obtained by utilizing the regression equation to calculate, the effective evaluation of the submicron liquid-solid separation filtering performance is realized, the problem that the submicron precision filtering performance is difficult to directly detect at present is effectively solved, and a basis is provided for the pore diameter selection of the submicron filtering precision filter materialThe method can reduce the workload of trial and error in engineering, and is suitable for the filtration performance evaluation and design selection of the submicron liquid-solid separation filter.
The method for evaluating the filtration precision and efficiency of the submicron liquid-solid separation system can realize the evaluation of various filtration performances of the submicron liquid-solid separation system: firstly, if the aperture D and the filtering efficiency eta of the filtering material are known, the filtering precision X of the filtering material can be calculated, and whether the filtering precision X can meet the requirement or not is evaluated; secondly, if the filtering efficiency eta and the filtering precision X are given, the aperture of the filter material to be selected can be calculated, and the rationality of the filter material type selection is evaluated; thirdly, if the aperture D and the filtering precision X of the filter material are known, whether the filtering efficiency eta meets the requirement can be evaluated. The method for evaluating the filtration precision and efficiency of the submicron liquid-solid separation system is suitable for evaluating the filtration performance of the submicron liquid-solid separation filter and designing and selecting the type comprehensively.
Drawings
In order that the present disclosure may be more readily and clearly understood, the following detailed description of the present disclosure is provided in connection with specific embodiments thereof and the accompanying drawings, in which,
fig. 1 is a graph showing the relationship between the pore size D of the filter medium and the filtration accuracy X for a given filtration efficiency η standard for the accuracy of particles X >1 μm in example 1, where X is the abscissa and Y is D/X.
Detailed Description
Example 1
The water filter requires 0.5 μm particle for filtration precision and 95% for filtration efficiency, and the filter core of a specified filter material is detected (aperture value D of the filter core is measured by aperture measuring instrument)Measured in fact7.23 μm) can meet the requirements. Because the prior test device is difficult to directly detect the parameter information such as the filtering efficiency with the filtering precision of 0.5 mu m, the method is adopted for evaluation.
MTD A3 powder is uniformly mixed into purified water to prepare a raw material liquid required by a test, and then a filtration test is carried out by using a filtration performance test device. The filtration test equipment is detection equipment which is used conventionally, and mainly comprises a stock solution tank, a pump, a filter, a flowmeter, a differential pressure meter, a pipeline, a valve and the like. The test conditions were: the test flow is 200L/h, the test temperature is 20 ℃, the dust concentration of the prepared raw material liquid is 50ppm, and the test filter cores of the same type but different pore diameters (D is 1.15, 3.01, 4.01, 7.23, 11, 12.46, 12.89, 15.66, 25.38 and 33.94 mu m) are all phi 60 x 130mm in size.
The series of values of the number of particles of precision M of 2 μ M, 5 μ M, 10 μ M, 15 μ M and 20 μ M in the raw material liquid before the filtration test and the series of values of the number of particles of precision N of 2 μ M, 5 μ M, 10 μ M, 15 μ M and 20 μ M in the filtered liquid in the raw material liquid after the filtration test were actually detected by a particle counter, respectively, and part of the test data is shown in Table 1 below.
Table 1 data on particle number of each precision in the feed solution before and after the filtration test experiment
Filtration accuracy, μm 2 5 10 15 20
Number of particles before filtration M 401831 75178 9332 1916 419
Number of particles N after filtration 15806 503 41 9 2
Using the above measured data M series values and N series values, the filtration ratio β of the detection filter material to each precision particle of 2 μ M, 5 μ M, 10 μ M, 15 μ M, and 20 μ M, and the filtration efficiency η of the detection filter material were calculated to be M/N and 1 to 1/β, respectively, and some of the calculation results are shown in table 2.
