CN111549331B - 一种掺硼金刚石薄膜制备方法 - Google Patents

一种掺硼金刚石薄膜制备方法 Download PDF

Info

Publication number
CN111549331B
CN111549331B CN202010380094.5A CN202010380094A CN111549331B CN 111549331 B CN111549331 B CN 111549331B CN 202010380094 A CN202010380094 A CN 202010380094A CN 111549331 B CN111549331 B CN 111549331B
Authority
CN
China
Prior art keywords
boron
deposition
temperature
sublimation
diamond film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010380094.5A
Other languages
English (en)
Other versions
CN111549331A (zh
Inventor
玄真武
张怡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sinoma Intraocular Lens Research Institute Co Ltd
Beijing Sinoma Synthetic Crystals Co Ltd
Original Assignee
Sinoma Intraocular Lens Research Institute Co ltd
Beijing Sinoma Synthetic Crystals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sinoma Intraocular Lens Research Institute Co ltd, Beijing Sinoma Synthetic Crystals Co Ltd filed Critical Sinoma Intraocular Lens Research Institute Co ltd
Priority to CN202010380094.5A priority Critical patent/CN111549331B/zh
Publication of CN111549331A publication Critical patent/CN111549331A/zh
Application granted granted Critical
Publication of CN111549331B publication Critical patent/CN111549331B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/271Diamond only using hot filaments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/277Diamond only using other elements in the gas phase besides carbon and hydrogen; using other elements besides carbon, hydrogen and oxygen in case of use of combustion torches; using other elements besides carbon, hydrogen and inert gas in case of use of plasma jets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/278Diamond only doping or introduction of a secondary phase in the diamond
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process

Abstract

本发明涉及一种掺硼金刚石薄膜制备方法。在沉积腔体内CVD金刚石沉积条件满足沉积要求后,将沉积腔体内用于盛装单质硼的坩埚加热至使单质硼发生升华的升华调控温度;然后根据所述升华调控温度、沉积腔体内硼的蒸气压之间的第一对应关系及沉积腔体内硼的蒸气压与沉积腔体内硼浓度的第二对应关系确定所述升华调控温度与沉积腔体内硼浓度的第三对应关系,进而通过调节所述升华调控温度实现沉积腔体内掺杂硼浓度的调节,实现沉积腔体内CVD金刚石沉积条件不变的情况下,通过单独升华调控温度实现控制硼源的掺杂浓度,保证沉积及掺杂效果佳,而且控制简单,操作安全、方便。

