CN111548604A - 一种纳米TiO2改性碳纤维/环氧树脂复合材料的方法 - Google Patents

一种纳米TiO2改性碳纤维/环氧树脂复合材料的方法 Download PDF

Info

Publication number
CN111548604A
CN111548604A CN202010530791.4A CN202010530791A CN111548604A CN 111548604 A CN111548604 A CN 111548604A CN 202010530791 A CN202010530791 A CN 202010530791A CN 111548604 A CN111548604 A CN 111548604A
Authority
CN
China
Prior art keywords
epoxy resin
carbon fiber
composite material
nano tio
tio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010530791.4A
Other languages
English (en)
Inventor
吴全亮
洪珍
马博雄
郭礼仪
何军旺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanchang Hangkong University
Original Assignee
Nanchang Hangkong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanchang Hangkong University filed Critical Nanchang Hangkong University
Priority to CN202010530791.4A priority Critical patent/CN111548604A/zh
Publication of CN111548604A publication Critical patent/CN111548604A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • C08K9/06Ingredients treated with organic substances with silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2237Oxides; Hydroxides of metals of titanium
    • C08K2003/2241Titanium dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

本发明涉及一种纳米TiO2改性碳纤维/环氧树脂复合材料的方法,采用二乙烯三胺作为固化剂,将KH‑550硅烷偶联剂活化处理的纳米TiO2为填料,通过手糊成型制备一种纳米TiO2改性碳纤维/环氧树脂复合材料,其中KH‑550硅烷偶联剂的用量为纳米TiO2质量的5%以内,活性纳米TiO2用量为环氧树脂质量分数的6%以内,二乙烯三胺的用量为环氧树脂质量分数的10%,每层刮涂的环氧树脂胶的用量为碳纤维布质量的50±5%。本发明方法制备工艺简单,生产成本低,成型可操作性好,复合材料的抗疲劳性能优异。