Table 2 partial data of the results of the calculation of the filtering effect of each precision particle in the filtering test
Filtration accuracy, μm 2 5 10 15 20
Filtration ratio β 25.42 149.61 228.45 216.5 226.5
Filtration efficiency η% 96.07 99.33 99.56 99.54 99.56
According to the above-described method for measuring and calculating the filtration efficiency η, Y values (that is, Y is set to D/X) corresponding to different filtration accuracies (X >1 μm) at specified filtration efficiencies of 95%, 96%, 97%, 98% and 99% of the filter medium are measured and calculated, that is, a value Y of a ratio of the X value of the different filtration accuracies to the corresponding pore diameter D value at the specified filtration efficiency η is calculated, and some data are listed in the following table 3.
TABLE 3X (filtration accuracy) and Y (pore diameter D/filtration accuracy X) at different filtration efficiencies η
Figure BDA0002489490210000061
Based on the data in table 3, the corresponding X-Y relationship curve under the selected filtering efficiency η condition is drawn according to the X value and the calculated Y value, as shown in fig. 1.
And (3) performing regression processing on the curve by adopting a cubic spline interpolation method based on the X value and the corresponding Y value under the condition that eta in the curve is 95%, and obtaining a fitting equation of-2.8702E-3X 3+9.2726E-2X2-0.9765X +5.5276, namely the curve relation between different filtering precisions X and the set Y value of the filter material in an actually-measured range (X > 1)). Meanwhile, based on the recognition that the physical laws followed by the filtering process do not change in the interval (X is less than or equal to 1) which is difficult to be actually measured, the corresponding X, Y value of the filter material still satisfies the curve relation under the range of X is less than or equal to 1 μm.
Based on the curve equation, taking X as 0.5 μm, the value of Y corresponding to X as 0.5 μm can be calculated as 5.06, and the theoretical pore diameter value corresponding to X as 0.5 μm can be calculated according to the set value of Y as D/XDTheory of the inventionWhen the filter media having a pore size D of 2.53 μm or less, in other words, only the filter media having a pore size D of 2.53 μm or less satisfy the filtering accuracy of 0.5 μm for X, the filtering efficiency can be 95%, and the filtering efficiency cannot be achieved if the filter media have pore size data larger than the above. However, since the actual pore diameter of the filter element of this example is 7.23 μm, which is larger than the theoretical control value, it is considered that the filter element does not satisfy the requirement of filtration performance.
Example 2
For another test filter material of the same type as in example 1, the pore size was measured to be D using a pore size testerMeasured in factIt was required to judge whether or not the filtration efficiency could be 99% at a filtration accuracy of 0.5 μm, which is 1.15 μm.
Using the same experimental conditions as in example 1, the fitting equation at 99% filtration efficiency was found to be-2.5195E-3X 3+7.7665E-2X2-0.7251X +3.5547, and taking X to be 0.5, Y was calculated to be 3.21.
From Y ═ D/X, the theoretical pore diameter D can be obtainedTheory of the inventionThe pore size of the filter is 1.61 μm and larger than the actual measurement pore size by 1.15 μm, and thus the filter is judged to be satisfactory.
Meanwhile, the rationality of the filter material selection can be evaluated, and the aperture D is actually measuredMeasured in fact1.15 μm is much smaller than the theoretical pore diameter DTheory of the invention1.61 μm, and therefore, the selection was evaluated too severely. Since the smaller the pore size, the higher the cost of the filter, the pore size is selected to be as close as possible to the theoretical pore size DTheory of the inventionThe filter material is more reasonable.
It should be understood that the above examples are only for clarity of illustration and are not intended to limit the embodiments. Other variations and modifications will be apparent to persons skilled in the art in light of the above description. And are neither required nor exhaustive of all embodiments. And obvious variations or modifications therefrom are within the scope of the invention.