Description

一种掺硼金刚石薄膜制备方法
技术领域
本发明涉及BDD薄膜制备技术,具体涉及一种掺硼金刚石薄膜制备方法。
背景技术
掺硼金刚石(BDD)薄膜是一种导电型金刚石薄膜,可以在电学及加工方面有广泛的应用。制备掺硼金刚石薄膜的关键是在沉积过程中掺硼,掺硼方法有多种,通常可以根据使用硼的形态来确定,其中,可用于掺硼的硼源种类主要有气态(乙硼烷),液态(硼酸三甲酯)和固态(单质硼,氧化硼等)。但其中气态硼源及液态硼源(包括乙硼烷和硼酸三甲酯)属于易燃易爆危险品,有剧毒,因此在使用过程中需要特别注意防止泄漏导致事故,并且需要进行尾气处理,安全性不可保证。固态硼源在使用上相对最为安全,但是固态硼源氧化硼在空气中极易吸收水分形成硼酸,进而在沉积过程中受热分解出水分子,会直接导致热丝氧化断丝,造成对设备的损坏。
故单质硼是最为安全的硼源,但是现有单质硼掺杂方式是将单质硼置于热丝反应室内热丝下方的样品架上,在高温碳氢等离子体的作用下,将所述单质硼首先转化为气体含硼化合物,使其进入到金刚石合成的源气体中与甲烷和氢气混合进行掺杂,其中,硼的浓度控制难度很大,直接影响到金刚石晶体中硼含量不均匀,若要改变硼的浓度,必须要改变热丝的功率,以及气体流量和甲烷与氢气的比例,也就是说,现有单质硼掺杂方式中,为了调节硼的浓度,需要改变其他沉积参数,这会导致金刚石所有生长条件改变,严重影响产品质量。
发明内容
为了解决上述技术问题,本发明的目的在于提供一种连续沉积金刚石薄膜的方法及其设备。
根据本发明的一个方面,提供了一种掺硼金刚石薄膜制备方法,包括以下步骤:
当沉积腔体内CVD金刚石沉积条件满足沉积要求后,将沉积腔体内用于盛装单质硼的坩埚加热至使单质硼发生升华的升华调控温度;
根据所述升华调控温度、沉积腔体内硼的蒸气压之间的第一对应关系及沉积腔体内硼的蒸气压与沉积腔体内硼浓度的第二对应关系确定所述升华调控温度与沉积腔体内硼浓度的第三对应关系,进而通过调节所述升华调控温度实现沉积腔体内掺杂硼浓度的调节。
进一步的,所述升华调控温度、硼的蒸气压之间的第一对应关系为:
log(P/Pa)=13.255-21370/(T/K),
其中,
T为升华调控温度;
P为沉积腔体内硼的蒸气压。
进一步的,所述升华调控温度为900-1600℃。
进一步的,沉积腔体内硼的蒸气压与沉积腔体内硼浓度的第二对应关系为:
PM=ρRT(K)
其中,
P为沉积腔体内硼的蒸气压;
M为硼蒸汽的摩尔数;
ρ为硼蒸汽的密度;
R为常数,8.314KJ/KmolK;
T(K)为绝对温度。
进一步的,利用灯丝热解CVD方法,以氢气与甲烷为原料气体,以单质硼为掺杂源进行掺硼金刚石薄膜的合成与掺杂。
进一步的,沉积腔体内CVD金刚石沉积条件满足沉积要求包括沉积腔体压力为5-80torr,甲烷浓度(流量)为2-8%,基体温度为700-950℃,热丝温度为1800-2500℃。
进一步的,所述坩埚需先加热至预设低温,所述预设低温可为300-400℃,然后再在沉积腔体内CVD金刚石沉积条件满足沉积要求后,升温至使单质硼发生升华的升华调控温度。
其中,所述坩埚在沉积腔体内设置一个或多个。所述坩埚的加热温度由热电偶测量并传输至温控系统,并通过所述温控系统控制对所述坩埚进行加热的加热线圈的功率,使得与设定的温度保持一致,坩埚的温度的可以通过程序控制,配合金刚石膜沉积工艺而设定,使得达到最佳沉积效果。
与现有技术相比,本发明具有以下有益效果:
本发明示例的掺硼金刚石薄膜制备方法,在沉积腔体内CVD金刚石沉积条件满足沉积要求后,将沉积腔体内用于盛装单质硼的坩埚加热至使单质硼发生升华的升华调控温度;然后根据所述升华调控温度、沉积腔体内硼的蒸气压之间的第一对应关系及沉积腔体内硼的蒸气压与沉积腔体内硼浓度的第二对应关系确定所述升华调控温度与沉积腔体内硼浓度的第三对应关系,进而通过调节所述升华调控温度实现沉积腔体内掺杂硼浓度的调节,实现沉积腔体内CVD金刚石沉积条件不变的情况下,通过单独升华调控温度实现控制硼源的掺杂浓度,保证沉积及掺杂效果佳,而且控制简单,操作安全、方便。
附图说明
附图1为实施例一坩埚的结构示意图。
具体实施方式
为了更好的了解本发明的技术方案,下面结合说明书附图和具体实施例对本发明作进一步说明。
实施例一
本实施例提供了一种掺硼金刚石薄膜制备方法,利用灯丝热解CVD方法,以氢气与甲烷为原料气体,以单质硼为掺杂源进行掺硼金刚石薄膜的合成与掺杂。
首先将电源打开,将坩埚预热到预设低温,所述预设低温可为300-400℃,当沉积腔体内CVD金刚石沉积条件满足沉积要求后,将沉积腔体内用于盛装单质硼的一个或多个坩埚加热至使单质硼发生升华的升华调控温度,其中,所述坩埚的加热温度由热电偶测量并传输至温控系统,并通过所述温控系统控制对所述坩埚进行加热的加热线圈的功率,使得与设定的温度保持一致,坩埚的温度的可以通过程序控制,配合金刚石膜沉积工艺而设定,使得达到最佳沉积效果。沉积腔体内CVD金刚石沉积条件满足沉积要求包括沉积腔体压力为5-80torr,甲烷浓度(流量)为2-8%,基体温度为700-950℃,热丝温度为1800-2500℃;
根据所述升华调控温度、沉积腔体内硼的蒸气压之间的第一对应关系及沉积腔体内硼的蒸气压与沉积腔体内硼浓度的第二对应关系确定所述升华调控温度与沉积腔体内硼浓度的第三对应关系,进而通过调节所述升华调控温度实现沉积腔体内掺杂硼浓度的调节。
其中,所述升华调控温度、硼的蒸气压之间的第一对应关系为:
log(P/Pa)=13.255-21370/(T/K),
其中,
T为升华调控温度,所述升华调控温度为900-1600℃;
P为沉积腔体内硼的蒸气压。
沉积腔体内硼的蒸气压与沉积腔体内硼浓度的第二对应关系为:
PM=ρRT(K)
其中,
P为沉积腔体内硼的蒸气压;
M为硼蒸汽的摩尔数;
ρ为硼蒸汽的密度;
R为常数,8.314KJ/KmolK;
T(K)为绝对温度。
实施例二
本实施例与实施例一相同的特征不再赘述,本实施例与实施例一不同的特征在于:
所述预设低温可为300℃。
沉积腔体内CVD金刚石沉积条件满足沉积要求包括沉积腔体压力为5-6torr,甲烷浓度(流量)为2%,基体温度为700℃,热丝温度为1800-2000℃。
实施例三
本实施例与实施例一相同的特征不再赘述,本实施例与实施例一不同的特征在于:
所述预设低温可为350℃。
沉积腔体内CVD金刚石沉积条件满足沉积要求包括沉积腔体压力为80torr,甲烷浓度(流量)为8%,基体温度为900℃,热丝温度为2200-2500℃。
以上描述仅为本申请的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (8)