Description

一种纳米TiO2改性碳纤维/环氧树脂复合材料的方法
技术领域
本发明涉及一种纳米TiO2改性碳纤维/环氧树脂复合材料的方法,具体属于碳纤维增强环氧树脂复合材料技术领域。
技术背景
碳纤维增强环氧树脂复合材料具有比强度高、比刚度大、结构可设计等许多优点,广泛应用于航空航天、交通、体育设施等领域,该材料用以代替钢材等传统结构材料已成为一种发展趋势。然而碳纤维增强环氧树脂复合材料的安全性成为其首要考虑因素之一。在使用过程中,碳纤维增强环氧树脂复合材料往往会由于长期载荷或自然环境而产生损伤以至破坏情况,其中疲劳损伤为其主要破坏形式之一。因此,对碳纤维增强环氧树脂复合材料的疲劳性能进行研究显得极为重要。
近年来,向环氧树脂基体中加入各种填充物进行增强改性已经成为一项行之有效的措施。纳米粒子尺寸界定在1~100 nm之间,纳米粒子具有极高的比表面积,而且表面活性非常大。环氧树脂与纳米粒子在界面上形成了远大于范德华力的作用力,因此有较好的相容性,形成了非常理想的界面。在环氧树脂受到作用力时可产生引发微裂纹吸收能量的作用,从而大大提高材料的力学性能,达到增韧的目的。另外,纳米粒子的加入还可提高环氧树脂的耐磨性、拉伸强度、冲击强度、热分解温度等,使环氧树脂复合材料的物理性能大大增强,尤其是疲劳性能。董元彩等将环氧树脂用丙酮溶解,然后加入经偶联剂表面处理的纳米TiO2,搅拌分散均匀。加入40 %环氧树脂质量的聚酰胺,混合均匀后于100 ℃固化1 h得到环氧树脂复合材料。张毅等先将除去表面杂质的炭纤维丝置于硝酸溶液中,经磷酸二氢铵浸泡,然后煅烧,再采用双氧水浸泡氧化获得活性炭纤维丝,最后将其放入添加有纳米TiO2的环氧树脂中浸渍,得到表面负载纳米TiO2的改性活性炭纤维丝。邓超月在制备碳纤维/环氧树脂基掺杂钦的太赫兹吸波材料时,采用分散剂羟丙基甲基纤维素(HPMC)作为短切碳纤维在环氧树脂中的分散剂,降低了碳纤维之间的团聚程度。采用溶胶-凝胶法制备的TiO2、Fe-TiO2和BaTiO3纳米颗粒改善了短切碳纤维/环氧树脂复合材料的吸波性能。LichunMaa等通过水热和超临界方法获得了碳纤维表面上二氧化钛纳米棒(TiO2 NRs)的生长。超临界水改善了生长效率并促进了TiO2 NRs更紧密地进入CF表面,使得粗糙度和可湿性明显增加,且纤维的拉伸强度没有降低,复合材料的界面剪切强度(IFSS)和冲击强度提高。Rusheng Yuan等通过使用环氧树脂作为TiO2和活性碳纤维之间的粘合剂,然后在460℃和N2气氛下煅烧2小时制备负载在活性碳纤维上的TiO2,以实现表面积和孔结构的控制,达到造纸废水中COD的有效光降解。上述报道生产的成本较高,工业化生产有一定难度。基于此,本发明在对纳米TiO2进行活化处理,提高了其在环氧树脂中的分散性和相容性,改善了与环氧树脂的界面性能,并且利用简单、低成本的浇注成型和手糊成型方法,来制备具有高力学性能的纳米TiO2改性碳纤维/环氧树脂复合材料。
发明内容
针对现有碳纤维/环氧树脂复合材料的不足,本发明提供一种纳米TiO2改性碳纤维/环氧树脂复合材料的方法。
本发明一种纳米TiO2改性碳纤维/环氧树脂复合材料的方法采用KH-550硅烷偶联剂活化处理的纳米TiO2改性碳纤维/环氧树脂复合材料,具体步骤如下:
步骤1:纳米TiO2的活化处理
用无水乙醇分别清洗纳米TiO2三次后,加入KH-550硅烷偶联剂,经搅拌混合均匀后,再超声处理2 h,分别用无水乙醇清洗3次,再在80 ℃下干燥处理,得到活性纳米TiO2,其中KH-550硅烷偶联剂的用量为纳米TiO2质量的5%以内;
步骤2:纳米TiO2改性碳纤维/环氧树脂复合材料
控制活性纳米TiO2用量为环氧树脂质量分数的6%以内,将活性纳米TiO2分别加入到环氧树脂中,搅拌均匀后超声处理1 h,冷却后加入二乙烯三胺,搅拌均匀后,得到环氧树脂胶;其中,二乙烯三胺的用量为环氧树脂质量分数的10%;
将环氧树脂胶迅速淋浇在铺有1~2层斜纹碳纤维布的模具中,然后开始刮涂;刮胶过程中采用S型刮胶法,使环氧树脂胶浸透碳维纤布,并刮去直径1 mm以上的气泡;其后,继续铺放下一层斜纹碳纤维布,并立即刮涂环氧树脂胶,每层刮涂的环氧树脂胶的用量为碳纤维布质量的50±5%;重复刮涂环氧树脂胶和铺放碳纤维布,共计铺设8层碳纤维布后,在其上再铺放一块脱模布,用光滑刮板刮去多余的树脂并尽量除去树脂中肉眼可见的气泡,盖上玻璃板一块;其后,先将盖好玻璃板的复合材料在常温下固化24 h脱模,然后再在120 ℃下后固化2 h除去复合材料的内应力,得到纳米TiO2改性碳纤维/环氧树脂复合材料。
本发明的有益效果:
本发明方法制备工艺简单,生产成本低,成型可操作性好,复合材料的抗疲劳性能优异。通过改变纳米TiO2含量与偶联剂含量来调节纳米TiO2改性碳纤维/环氧树脂复合材料的疲劳性能,制备的复合材料有很好的抗疲劳性能,当TiO2含量为6%、应力水平为0.7时,复合材料的lg N值达到4.88;当偶联剂含量为5%、应力水平为0.7时,复合材料的lg N值达到5.15;当加载频率为15 Hz、应力水平为0.7时,复合材料的疲劳寿命最长。环氧树脂基体含量高,复合材料的加工性能好,可以制备成所需要的形状。
附图说明
图1为本发明纳米TiO2改性碳纤维/环氧树脂复合材料的纳米TiO2含量与复合材料疲劳性能的关系曲线图;
图2为本发明纳米TiO2改性碳纤维/环氧树脂复合材料的KH-550硅烷偶联剂含量与复合材料疲劳性能的关系曲线图;
图3为本发明纳米TiO2改性碳纤维/环氧树脂复合材料的不同加载条件与复合材料疲劳性能的关系曲线图。
具体实施方式
实施例1
纳米TiO2改性碳纤维/环氧树脂复合材料的制备步骤如下:
将未处理的纳米TiO2按质量分数为0%、1.5%、3%、4.5%、6%分别加入到E-51型环氧树脂中,搅拌均匀后超声处理1 h,冷却后分别加入二乙烯三胺,搅拌均匀后,迅速淋浇在铺有1~2层斜纹碳纤布的模具中,然后开始刮涂,刮胶过程中采用S型刮胶法,使树脂浸透碳纤布,并刮去直径1mm以上的气泡。铺放下一层碳纤布,并立即涂刷树脂,一般树脂含量约50%,接着第二层、第三层依次重复操作,铺放8层碳纤布后将一层脱模布放在复合材料板上,用光滑刮板刮去多余的树脂并尽量除去树脂中肉眼可见的气泡,并盖上一块玻璃板。在常温(25 ℃)下固化24 h后即可脱模。然后在120 ℃下后固化2 h以除去试样的内应力。在万能制样机上按照测试试样规格制成直条形标准试样。采用SDS50型50 KN电液伺服疲劳试验机测试试样的疲劳性能。
从图1中可以看出在纳米TiO2含量为6%、应力水平为0.7时,复合材料试样的lg N值为4.88,疲劳寿命达到最大。
实施例2
采用KH-550硅烷偶联剂对纳米TiO2进行改性,偶联剂含量分别为0%、1%、2%、3.5%、5%。称取6%的纳米TiO2,采用无水乙醇预清洗3次,然后在预清洗后的纳米TiO2中加入定量的偶联剂,并用超声处理2 h,然后搅拌均匀再用无水乙醇清洗3次,最后在80 ℃下干燥。将处理过的纳米TiO2按一定的质量分数加入到环氧树脂中,搅拌均匀后超声处理1 h,冷却后分别加入固化剂二乙烯三胺,搅拌均匀,然后迅速淋浇在铺有1~2层斜纹碳纤布的模具中,然后开始刮涂,刮胶过程中采用S型刮胶法,使树脂浸透碳纤布,并刮去直径1 mm以上的气泡。铺放下一层碳纤布,并立即涂刷树脂,一般树脂含量约50%,接着第二层、第三层依次重复操作,铺放8层碳纤布后将一层脱模布放在复合材料板上,用光滑刮板刮去多余的树脂并尽量除去树脂中肉眼可见的气泡,并盖上一块玻璃板。在常温(25 ℃)下固化24 h后即可脱模。然后在120 ℃下后固化2 h以除去试样的内应力。在万能制样机上按照测试试样规格制成直条形标准试样,采用SDS50型50 KN电液伺服疲劳试验机测试试样的疲劳性能。
从图2中可看出偶联剂含量为5%、应力水平为0.7时,纳米TiO2改性碳纤维/环氧树脂复合材料的lg N值为5.15,疲劳寿命最长。
实施例3
制备纳米TiO2含量为6%,偶联剂含量为5%的纳米TiO2改性碳纤维/环氧树脂复合材料,具体步骤如下:
采用KH-550硅烷偶联剂对纳米TiO2进行改性,偶联剂含量为5%。称取6%的纳米TiO2,采用无水乙醇预清洗3次,然后在预清洗后的纳米TiO2中加入定量的偶联剂,并用超声处理2h,然后搅拌均匀再用无水乙醇清洗3次,最后在80 ℃下干燥。将处理过的纳米TiO2按一定的质量分数加入到环氧树脂中,搅拌均匀后超声处理1 h,冷却后分别加入固化剂二乙烯三胺,搅拌均匀,然后迅速淋浇在铺有1~2层斜纹碳纤布的模具中,然后开始刮涂,刮胶过程中采用S型刮胶法,使树脂浸透碳纤布,并刮去直径1mm以上的气泡。铺放下一层碳纤布,并立即涂刷树脂,一般树脂含量约50%,接着第二层、第三层依次重复操作,铺放8层碳纤布后将一层脱模布放在复合材料板上,用光滑刮板刮去多余的树脂并尽量除去树脂中肉眼可见的气泡,并盖上一块玻璃板。在常温(25 ℃)下固化24 h后即可脱模。然后在120 ℃下后固化2 h以除去试样的内应力。在万能制样机上按照测试试样规格制成直条形标准试样,采用SDS50型50 KN电液伺服疲劳试验机测试试样的疲劳性能。
从图3中可看出加载频率为15 Hz、应力水平为0.7时,试样的疲劳寿命最长。

Claims (1)

1.一种纳米TiO2改性碳纤维/环氧树脂复合材料的方法,其特征在于:所述的方法采用KH-550硅烷偶联剂活化处理的纳米TiO2改性碳纤维/环氧树脂复合材料,具体步骤如下:
步骤1:纳米TiO2的活化处理
用无水乙醇分别清洗纳米TiO2三次后,加入KH-550硅烷偶联剂,经搅拌混合均匀后,再超声处理2 h,分别用无水乙醇清洗3次,再在80 ℃下干燥处理,得到活性纳米TiO2,其中KH-550硅烷偶联剂的用量为纳米TiO2质量的5%以内;
步骤2:纳米TiO2改性碳纤维/环氧树脂复合材料
控制活性纳米TiO2用量为环氧树脂质量分数的6%以内,将活性纳米TiO2分别加入到环氧树脂中,搅拌均匀后超声处理1 h,冷却后加入二乙烯三胺,搅拌均匀后,得到环氧树脂胶;其中,二乙烯三胺的用量为环氧树脂质量分数的10%;
将环氧树脂胶迅速淋浇在铺有1~2层斜纹碳纤维布的模具中,然后开始刮涂;刮胶过程中采用S型刮胶法,使环氧树脂胶浸透碳维纤布,并刮去直径1 mm以上的气泡;其后,继续铺放下一层斜纹碳纤维布,并立即刮涂环氧树脂胶,每层刮涂的环氧树脂胶的用量为碳纤维布质量的50±5%;重复刮涂环氧树脂胶和铺放碳纤维布,共计铺设8层碳纤维布后,在其上再铺放一块脱模布,用光滑刮板刮去多余的树脂并尽量除去树脂中肉眼可见的气泡,盖上玻璃板一块;其后,先将盖好玻璃板的复合材料在常温下固化24 h脱模,然后再在120 ℃下后固化2 h除去复合材料的内应力,得到纳米TiO2改性碳纤维/环氧树脂复合材料。
CN202010530791.4A 2020-06-11 2020-06-11 一种纳米TiO2改性碳纤维/环氧树脂复合材料的方法 Pending CN111548604A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010530791.4A CN111548604A (zh) 2020-06-11 2020-06-11 一种纳米TiO2改性碳纤维/环氧树脂复合材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010530791.4A CN111548604A (zh) 2020-06-11 2020-06-11 一种纳米TiO2改性碳纤维/环氧树脂复合材料的方法

Publications (1)

Publication Number Publication Date
CN111548604A true CN111548604A (zh) 2020-08-18

Family

ID=72006935

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010530791.4A Pending CN111548604A (zh) 2020-06-11 2020-06-11 一种纳米TiO2改性碳纤维/环氧树脂复合材料的方法

Country Status (1)

Country Link
CN (1) CN111548604A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112980146A (zh) * 2021-03-16 2021-06-18 威海宝威新材料科技有限公司 一种碳纤维预浸料管及其制备方法
CN117343361A (zh) * 2023-10-26 2024-01-05 许绝电工股份有限公司 一种环氧树脂复合材料的制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103009635A (zh) * 2012-12-24 2013-04-03 烟台泰和新材料股份有限公司 对位芳纶复合材料制件的手糊成型方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103009635A (zh) * 2012-12-24 2013-04-03 烟台泰和新材料股份有限公司 对位芳纶复合材料制件的手糊成型方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
姜蕾蕾: ""纳米二氧化钛/环氧树脂基复合材料的制备及性能研究"", 《中国优秀硕士学位论文全文数据库 工程科技I辑》 *
钟元: "《面向成本的产品设计》", 30 November 2019 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112980146A (zh) * 2021-03-16 2021-06-18 威海宝威新材料科技有限公司 一种碳纤维预浸料管及其制备方法
CN117343361A (zh) * 2023-10-26 2024-01-05 许绝电工股份有限公司 一种环氧树脂复合材料的制备方法

Similar Documents

Publication Publication Date Title
CN110016807A (zh) 一种碳纤维表面功能化的表面改性方法
CN111548604A (zh) 一种纳米TiO2改性碳纤维/环氧树脂复合材料的方法
CN102872651B (zh) 一种麻浆高过滤精度滤清器滤纸
Bhuvaneshwaran et al. Influence of fiber length, fiber content and alkali treatment on mechanical properties of natural fiber-reinforced epoxy composites
CN103332943A (zh) 基于液硅熔渗法制备碳陶基复合材料的微结构设计及性能控制方法
CN103602039A (zh) 碳纤维增强聚醚醚酮复合材料的制备方法
CN106555358A (zh) 一种对氨基苯甲酸无损改性碳纤维增强纸基湿式摩擦材料的制备方法
WO2021108576A1 (en) Bamboo structures, and methods for fabrication and use thereof
Liu et al. Study on wood chips modification and its application in wood-cement composites
CN106674912A (zh) 一种高强度玄武岩纤维复合筋
CN105238072B (zh) 一种无机粉末增强碳布/树脂复合材料的制备方法
Zhang et al. Enhanced interfacial properties of high-modulus carbon fiber reinforced PEKK composites by a two-step surface treatment: electrochemical oxidation followed by thermoplastic sizing
CN110540734B (zh) 碳纳米管复合纤维及其制备方法
Fong et al. Development and characterization of sugarcane bagasse fiber and nano-silica reinforced epoxy hybrid composites
CN113248746A (zh) 一种改善高模量碳纤维复合材料界面性能的方法
CN109679279B (zh) 一种硅烷化碳纤维/纳米二氧化锰增强树脂基复合材料的制备方法
CN110230198A (zh) 一种改性碳纤维及其制备方法与应用
CN115716748A (zh) 树脂玻璃碳改性的石墨管
CN115353394A (zh) 高强高密热场石墨材料及其制备方法
Zhang et al. A novel eco-friendly strategy on the interfacial modification of a carbon-fiber-reinforced polymer composite via chitosan encapsulation
Wang et al. Exploring natural palm fiber's mechanical performance using multi-scale fractal structure simulation
CN109233203A (zh) 一种水力发电装置用碳纤维增强复合材料
Ogah et al. Effect of Immersion Temperature on Mechanical, Water Absorption and Morphological Properties of Sodium Hydroxide Modified Fluted Stem Pumpkin Fiber Reinforced Polyester Bio-composites
Ramprasad et al. Development and comparison of cotton dust waste–jute and cotton dust waste–glass fiber reinforced epoxy based hybrid composites
Acosta et al. Synthesis and mechanical behavior of composite material reinforced with guadua fiber and with a polyurethane or polyester matrix

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200818

RJ01 Rejection of invention patent application after publication