Claims (10)

1. A method for evaluating the filtration precision and efficiency of a submicron-grade liquid-solid separation system is characterized by comprising the following steps of:
(1) testing the filtering precision X, the filtering efficiency eta and the filtering material aperture D of particles with the particle size of more than 1 mu m on the selected filtering material by using a detection method in the prior art so as to obtain corresponding numerical values of the filtering efficiency eta, the aperture D and the filtering precision X of the selected filtering material;
(2) setting a parameter Y as D/X, and calculating ratio data Y values of different filtering precision X values and corresponding aperture D values under the reference of the selected filtering efficiency eta when X is larger than 1 mu m so as to obtain a plurality of groups of different X values and corresponding Y value data;
(3) fitting a regression equation by respectively taking the obtained Y value as a vertical coordinate and the obtained X value as a horizontal coordinate, and obtaining an X-Y relation curve equation of the selected filter material under the selected filter efficiency eta through fitting;
(4) extending the obtained fitting equation to a submicron interval, namely setting X to be less than or equal to 1 mu m, so as to obtain a Y value corresponding to the filtering precision X in the submicron interval through calculation, and further calculating according to the set relation of Y to D/X to obtain a theoretical filtering precision X value corresponding to the submicron interval;
(5) and evaluating the filtration performance of the submicron liquid-solid separation system according to the X, Y and eta values obtained by the calculation.
2. The method for evaluating the filtration accuracy and efficiency of a submicron-sized liquid-solid separation system according to claim 1, wherein in the step (1), the step of calculating the filtration efficiency η comprises:
uniformly mixing test dust into purified water to prepare a raw material liquid, performing a plurality of filtration tests on a selected filter material by using a filtration performance test device, and actually detecting the number M of particles with the precision larger than 1 mu M under the filtration precision X in the raw material liquid before filtration and the number N of particles with the precision larger than 1 mu M under the filtration precision X in the raw material liquid after filtration by using a particle counter;
the measured data M, N values are used to perform mathematical analysis, and the filtration ratio beta of the selected filter medium under different filtration precisions X larger than 1 μ M is calculated to be M/N, and the filtration efficiency eta is calculated to be 1-1/beta.
3. The method for assessing filtration accuracy and efficiency of a submicron liquid-solid separation system according to claim 2, wherein the selected test filtration accuracy X values comprise 2 μ ι η, 5 μ ι η, 10 μ ι η, 15 μ ι η, and 20 μ ι η.
4. A method for evaluating the filtration accuracy and efficiency of a submicron liquid-solid separation system according to any one of claims 1-3, wherein in the step (1), the calculated selected filtration efficiency comprises 95%, 96%, 97%, 98%, 99%.
5. A method for evaluating the filtration accuracy and efficiency of a submicron liquid-solid separation system according to any one of claims 1 to 4, wherein in the step (1), the value of the pore size D of the selected filter material is measured by a pore size measuring instrument.
6. The method for evaluating the filtration accuracy and efficiency of a submicron-sized liquid-solid separation system according to any one of claims 1 to 5, wherein in the step (3), the regression equation fitting step employs a cubic spline interpolation method, and obtains a fitting equation Y ═ aX3+bX2+ cX + d, wherein X>1。
7. The method for evaluating the filtration accuracy and efficiency of a submicron liquid-solid separation system according to any one of claims 1-6, wherein in the step (5), the evaluation of the filtration performance comprises a filtration efficiency evaluation and/or a filtration accuracy evaluation.
8. The method for evaluating the filtration accuracy and efficiency of a submicron liquid-solid separation system according to claim 7, wherein the evaluation of the filtration performance comprises calculating the submicron filtration accuracy X of the known filter material at X ≤ 1 μm and evaluating whether the filter material can meet the requirement, if the actual pore size D and the filtration efficiency η of the filter material are known.
9. The method for evaluating the filtration accuracy and efficiency of a submicron liquid-solid separation system according to claim 7, wherein the evaluation of the filtration performance comprises calculating the theoretical pore size D of a filter to be selected and evaluating the rationality of the filter type if the filtration efficiency η and the submicron filtration accuracy X of a given filter are less than or equal to 1 μm.
10. A method for evaluating the filtration accuracy and efficiency of a submicron liquid-solid separation system according to claim 7, wherein the evaluation of the filtration performance comprises evaluating whether the filtration efficiency η of the known filter material reaches a specified requirement if the pore size D of the filter material and the submicron filtration accuracy X of X is less than or equal to 1 μm.
CN202010401040.2A 2020-05-13 2020-05-13 Method for evaluating filtering precision and efficiency of submicron-grade liquid-solid separation system Active CN111551478B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010401040.2A CN111551478B (en) 2020-05-13 2020-05-13 Method for evaluating filtering precision and efficiency of submicron-grade liquid-solid separation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010401040.2A CN111551478B (en) 2020-05-13 2020-05-13 Method for evaluating filtering precision and efficiency of submicron-grade liquid-solid separation system

Publications (2)

Publication Number Publication Date
CN111551478A true CN111551478A (en) 2020-08-18
CN111551478B CN111551478B (en) 2023-01-10

Family

ID=72006245

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010401040.2A Active CN111551478B (en) 2020-05-13 2020-05-13 Method for evaluating filtering precision and efficiency of submicron-grade liquid-solid separation system

Country Status (1)