1.一种掺硼金刚石薄膜制备方法,其特征是,包括以下步骤:
当沉积腔体内CVD金刚石沉积条件满足沉积要求后,将沉积腔体内用于盛装单质硼的坩埚加热至使单质硼发生升华的升华调控温度;
根据所述升华调控温度、沉积腔体内硼的蒸气压之间的第一对应关系及沉积腔体内硼的蒸气压与沉积腔体内硼浓度的第二对应关系确定所述升华调控温度与沉积腔体内硼浓度的第三对应关系,进而通过调节所述升华调控温度实现沉积腔体内掺杂硼浓度的调节;
所述第一对应关系为:
log (P/Pa) = 13.255 - 21370 / (T/K);
其中, T为升华调控温度; P为沉积腔体内硼的蒸气压;
所述第二对应关系为:
PM=ρRT(K);
其中, P为沉积腔体内硼的蒸气压; M为硼蒸汽的摩尔数;ρ为硼蒸汽的密度; R为常数; T(K)为升华调控温度的绝对温度。
2.根据权利要求1所述的掺硼金刚石薄膜制备方法,其特征是,所述升华调控温度为900-1600℃。
3.根据权利要求1所述的掺硼金刚石薄膜制备方法,其特征是,利用灯丝热解CVD方法,以氢气与甲烷为原料气体,以单质硼为掺杂源进行掺硼金刚石薄膜的合成与掺杂。
4.根据权利要求1所述的掺硼金刚石薄膜制备方法,其特征是,沉积腔体内CVD金刚石沉积条件满足沉积要求包括沉积腔体压力为5-80 Torr,以流量计甲烷浓度为2-8%,基体温度为700-950℃,热丝温度为1800-2500℃。
5.根据权利要求1所述的掺硼金刚石薄膜制备方法,其特征是,所述坩埚需先加热至预设低温,然后再在沉积腔体内CVD金刚石沉积条件满足沉积要求后,升温至使单质硼发生升华的升华调控温度。
6.根据权利要求5所述的掺硼金刚石薄膜制备方法,其特征是,所述预设低温为300-400℃。
7.根据权利要求1所述的掺硼金刚石薄膜制备方法,其特征是,所述坩埚在沉积腔体内设置一个或多个。
8.根据权利要求7所述的掺硼金刚石薄膜制备方法,其特征是,所述坩埚的加热温度由热电偶测量并传输至温控系统,并通过所述温控系统控制对所述坩埚进行加热的加热线圈的功率。
CN202010380094.5A 2020-05-08 2020-05-08 一种掺硼金刚石薄膜制备方法 Active CN111549331B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010380094.5A CN111549331B (zh) 2020-05-08 2020-05-08 一种掺硼金刚石薄膜制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010380094.5A CN111549331B (zh) 2020-05-08 2020-05-08 一种掺硼金刚石薄膜制备方法

Publications (2)

Publication Number Publication Date
CN111549331A CN111549331A (zh) 2020-08-18
CN111549331B true CN111549331B (zh) 2022-06-07

Family

ID=71996153

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010380094.5A Active CN111549331B (zh) 2020-05-08 2020-05-08 一种掺硼金刚石薄膜制备方法

Country Status (1)

Country Link
CN (1) CN111549331B (zh)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2727322B1 (fr) * 1994-11-30 1996-12-27 Kodak Pathe Procede pour la sublimation d'un materiau solide et dispositif pour la mise en oeuvre du procede
CN109060900B (zh) * 2018-08-10 2020-07-10 华中科技大学 一种掺硼金刚石修饰的衰减全反射晶片、其制备及应用
CN110527973B (zh) * 2019-09-27 2021-05-25 哈尔滨工业大学 一种利用固态掺杂源制备掺硼金刚石的方法

Also Published As

Publication number Publication date
CN111549331A (zh) 2020-08-18

Similar Documents

Publication Publication Date Title
Matsumoto et al. Growth of diamond particles from methane-hydrogen gas
US3607061A (en) Manufacture of synthetic diamonds
EP0201696B1 (en) Production of carbon films
Kim et al. Effect of partial pressure of the reactant gas on the chemical vapour deposition of Al2O3
CN111549331B (zh) 一种掺硼金刚石薄膜制备方法
US3561920A (en) Chemical vapor deposition of thick deposits of isotropic boron nitride
Pan et al. Chlorine‐activated diamond chemical vapor deposition
US3155621A (en) Production of silicon with a predetermined impurity content
McAleese et al. Thin film growth of gadolinia by metal-organic chemical vapour deposition (MOCVD)
US11541351B2 (en) Apparatus for removing boron
US5589231A (en) Halogen-activated chemical vapor deposition of diamond
Takahashi et al. Chemical vapor deposition of tungsten carbide dendrites
CN102618841A (zh) 一种硼掺杂玻璃炭材料及其制备方法
CN102115073B (zh) 一种制备硼掺杂各向同性热解炭材料的方法
US3398013A (en) Preparation of films of boron carbide
Gerrard et al. An improved method of trimethylindium transport for the growth of indium phosphide and related alloys by MOVPE
GB1378302A (en) Production of semiconductor rods
Edgar et al. The effects of the simultaneous addition of diborane and ammonia on the hot-filament assisted chemical vapor deposition of diamond
EP0094426B1 (en) Bandgap control in amorphous semiconductors
US3672832A (en) Production of polymeric fibers or coherent thin deposit of a silicon and oxygen compound
Troitskii et al. Use of a superhigh frequency discharge for the manufacture of titanium nitride powder
JPH10149986A (ja) ダイヤモンドn型半導体膜の製造方法およびその装置
JPS62202809A (ja) 熱分解黒鉛の製造方法
Seki et al. A Thermodynamical Study of the Growth Rate of Epitaxial Silicon from SiI4
JP3093836B2 (ja) ダイヤモンド膜作製方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20200929

Address after: 100018 Beijing Chaoyang District pine Park No. 1

Applicant after: Sinoma intraocular lens Research Institute Co., Ltd

Applicant after: BEIJING SINOMA SYNTHETIC CRYSTALS Co.,Ltd.

Address before: No.1 hongsongyuan intraocular lens hospital, Dongba, Chaoyang District, Beijing 100018

Applicant before: BEIJING SINOMA SYNTHETIC CRYSTALS Co.,Ltd.

GR01 Patent grant
GR01 Patent grant