Country Link
CN (1) CN111551478B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4202405A4 (en) * 2020-09-29 2024-02-28 Daikin Ind Ltd Correcting system, and correcting method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6027759A (en) * 1997-09-11 2000-02-22 Kwok; Kui-Chiu Method and apparatus for evaluating a paint filter
US6077435A (en) * 1996-03-15 2000-06-20 Usf Filtration And Separations Group Inc. Filtration monitoring and control system
CN102133496A (en) * 2010-12-29 2011-07-27 东莞市海莎过滤器有限公司 Dust filtering performance testing method and system of air filter for cab of vehicle on road
CN105758760A (en) * 2014-12-18 2016-07-13 曼胡默尔滤清器(上海)有限公司 Measuring method for filter element water resistance test
CN107219162A (en) * 2017-06-19 2017-09-29 深圳安吉尔饮水产业集团有限公司 The method for detecting filter strainability
CN107389526A (en) * 2017-07-24 2017-11-24 上海市建筑科学研究院(集团)有限公司 A kind of air filter efficiency evaluation method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6077435A (en) * 1996-03-15 2000-06-20 Usf Filtration And Separations Group Inc. Filtration monitoring and control system
US6027759A (en) * 1997-09-11 2000-02-22 Kwok; Kui-Chiu Method and apparatus for evaluating a paint filter
CN102133496A (en) * 2010-12-29 2011-07-27 东莞市海莎过滤器有限公司 Dust filtering performance testing method and system of air filter for cab of vehicle on road
CN105758760A (en) * 2014-12-18 2016-07-13 曼胡默尔滤清器(上海)有限公司 Measuring method for filter element water resistance test
CN107219162A (en) * 2017-06-19 2017-09-29 深圳安吉尔饮水产业集团有限公司 The method for detecting filter strainability
CN107389526A (en) * 2017-07-24 2017-11-24 上海市建筑科学研究院(集团)有限公司 A kind of air filter efficiency evaluation method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
中国国家标准化管理委员会: ""液压传动过滤器评定滤芯过滤性能的多次通过方法"", 《中华人民共和国国家标准GB/T18853-2015》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4202405A4 (en) * 2020-09-29 2024-02-28 Daikin Ind Ltd Correcting system, and correcting method

Also Published As

Publication number Publication date
CN111551478B (en) 2023-01-10

Similar Documents

Publication Publication Date Title
EP0814887B1 (en) Filtration monitoring and control system
CN111551478B (en) Method for evaluating filtering precision and efficiency of submicron-grade liquid-solid separation system
CN106840732B (en) A kind of performance evaluation methodology and device
CN105823617A (en) System for quickly recognizing gathering-transportation riser system gas-liquid two-phase flow mass flow pattern
CN104801096B (en) Intelligent pre-filter online monitoring and diagnosing device and method
CN108536979B (en) Underflow concentration prediction method based on thickener mechanism model
CN110486350B (en) Electro-hydraulic servo valve fault diagnosis method and device, storage medium and electronic equipment
RU2356606C2 (en) Method for assessment of stable condition of membrane filtration flow
Brazhenko et al. Study of hydraulic oil filtration process from solid admixtures using rotating perforated cylinder
US5403497A (en) New method for determining particle size and concentration in a fluid medium
DE112019000324T5 (en) FILTER UNIT QUALITY MANAGEMENT SYSTEM AND FILTER UNIT QUALITY MANAGEMENT PROCEDURE
CN112067283A (en) Regulating valve cavitation diagnosis system based on sound power spectrum and diagnosis method thereof
CN116738353A (en) Pharmaceutical workshop air filter element performance detection method based on data analysis
CN110954365A (en) Automatic backwashing system of steam sampling filter of thermal power plant
CN203425625U (en) Air filter simulation device
CN115221963A (en) Data-driven nuclear-grade pipeline resonance fault detection method and system
CN210014965U (en) Online detection pretreatment equipment for solution in metallurgical industry
CN115856264A (en) Method and system for judging validity of online monitoring data of dissolved gas in transformer oil
DE102009048811A1 (en) Biosensor device with self-test device
CN111842293B (en) System and method for removing surface impurities of gas field flow measuring device
CN110260931B (en) Liquid propellant pipeline flow field quality evaluation system and evaluation method
CN114509377A (en) Dynamic filter element compatibility measuring method and device
Cano et al. Optimisation of the filter housing dimensions of an automatic flushing strainer-type filter
CN206788001U (en) For detecting the device of filter bag cleanliness factor and strainability
CN207832615U (en) A kind of interior cooling water system of cleannes on-line checking

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant