CN111546628B - 用于使用格子支撑结构增材制造部件的方法 - Google Patents

用于使用格子支撑结构增材制造部件的方法 Download PDF

Info

Publication number
CN111546628B
CN111546628B CN202010089646.7A CN202010089646A CN111546628B CN 111546628 B CN111546628 B CN 111546628B CN 202010089646 A CN202010089646 A CN 202010089646A CN 111546628 B CN111546628 B CN 111546628B
Authority
CN
China
Prior art keywords
component
support structure
component body
support members
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010089646.7A
Other languages
English (en)
Other versions
CN111546628A (zh
Inventor
赖安·克里斯托弗·琼斯
胡郑隽
约翰·阿伦·曼特加
张学峰
厄尔·尼尔·邓纳姆
保罗·克里斯托弗·席林
约翰纳坦·田纳西·乌加特
贾斯汀·迈克尔·斯特克利
贾斯汀·亚当·马斯特斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN111546628A publication Critical patent/CN111546628A/zh
Application granted granted Critical
Publication of CN111546628B publication Critical patent/CN111546628B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/141Processes of additive manufacturing using only solid materials
    • B29C64/153Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/40Structures for supporting workpieces or articles during manufacture and removed afterwards
    • B22F10/43Structures for supporting workpieces or articles during manufacture and removed afterwards characterised by material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/40Structures for supporting workpieces or articles during manufacture and removed afterwards
    • B22F10/47Structures for supporting workpieces or articles during manufacture and removed afterwards characterised by structural features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/62Treatment of workpieces or articles after build-up by chemical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/60Treatment of workpieces or articles after build-up
    • B22F10/66Treatment of workpieces or articles after build-up by mechanical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/80Data acquisition or data processing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/30Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1103Making porous workpieces or articles with particular physical characteristics
    • B22F3/1115Making porous workpieces or articles with particular physical characteristics comprising complex forms, e.g. honeycombs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/001Rapid manufacturing of 3D objects by additive depositing, agglomerating or laminating of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/30Auxiliary operations or equipment
    • B29C64/386Data acquisition or data processing for additive manufacturing
    • B29C64/393Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/40Structures for supporting 3D objects during manufacture and intended to be sacrificed after completion thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/60Planarisation devices; Compression devices
    • B22F12/67Blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • B22F2003/244Leaching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0086Welding welding for purposes other than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y50/00Data acquisition or data processing for additive manufacturing
    • B33Y50/02Data acquisition or data processing for additive manufacturing for controlling or regulating additive manufacturing processes

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Ceramic Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

一种用于增材制造部件的方法,包括基于部件几何形状经由成像软件产生部件的支撑结构的多个切片。该方法还包括,根据多个切片经由增材制造系统将材料的层熔化或熔融到部件的构建平台,以便形成支撑结构。支撑结构包括格子构造,格子构造具有布置在一起以形成多个胞格的多个支撑构件。进一步,该方法包括,经由增材制造系统将部件本体熔化或熔融到支撑结构。在部件本体凝固之后,该方法包括,从部件本体去除所有的支撑结构,以形成部件。

Description

用于使用格子支撑结构增材制造部件的方法
技术领域
本公开大体涉及增材制造,更特别地,涉及用于使用格子支撑结构增材制造部件的方法。
背景技术
当使用诸如粉末床熔融(PBF)系统的增材制造系统来制备部件时,可以运用支撑结构,以将部件锚固于构建平台并且为了从部件散热提供热传导路线。作为示例,PBF系统包括直接金属激光熔化(DMLM)系统、电子束熔化(EBM)系统、选择性激光熔化(SLM)系统、定向金属激光烧结(DMLS)系统和选择性激光烧结(SLS)系统。这些PBF系统涉及到将能量束聚焦到粉末床上,以将连续的粉末层彼此熔化或烧结,以形成部件。粉末经历迅速的温度变动,这会在部件、支撑结构和/或构建平台中生成显著的残余应力。这些残余应力会导致部件和/或构建平台在冷却时翘曲,或者使部件从支撑结构脱离,或者使支撑结构从构建平台脱离,特别是当大的温度梯度存在于部件或支撑结构内时。
可以提供较大的支撑结构,以通过部件和支撑结构与/或支撑结构和构建平台之间的较大接触表面来供应增加的保持强度。然而,对于大的部件,较大的支撑结构可能将大量的热量传导到构建平台,使得构建平台可能在冷却时翘曲。此外,相对于较小的支撑结构,较大的支撑结构趋向于在后制造处理期间要求更多的时间和能量来去除。另一方面,较小的支撑结构具有较小的保持强度,可能增加部件从支撑结构脱离和/或支撑结构从构建平台脱离的可能性。当部件和/或构建平台翘曲或从支撑结构脱离时,部件可能与PBF系统的重涂覆器干涉,导致PBF系统故障和/或构建失败。
由此,存在对于使用格子支撑结构增材制造部件的改进方法的需要。
发明内容
各方面和优点将在以下描述中部分地阐述,或者,可以从描述中显而易见,或者可以通过实践当前公开主题来了解。
在一个方面,本公开针对一种用于增材制造部件的方法。该方法包括,基于部件几何形状经由三维(3D)成像软件产生部件的支撑结构的多个切片。该方法还包括,根据多个切片经由增材制造系统将材料的层熔化或熔融到部件的构建平台,以便形成支撑结构和部件本体。支撑结构包括格子构造,格子构造具有布置在一起以形成多个胞格的多个支撑构件。在支撑结构和部件本体凝固之后,该方法包括,从部件本体去除所有的支撑结构,以形成部件。
在另一方面,本公开针对一种用于增材制造部件的方法。该方法包括,经由增材制造系统在部件的构建平台上形成支撑结构和部件的部件本体。支撑结构包括格子构造,格子构造具有布置在一起以形成多个胞格的多个支撑构件。在支撑结构和部件本体凝固之后,该方法包括,经由化学蚀刻而将支撑结构与部件本体分离。
参考以下描述和所附权利要求书,将更好地理解这些及其他特征、方面和优点。并入并构成本说明书的一部分的附图图示示范性实施例,并同描述一起用来说明当前公开主题的某些原理。
附图说明
针对本领域普通技术人员,参考附图,在说明书中阐述包括其最佳模式的全面且能实现的公开,其中:
图1图示根据本公开的增材制造系统的一个实施例的横截面视图;
图2图示根据本公开的部件和支撑结构的一个实施例的横截面视图;
图3图示根据本公开的用于增材制造部件的方法的一个实施例的流程图;
图4A图示根据本公开的以格子构造布置的多个支撑构件的一个实施例的部分立体视图;
图4B图示根据本公开的一个支撑结构的一个实施例的横截面视图;
图4C图示根据本公开的以格子构造布置的多个支撑构件的另一实施例的部分立体视图;
图4D图示根据本公开的一个支撑结构中的另一实施例的横截面视图;
图4E图示根据本公开的具有格子构造的支撑结构的又一实施例的部分立体视图,格子构造包括布置在一起以形成多个胞格的多个支撑构件;以及
图5图示根据本公开的用于格子结构设计的基于多边形的成像方法的一个实施例的流程图。
具体实施方式
现在将详细参考当前公开主题的示范性实施例,其一个以上示例图示在附图中。每个示例通过说明的方式提供,不应当诠释为限制本公开。事实上,对于本领域技术人员而言,显然,在不偏离本公开的范围或精神的情况下,可以在本公开中进行各种修改和变型。比如,作为一个实施例的部分图示或描述的特征可以与另一实施例一起使用,以产生又一个实施例。因而,意在本公开覆盖落入所附权利要求书及其等同物的范围内的这些修改和变型。
应理解,术语“上游”和“下游”指代参照流体路线中的流体流动的相对方向。例如,“上游”指代流体从该处流动的方向,“下游”指代流体向该处流动的方向。还应理解,术语诸如“顶”、“底”、“向外”、“向内”等等是便利用语,不应诠释为限制性术语。文中使用的术语“第一”、“第二”和“第三”可以互换地使用,以将一个部件与另一部件区分开,而不意在指明各个部件的位置或重要性。术语“一”和“一个”不标示数量限制,而是标示存在至少一个所引项目。
这里及通篇说明书和权利要求书中,范围限制被组合和互换,这些范围被识别并包括其中含有的所有子范围,除非上下文或语言另有指示。例如,文中公开的所有范围都包括端点,并且端点能够独立地彼此组合。
整个说明书和权利要求书文中使用的近似语言应用于修饰任何定量表示,该表示可以允准变化而不招致其所涉及的基本功能的变动。由此,术语或各术语诸如“约”,“近似”和“大致”所修饰的数值不限于指定的精确数值。在至少一些实例中,近似语言可以对应于用于测量数值的仪器的精确度、或者用于构筑或制造部件和/或系统的方法或机器的精确度。
现在参考附图,图1图示根据本公开的增材制造系统100的一个实施例的示意性示图。例如,增材制造系统100可以包括粉末层熔融(PBF)系统,诸如直接金属激光熔化(DMLM)系统、电子束熔化(EBM)系统、选择性激光熔化(SLM)系统、定向金属激光烧结(DMLS)系统或选择性激光烧结(SLS)系统。如此,增材制造系统100通过将连续的粉末材料层彼此熔化或熔融而以逐层的方式构建部件。图示的增材制造系统100包括粉末供应室102和构建室106,粉末供应室102含有粉末104的供应部,部件108可以在构建室106内以逐层的方式被增材制造。例如,在某些实施例中,部件108可以是用于燃气涡轮发动机的翼型分离器或热量交换器。在进一步的实施例中,部件108可以是能从增材制造技术中受益的任何合适部分。
粉末供应室102包括粉末活塞110,粉末活塞110在系统100操作期间升高粉末底板112。随着粉末底板112升高,迫使粉末104的一部分从粉末供应室102出来。诸如滚筒或刀片的重涂覆器114推动一些粉末104越过工作表面116到构建平台118上。重涂覆器114将粉末104的各薄层依序分布到构建平台118上。能量源120将诸如激光或电子束的能量束122引导到粉末104的薄层上,以熔化或熔融粉末104的连续层。一般利用DMLM、EBM或SLM系统,粉末104被完全熔化,而相应的层利用相应的能量束122的经过而被熔化或重新熔化。相反地,利用DMLS或SLS系统,粉末104的各层被烧结,使粉末104的颗粒彼此熔融,通常不到达粉末104的熔点。
扫描仪124控制射束的路径,以便仅熔化或熔融粉末104的层中将要变成部件108的一部分的那些部分。粉末104的第一层或一系列层一般被熔化或熔融到构建平台118,然后粉末104的连续层被彼此熔化或熔融,以增材制造部件108。熔化或熔合到构建平台118的粉末104的最先几层限定用于部件108的支撑结构126。随着粉末104的连续层被彼此熔化或熔融,构建活塞128逐渐降低构建平台118,以便为重涂覆器114分布粉末104的连续层腾出空间。粉末104的连续层可以被熔化或熔融到部件108,直到已制备出完整的部件108为止。
通常,支撑结构126提供粉末104的连续层可以被熔化或熔融到其上的表面,同时将被熔化或熔融的粉末的连续层保持就位,同时抵抗能量束122熔化或熔融粉末104的连续层时的迅速的温度变动导致的残余应力。支撑结构126还提供热传导路线,以消散由能量束122产生的热量。一般,支撑结构126可以以与部件108相同的方式制备。在一些实施例中,可以使用相同的粉末104制备支撑结构126和部件108。替代地,在一些实施例中,可以使用不同的粉末104用于支撑结构126和部件108。当形成支撑结构126时,能量束122一般与粉末104的最先几层一起熔化或烧结构建平台118的顶表面,以便将支撑结构126牢固地焊接(例如,熔化或熔融)到构建平台118。在已制备部件108之后,支撑结构126可以在后制造处理中从部件108去除。例如,如文中将进一步描述的,使用放电机器(EDM)(诸如线切割EDM)、化学蚀刻、抛光工具或任何其他合适的切割工具,部件108可以从支撑结构126手动地去除或者从支撑结构126切除。
现在参考图2,图示了根据本公开的部件108的一个实施例的横截面视图,支撑结构126将部件108固接到构建平台118。可以参考具有X轴、Y轴和Z轴的笛卡尔坐标系来定位部件108,其中X轴和Y轴限定大体与构建平台118平行的平面,Z轴限定部件108相对于构建平台118的升高量或高度。如所示出的,部件108包括部件本体200,支撑结构126包括多个支撑构件202,其中部件本体200和支撑部件202两者均已通过在PBF处理(诸如DMLM、EBM、SLM、DMLS或SLS)中熔化或烧结粉末104而形成。更具体地,如图2和图4E中示出的,支撑结构126具有格子构造,格子构造具有布置在一起以形成多个胞格206的多个支撑构件202。如此,支撑构件202可以被熔化或熔融到构建平台118,以便在支撑构件202和构建平台118之间提供牢固的连接。进一步,部件本体200可以被熔化或熔融到支撑构件202,以便在部件本体200和支撑构件202之间提供牢固的连接。
现在参考图3,图示了根据本公开的用于增材制造部件的方法的流程图300。大体上,文中将参考图1和图2的部件108和增材制造系统100来描述方法300。然而,应当理解到,可以利用具有任何其他合适构造的增材制造系统来实施公开的方法200。此外,尽管图3出于图示和论述的目的描绘以特定顺序执行的步骤,但是,文中论述的方法不限于任何特定顺序或布置。使用文中提供的公开内容,本领域技术人员将理解到,在不偏离本公开的范围的情况下,文中公开的方法的各种步骤可以以各种方式省略、重新布置、扩展和/或调适。
如在(302)示出的,方法300可以包括,基于部件几何形状而经由成像软件产生部件108的支撑结构126的多个切片。在某些实施例中,例如,成像软件可以包括基于多边形的建模软件。在这种实施例中,基于多边形的建模软件配置成提供改进的建模办法,该建模办法能够设计用于增材制造的非常复杂的零件,诸如文中描述的热量交换器和/或格子结构。更具体地,在特定实施例中,基于多边形的建模直接产生切片,以进送增材打印机,而不明确地生成中间3D几何形状。如此,基于多边形的建模比常规建模办法快多于20倍,并且具有打印复杂零件的改进能力。
更具体地,如图5中示出的,成像软件配置成由支撑结构126的格子构造206(诸如,图4A至图4E中图示的格子构造204)产生多个二维(2D)单元胞格切片。因而,支撑结构126的多个切片204可以包括关于支撑构件202的数目、直径和布置的信息。
仍参考图5,成像软件配置成在X方向和Y方向上复制2D单元胞格切片,以覆盖格子构造的填充区域。此外,如所示出的,然后,成像软件可以通过格子构造的边界(例如,通过每一层上的格子填充区域切片多边形限定的)来修整2D单元胞格切片。另外,如所示出的,成像软件组合修整过的2D单元胞格切片,以形成格子构造的最终切片(即,一系列层,每层含有诸多2D多边形)。在某些实施例中,可以开发有效的2D多边形布尔(修整、合并)算法,以利用结构的周期性并快速产生切片。进一步,基于多边形的建模方法仅需要将整个结构的一个或数个切片存储在内存中,因而,它可以处理大的格子结构。因而,成像软件可以直接将多个最终切片进送到增材制造系统,而不产生支撑结构的中间3D几何形状。如此,基于多边形的建模方法绕过明确3D几何形状创建,通过对部件切片多边形执行2D几何形状操作(例如,复制、图案、合并、修整等)而直接产生最终切片。
在切片完成之后,增材制造系统100然后可以开始打印处理。更具体地,在一些实施例中,增材制造处理可以包括粉末床熔融(PBF)。作为示例,增材制造处理系统可以包括直接金属激光熔化(DMLM)、电子束熔化(EBM)、选择性激光熔化(SLM)、定向金属激光烧结(DMLS)和/或选择性激光烧结(SLS)。如此,支撑结构126和/或部件本体200可以使用粉末104形成,诸如包括金属或金属合金、塑料、陶瓷和/或复合物的粉末104。作为示例,金属或金属合金粉末可以包括钨、铝、铬、铜、钴、钼、钽、钛、镍和钢及其组合,以及超级合金,诸如奥氏体镍铬基超级合金。
更具体地,参考回到图3,如在(304)示出的,方法300可以包括,根据多个切片,经由增材制造系统100将材料(诸如粉末104)的各层熔化或熔融到部件108的构建平台118,以便形成支撑结构126和部件本体200。如所提及的,如图2和图4E中示出的,支撑结构126可以具有格子构造,格子构造由布置在一起以形成多个胞格206的多个支撑构件202构筑而成。如此,应当理解,任何数目的支撑构件202可以包括在支撑结构126中。例如,如图4A至图4E中示出的,每个胞格204可以含有四个支撑构件202。替代地,每个胞格204可以含有任何合适数目的支撑构件202,包括多于四个支撑构件202和少于四个支撑构件202。由此,示出的支撑构件202的数目仅通过示例的方式提供,而不是限制性的。
此外,在一些实施例中,支撑构件202可以具有任何合适的形状,例如包括圆柱形状、圆锥形状、渐缩形状和/或其组合。如此,支撑构件202可以具有对应于任何多面体形状的横截面外形,包括圆形、半圆形、椭圆形、矩形、多面体或这些的组合。进一步,支撑构件202的接触部件本体200的部分可以具有比非接触部分细的横截面。此外,在某些实施例中,支撑构件202的直径可以是至少约1.5毫米(mm)。在进一步的实施例中,应当理解,支撑构件202可以具有任何合适的尺寸,包括小于和大于1.5mm的尺寸,诸如从约0.2mm到约1.25mm。
更具体地,在某些实施例中,如图4A和图4B中示出的,支撑构件202可以具有从一端到另一端的渐缩形状,即,最大直径在第一端208处,渐缩到在相对的第二端210处的最小直径。如图4C和图4D中示出的,支撑构件202可以具有渐缩形状,其中最大直径在支撑构件202的中心212处,渐缩到在第一端208和第二端210中的每一个处的相应最小直径。应当理解,图4A至图4E中示出的横截面通过示例的方式提供,而不是限制性的。应当理解,支撑结构126可以包括带有任何想要的横截面的支撑构件202。
另外,文中描述的胞格20可以包括诸多形状和/或大小。例如,在一个实施例中,多个胞格206的尺寸(如,其高度、宽度或长度)可以是至少约0.5mm。在进一步的实施例中,应当理解,胞格206可以具有任何合适的尺寸,包括小于和大于0.5mm的尺寸。由此,本公开的胞格206构造成提供用于在后制造处理期间清除未使用的粉末104的路径。此外,胞格206可以中断或隔离在增材制造处理期间由迅速的温度变动导致的支撑结构126中的残余应力。
在支撑结构126和部件本体200凝固之后,如在(306)示出的,方法300可以包括,从部件本体200去除所有的支撑结构126,以形成部件108。例如,在某些实例中,支撑构件202可以仅在多个节点处(即,支撑构件202的细端和部件本体200之间的交界处)接触部件本体200。在这种实施例中,方法300可以包括,通过简单地在多个节点处将支撑构件202的各端与部件本体200分离,而从部件本体200移除支撑结构126。
更具体地,如在(308)示出的,从部件本体200移除所有的支撑结构126可以包括,手动地将支撑构件202的接触部件本体200的部分与部件108分离。替代地,如在(310)示出的,从部件本体200移除所有的支撑结构126可以包括,经由化学蚀刻分离支撑构件202的接触部件本体200的部分。在这种实施例中,化学蚀刻可以用以从部件本体200侵蚀去掉支撑构件202。在进一步的实施例中,支撑构件202的接触端处的直径可以等于化学蚀刻目标的约1.5倍(诸如化学蚀刻目标的约2倍),以便完全擦除/侵蚀支撑结构126。
在又一实施例中,如在(312)示出的,从部件本体200移除所有的支撑结构126可以包括,经由抛光工具(buffing tool)将支撑构件202的接触部件本体200的部分与部件本体200分离。在这种实施例中,方法300可以包括,在分离期间同时经由抛光工具抛光部件本体200的表面。
文中描述的各种部件108及其相应的支撑结构126可以根据本公开使用与PBF系统兼容的任何想要的材料来形成。示范性材料可以包括金属和金属合金,诸如包括钨、铝、铬、铜、钴、钼、钽、钛、镍、钢及其组合以及超级合金(诸如奥氏体镍铬基超级合金)的金属或金属合金粉末。进一步的示范性材料包括塑料、陶瓷和复合材料。
本发明的进一步方面通过以下条款的主题提供:
1.一种用于增材制造部件的方法,该方法包含:基于部件几何形状经由成像软件产生部件的支撑结构的多个切片;根据多个切片,经由增材制造系统将材料的层熔化或熔融到部件的构建平台,以便形成支撑结构和部件本体,支撑结构包含格子构造,格子构造具有布置在一起以形成多个胞格的多个支撑构件;以及,在支撑结构和部件本体凝固之后,从部件本体去除所有的支撑结构,以形成部件。
2.如任何在前条款所述的方法,其中,成像软件包含基于多边形的建模软件,并且支撑结构的多个切片包含关于支撑结构的多个支撑构件的数目、直径和布置的信息。
3.如任何在前条款所述的方法,其中,基于部件几何形状经由成像软件产生部件的支撑结构的多个切片进一步包含:产生支撑结构的格子构造的多个二维(2D)单元胞格切片;在X方向和Y方向上复制2D单元胞格切片,以覆盖格子构造的填充区域;通过格子构造的边界来修整2D单元胞格切片;组合修整过的2D单元胞格切片,以形成格子构造的最终切片;以及,直接将多个最终切片进送到增材制造系统,而不产生支撑结构的中间三维(3D)几何形状。
4.如任何在前条款所述的方法,其中,多个支撑构件的一端处的直径是至少约1.5毫米(mm)。
5.如任何在前条款所述的方法,其中,多个支撑构件中的一个以上包括圆柱形状、圆锥形状或渐缩形状中的至少一个。
6.如任何在前条款所述的方法,其中,多个胞格的尺寸是至少约0.5mm,尺寸包含高度、宽度或长度中的至少一个。
7.如任何在前条款所述的方法,其中,多个支撑构件的接触部件本体的部分包含比非接触部分细的横截面。
8.如任何在前条款所述的方法,其中,多个支撑构件仅在多个节点处接触部件本体,并且其中,从部件本体去除所有的支撑结构以形成部件进一步包含,在多个节点处将多个支撑构件与部件本体分离。
9.如任何在前条款所述的方法,进一步包含,经由化学蚀刻将多个支撑构件的接触部件本体的部分与部件本体分离。
10.如任何在前条款所述的方法,其中,从部件本体去除所有的支撑结构以形成部件进一步包含,经由化学蚀刻从部件本体侵蚀去掉多个支撑构件。
11.如任何在前条款所述的方法,其中,多个支撑构件的接触端处的直径等于化学蚀刻目标的约1.5倍。
12.如任何在前条款所述的方法,进一步包含,经由抛光工具将多个支撑构件的接触部件本体的部分与部件本体分离。
13.如任何在前条款所述的方法,进一步包含,在分离期间同时经由抛光工具抛光部件本体的表面。
14.一种用于增材制造部件的方法,该方法包含:经由增材制造系统,在部件的构建平台上形成支撑结构和部件的部件本体,支撑结构包含格子构造,格子构造具有布置在一起以形成多个胞格的多个支撑构件;以及,在支撑结构和部件本体凝固之后,经由化学蚀刻而将支撑结构与部件本体分离。
15.如任何在前条款所述的方法,其中,多个支撑构件的接触端处的直径等于化学蚀刻目标的约1.5倍。
16.如任何在前条款所述的方法,其中,多个支撑构件中的一个以上包括圆柱形状、圆锥形状或渐缩形状中的至少一个。
17.如任何在前条款所述的方法,其中,多个支撑构件的接触部件本体的部分包含比非接触部分细的横截面。
18.如任何在前条款所述的方法,其中,经由化学蚀刻而将多个支撑构件与部件本体分离进一步包含,经由化学蚀刻从部件本体侵蚀去掉多个支撑构件。
19.如任何在前条款所述的方法,进一步包含,使用粉末形成支撑结构和/或部件本体,粉末包含金属或金属合金、塑料、陶瓷和/或复合物。
20.如任何在前条款所述的方法,其中,增材制造系统包含粉末床熔融(PBF)系统。
该书面描述使用示范性实施例来描述当前公开主题,包括最佳模式,还使本领域技术人员能够实践这种主题,包括制作和使用任何装置或系统,并执行任何并入的方法。当前公开主题的专利权范围由权利要求书来限定,可以包括本领域技术人员容易想到的其他示例。这种其他示例意在包括于权利要求书的范围内,如果该示例包括与权利要求书的文字语言并无不同的结构元素的话,或者,如果该示例包括与权利要求书的文字语言无实质不同的等同结构元素的话。

Claims (17)

1.一种用于增材制造部件的方法,其特征在于,所述方法包含:
基于部件几何形状,经由成像软件产生所述部件的支撑结构的多个切片,其中所述产生进一步包括:
产生所述支撑结构的格子构造的多个二维单元胞格切片;
在X方向和Y方向上复制所述二维单元胞格切片,以覆盖所述格子构造的填充区域;
通过所述格子构造的边界来修整所述二维单元胞格切片;
组合修整过的所述二维单元胞格切片,以形成所述格子构造的最终切片;以及
直接将多个最终切片进送到所述增材制造系统,而不产生所述支撑结构的三维几何形状;
根据所述多个切片,经由增材制造系统将材料的层熔化或熔融到所述部件的构建平台,以便形成所述支撑结构和部件本体,所述支撑结构包含格子构造,所述格子构造具有布置在一起以形成多个胞格的多个支撑构件;以及
在所述支撑结构和所述部件本体凝固之后,从所述部件本体去除所有的所述支撑结构,以形成所述部件。
2.如权利要求1所述的方法,其特征在于,其中,所述成像软件包含基于多边形的建模软件,并且所述支撑结构的所述多个切片包含关于所述支撑结构的所述多个支撑构件的数目、直径和布置的信息。
3.如权利要求1所述的方法,其特征在于,其中,所述多个支撑构件的一端处的直径至少为1.5毫米。
4.如权利要求1所述的方法,其特征在于,其中,所述多个支撑构件中的一个以上包括圆柱形状、圆锥形状或渐缩形状中的至少一个。
5.如权利要求1所述的方法,其特征在于,其中,所述多个胞格的尺寸至少为0.5mm,所述尺寸包含高度、宽度或长度中的至少一个。
6.如权利要求1所述的方法,其特征在于,其中,所述多个支撑构件的接触所述部件本体的部分包含比非接触部分细的横截面。
7.如权利要求6所述的方法,其特征在于,其中,所述多个支撑构件仅在多个节点处接触所述部件本体,并且其中,从所述部件本体去除所有的所述支撑结构以形成所述部件进一步包含,在所述多个节点处将所述多个支撑构件与所述部件本体分离。
8.如权利要求7所述的方法,其特征在于,进一步包含,经由化学蚀刻将所述多个支撑构件的接触所述部件本体的部分与所述部件本体分离。
9.如权利要求1所述的方法,其特征在于,其中,从所述部件本体去除所有的所述支撑结构以形成所述部件进一步包含,经由化学蚀刻从所述部件本体侵蚀去掉所述多个支撑构件。
10.如权利要求7所述的方法,其特征在于,进一步包含,经由抛光工具将所述多个支撑构件的接触所述部件本体的部分与所述部件本体分离。
11.如权利要求10所述的方法,其特征在于,进一步包含,在分离期间同时经由所述抛光工具抛光所述部件本体的表面。
12.一种用于增材制造部件的方法,其特征在于,所述方法包含:
经由增材制造系统,在所述部件的构建平台上形成支撑结构和所述部件的部件本体,所述支撑结构包含格子构造,所述格子构造具有布置在一起以形成多个胞格的多个支撑构件;其中,所述形成进一步包括:
产生所述支撑结构的格子构造的多个二维单元胞格切片;
在X方向和Y方向上复制所述二维单元胞格切片,以覆盖所述格子构造的填充区域;
通过所述格子构造的边界来修整所述二维单元胞格切片;
组合修整过的所述二维单元胞格切片,以形成所述格子构造的最终切片;以及直接将多个最终切片进送到所述增材制造系统,而不产生所述支撑结构的三维几何形状;以及
在所述支撑结构和所述部件本体凝固之后,经由化学蚀刻而将所述支撑结构与所述部件本体分离。
13.如权利要求12所述的方法,其特征在于,其中,所述多个支撑构件中的一个以上包括圆柱形状、圆锥形状或渐缩形状中的至少一个。
14.如权利要求12所述的方法,其特征在于,其中,所述多个支撑构件的接触所述部件本体的部分包含比非接触部分细的横截面。
15.如权利要求12所述的方法,其特征在于,其中,经由化学蚀刻而将所述多个支撑构件与所述部件本体分离进一步包含,经由化学蚀刻从所述部件本体侵蚀去掉所述多个支撑构件。
16.如权利要求12所述的方法,其特征在于,进一步包含,使用粉末形成所述支撑结构和/或所述部件本体,所述粉末包含金属或金属合金、塑料、陶瓷和/或复合物。
17.如权利要求12所述的方法,其特征在于,其中,所述增材制造系统包含粉末床熔融系统。
CN202010089646.7A 2019-02-12 2020-02-12 用于使用格子支撑结构增材制造部件的方法 Active CN111546628B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/273,474 2019-02-12
US16/273,474 US11440097B2 (en) 2019-02-12 2019-02-12 Methods for additively manufacturing components using lattice support structures

Publications (2)

Publication Number Publication Date
CN111546628A CN111546628A (zh) 2020-08-18
CN111546628B true CN111546628B (zh) 2022-08-02

Family

ID=69423088

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010089646.7A Active CN111546628B (zh) 2019-02-12 2020-02-12 用于使用格子支撑结构增材制造部件的方法

Country Status (3)

Country Link
US (1) US11440097B2 (zh)
EP (1) EP3695924A1 (zh)
CN (1) CN111546628B (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2564832A (en) * 2017-02-28 2019-01-30 Siemens Ag Additive manufacturing
EP3911464A4 (en) * 2019-03-18 2022-11-02 Hewlett-Packard Development Company, L.P. SHAPING THREE-DIMENSIONAL OBJECTS
CN112356523B (zh) * 2020-08-29 2021-12-07 南京航空航天大学 基于可编程刚度的手性胞元构建的梯度点阵吸能结构及其3d打印方法
US11994293B2 (en) 2020-08-31 2024-05-28 General Electric Company Impingement cooling apparatus support structure and method of manufacture
US11614233B2 (en) 2020-08-31 2023-03-28 General Electric Company Impingement panel support structure and method of manufacture
US11434772B2 (en) 2020-09-29 2022-09-06 General Electric Company Turbine nozzle and method of manufacture
CN112658630B (zh) * 2020-12-17 2022-09-06 台州学院 一种金属零件的增材制造方法
US20220332050A1 (en) * 2021-04-19 2022-10-20 General Electric Company Systems, devices, and methods for generating a lattice support structure outside of an exclusion area
CN113600832A (zh) * 2021-06-30 2021-11-05 西安航天发动机有限公司 一种用于激光选区熔化成形块状支撑的省粉结构设计方法
CN113664221B (zh) * 2021-08-20 2023-05-12 上海科技大学 应用金属增材制造的三周期极小曲面支撑结构及其制作方法
US11939878B1 (en) 2022-12-15 2024-03-26 Ge Infrastructure Technology Llc Turbomachine component having self-breaking supports
US11920794B1 (en) 2022-12-15 2024-03-05 Ge Infrastructure Technology Llc Combustor having thermally compliant bundled tube fuel nozzle

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105499575A (zh) * 2015-12-20 2016-04-20 北京工业大学 一种多孔网格结构材料的设计及制作方法

Family Cites Families (180)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2957608A (en) 1958-04-08 1960-10-25 Eugene A Wahl Powder feeder
US3791558A (en) 1971-09-07 1974-02-12 J Katusha Powder dispensing apparatus having a predictable, controlled flow rate
US4450983A (en) 1982-07-26 1984-05-29 Kelsey-Hayes Company Powder dispensing assembly
US4863538A (en) 1986-10-17 1989-09-05 Board Of Regents, The University Of Texas System Method and apparatus for producing parts by selective sintering
US4899993A (en) 1988-12-14 1990-02-13 Messer.Griesheim Industries, Inc. Breakaway tool assembly
US5460758A (en) 1990-12-21 1995-10-24 Eos Gmbh Electro Optical Systems Method and apparatus for production of a three-dimensional object
US5545367A (en) 1992-04-15 1996-08-13 Soane Technologies, Inc. Rapid prototype three dimensional stereolithography
FR2692065A1 (fr) 1992-06-05 1993-12-10 Laser Int Sa Procédé de production de pièces industrielles par action de la lumière sur une matière polymérisable ou réticulable liquide sans nécessiter de supports.
BE1008128A3 (nl) 1994-03-10 1996-01-23 Materialise Nv Werkwijze voor het ondersteunen van een voorwerp vervaardigd door stereolithografie of een andere snelle prototypevervaardigingswerkwijze en voor het vervaardigen van de daarbij gebruikte steunkonstruktie.
DE4436695C1 (de) 1994-10-13 1995-12-21 Eos Electro Optical Syst Verfahren zum Herstellen eines dreidimensionalen Objektes
US5529471A (en) 1995-02-03 1996-06-25 University Of Southern California Additive fabrication apparatus and method
DE19511772C2 (de) 1995-03-30 1997-09-04 Eos Electro Optical Syst Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objektes
US5837960A (en) 1995-08-14 1998-11-17 The Regents Of The University Of California Laser production of articles from powders
JPH09216290A (ja) 1996-02-09 1997-08-19 Ricoh Co Ltd 立体物の造形方法
DE19649865C1 (de) 1996-12-02 1998-02-12 Fraunhofer Ges Forschung Verfahren zur Herstellung eines Formkörpers
US6341952B2 (en) 1997-03-20 2002-01-29 Therics, Inc. Fabrication of tissue products with additives by casting or molding using a mold formed by solid free-form methods
US6119989A (en) 1997-12-29 2000-09-19 Herman Miller, Inc. Support assembly with a storable foot support
US6309581B1 (en) 1998-02-13 2001-10-30 Milwaukee School Of Engineering Method of making a three dimensional object
US6925346B1 (en) 1998-06-30 2005-08-02 Jyoti Mazumder Closed-loop, rapid manufacturing of three-dimensional components using direct metal deposition
DE19846478C5 (de) 1998-10-09 2004-10-14 Eos Gmbh Electro Optical Systems Laser-Sintermaschine
US6460595B1 (en) 1999-02-23 2002-10-08 General Electric Company Nucleated casting systems and methods comprising the addition of powders to a casting
JP3551838B2 (ja) 1999-05-26 2004-08-11 松下電工株式会社 三次元形状造形物の製造方法
US6209758B1 (en) 1999-06-07 2001-04-03 Nylok Fastener Corp. Powder feed system
DE19954891A1 (de) 1999-11-15 2001-05-17 Matthias Fockele Verfahren zur Herstellung eines Formkörpers
US6471800B2 (en) 2000-11-29 2002-10-29 Nanotek Instruments, Inc. Layer-additive method and apparatus for freeform fabrication of 3-D objects
US20020171177A1 (en) 2001-03-21 2002-11-21 Kritchman Elisha M. System and method for printing and supporting three dimensional objects
US6936212B1 (en) 2002-02-07 2005-08-30 3D Systems, Inc. Selective deposition modeling build style providing enhanced dimensional accuracy
DE10219983B4 (de) 2002-05-03 2004-03-18 Bego Medical Ag Verfahren zum Herstellen von Produkten durch Freiform-Lasersintern
US7506593B2 (en) 2002-10-23 2009-03-24 Kinetics Systems, Inc. Microfabrication tool pedestal and method of use
US20040084814A1 (en) 2002-10-31 2004-05-06 Boyd Melissa D. Powder removal system for three-dimensional object fabricator
SE524432C2 (sv) 2002-12-19 2004-08-10 Arcam Ab Anordning samt metod för framställande av en tredimensionell produkt
US7435072B2 (en) 2003-06-02 2008-10-14 Hewlett-Packard Development Company, L.P. Methods and systems for producing an object through solid freeform fabrication
BRPI0411224A (pt) 2003-06-10 2006-07-18 Gkn Sinter Metals Inc método de formar um compacto de metal em pó para sinterização, peça de metal em pó e conjunto de matriz
US6995334B1 (en) 2003-08-25 2006-02-07 Southern Methodist University System and method for controlling the size of the molten pool in laser-based additive manufacturing
US7546841B2 (en) 2003-11-19 2009-06-16 David Jonathan Tafoya Apparatus and method of removing water soluble support material from a rapid prototype part
DE202004015072U1 (de) * 2004-09-28 2006-02-09 Daas, Kamal Gittertragwerk
US7521652B2 (en) 2004-12-07 2009-04-21 3D Systems, Inc. Controlled cooling methods and apparatus for laser sintering part-cake
US20060214335A1 (en) 2005-03-09 2006-09-28 3D Systems, Inc. Laser sintering powder recycle system
US7700016B2 (en) 2005-08-02 2010-04-20 Solidscape, Inc. Method and apparatus for fabricating three dimensional models
US20070295440A1 (en) 2006-05-24 2007-12-27 Stucker Brent E Surface roughness reduction for improving bonding in ultrasonic consolidation rapid manufacturing
EP2024168B1 (en) 2006-05-26 2012-08-22 3D Systems, Inc. Apparatus, method and multiport valve for handling powder in a 3-d printer
US8077894B2 (en) 2007-01-22 2011-12-13 Siemens Hearing Instruments, Inc. Feature protection for stereo lithographic manufacturing processes
JP5342458B2 (ja) 2007-02-02 2013-11-13 メトラー−トレド アクチェンゲゼルシャフト 衝撃デバイスを備えた粉体計量装置
DE112008000027B4 (de) 2007-05-30 2015-05-21 Panasonic Intellectual Property Management Co., Ltd. Laminier-Formgebungsvorrichtung
GB0712027D0 (en) 2007-06-21 2007-08-01 Materials Solutions Rotating build plate
DE102007033434A1 (de) 2007-07-18 2009-01-22 Voxeljet Technology Gmbh Verfahren zum Herstellen dreidimensionaler Bauteile
GB0715621D0 (en) 2007-08-10 2007-09-19 Rolls Royce Plc Support architecture
GB0715990D0 (en) 2007-08-16 2007-09-26 Airbus Uk Ltd Method and apparatus for manufacturing a component from a composite material
JP5777136B2 (ja) 2007-09-17 2015-09-09 スリーディー システムズ インコーポレーテッド 固体自由形状製作により製造されるパーツのための領域に基づくサポート
EP2052693B2 (en) 2007-10-26 2021-02-17 Envisiontec GmbH Process and freeform fabrication system for producing a three-dimensional object
US9188341B2 (en) 2008-04-11 2015-11-17 General Electric Company Fuel nozzle
GB0813242D0 (en) 2008-07-18 2008-08-27 Mcp Tooling Technologies Ltd Powder dispensing apparatus and method
BRPI0919044B8 (pt) 2008-09-26 2021-06-22 Oriel Therapeutics Inc conjunto de recipientes de dose de pó seco, inalador de pó seco, e, método para fabricar um conjunto de recipientes de dose
US8155775B2 (en) 2008-10-02 2012-04-10 Stratasys, Inc. Support structure packaging
CN105355415A (zh) 2008-11-06 2016-02-24 因太金属株式会社 稀土类烧结磁体制造方法和稀土类烧结磁体制造用粉末填充容器
EP2191922B1 (de) 2008-11-27 2011-01-05 MTT Technologies GmbH Träger- und Pulverauftragsvorrichtung für eine Anlage zur Herstellung von Werkstücken durch Beaufschlagen von Pulverschichten mit elektromagnetischer Strahlung oder Teilchenstrahlung
WO2010082331A1 (ja) 2009-01-15 2010-07-22 株式会社Opmラボラトリー スプルーブッシュ及びスプルーブッシュの製造方法
US8828311B2 (en) 2009-05-15 2014-09-09 Board Of Regents, The University Of Texas System Reticulated mesh arrays and dissimilar array monoliths by additive layered manufacturing using electron and laser beam melting
DE112010002213T5 (de) 2009-06-02 2012-06-28 First Solar, Inc. Pulverzufuhrratensensor
US20110247590A1 (en) 2010-04-07 2011-10-13 Delavan Inc Injectors utilizing lattice support structure
GB201006154D0 (en) 2010-04-14 2010-05-26 Materials Solutions A method of forming an article using a powder layer manufacturing process
DE102010020418A1 (de) 2010-05-12 2011-11-17 Eos Gmbh Electro Optical Systems Vorrichtung und Verfahren zum generativen Herstellen eines dreidimensionalen Objekts mit Baufeldbegrenzung
FR2962061B1 (fr) 2010-07-01 2013-02-22 Snecma Procede de fabrication d'une piece metallique par fusion selective d'une poudre
US8221858B2 (en) 2010-07-22 2012-07-17 Stratasys, Inc. Three-dimensional parts having porous protective structures
DE102010041284A1 (de) 2010-09-23 2012-03-29 Siemens Aktiengesellschaft Verfahren zum selektiven Lasersintern und für dieses Verfahren geeignete Anlage zum selektiven Lasersintern
JP5685052B2 (ja) 2010-11-01 2015-03-18 株式会社キーエンス 三次元造形装置及び三次元造形方法
EP2495056A1 (en) 2011-03-01 2012-09-05 Siemens Aktiengesellschaft Laser build up method using vibration and apparatus
DE112012001280T5 (de) 2011-03-17 2014-03-06 Panasonic Corporation Verfahren zur Herstellung eines dreidimensionalen Formgegenstands und dreidimensionaler Formgegenstand
US8460755B2 (en) 2011-04-07 2013-06-11 Stratasys, Inc. Extrusion-based additive manufacturing process with part annealing
FR2974316B1 (fr) 2011-04-19 2015-10-09 Phenix Systems Procede de fabrication d'un objet par solidification d'une poudre a l'aide d'un laser
US8691333B2 (en) 2011-06-28 2014-04-08 Honeywell International Inc. Methods for manufacturing engine components with structural bridge devices
US8506836B2 (en) 2011-09-16 2013-08-13 Honeywell International Inc. Methods for manufacturing components from articles formed by additive-manufacturing processes
US8459280B2 (en) 2011-09-23 2013-06-11 Stratasys, Inc. Support structure removal system
US20130101746A1 (en) 2011-10-21 2013-04-25 John J. Keremes Additive manufacturing management of large part build mass
JP5772668B2 (ja) 2012-03-08 2015-09-02 カシオ計算機株式会社 3次元造形方法及び造形物複合体並びに3次元造形装置
JP5991574B2 (ja) 2012-03-16 2016-09-14 パナソニックIpマネジメント株式会社 三次元形状造形物の製造方法
MX2014012327A (es) 2012-04-13 2015-05-12 Conformis Inc Dispositivos y metodos para fabricacion aditiva de componentes de implante.
US8640531B2 (en) 2012-04-17 2014-02-04 General Electric Company Turbine inspection system and related method of operation
DE102012008664B4 (de) 2012-05-03 2015-10-01 Cl Schutzrechtsverwaltungs Gmbh Verfahren zur Befüllung einer Dosierkammer sowie Vorrichtung hierfür
US20150126670A1 (en) 2012-05-18 2015-05-07 3D Systems, Inc. Adhesive for 3d printing
FR2993801B1 (fr) 2012-07-30 2014-08-22 Phenix Systems Procede de realisation d'un objet tridimensionnel
US9511547B2 (en) 2012-08-16 2016-12-06 Stratasys, Inc. Method for printing three-dimensional parts with additive manufacturing systems using scaffolds
US20140077422A1 (en) 2012-09-19 2014-03-20 Pratt & Whitney Rocketdyne, Inc. Reduced build mass additive manufacturing chamber
WO2014052972A1 (en) 2012-09-28 2014-04-03 Vitesse Semiconductor Corporation High accuracy 1588 timestamping over high speed multi lane distribution physical code sublayers
US10124408B2 (en) 2012-11-01 2018-11-13 General Electric Company Additive manufacturing method and apparatus
US9370609B2 (en) 2013-01-08 2016-06-21 Praxis Powder Technology, Inc. High strength injection molded orthopedic devices
FR3002167B1 (fr) 2013-02-15 2016-12-23 Michelin & Cie Piece obtenue par fusion selective d'une poudre comprenant un element principal et des elements secondaires rigides
EP2772329A1 (en) 2013-02-28 2014-09-03 Alstom Technology Ltd Method for manufacturing a hybrid component
DE102013203938A1 (de) 2013-03-07 2014-09-25 Airbus Operations Gmbh Generatives Schichtaufbauverfahren zur Herstellung eines dreidimensionalen Objekts und dreidimensionales Objekt
US9421713B2 (en) 2013-03-08 2016-08-23 Stratasys, Inc. Additive manufacturing method for printing three-dimensional parts with purge towers
US20140277669A1 (en) 2013-03-15 2014-09-18 Sikorsky Aircraft Corporation Additive topology optimized manufacturing for multi-functional components
US20160052057A1 (en) 2013-03-28 2016-02-25 United Technologies Corporation Gas turbine component manufacturing
US20140303942A1 (en) 2013-04-05 2014-10-09 Formlabs, Inc. Additive fabrication support structures
JP6389242B2 (ja) 2013-04-19 2018-09-12 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation 付加製造のためのビルドプレート及び装置
EP2988921B1 (en) 2013-04-26 2019-09-04 Materialise N.V. Hybrid support systems and methods of generating a hybrid support system using three dimensional printing
US9767224B2 (en) 2013-05-13 2017-09-19 The Board Of Trustees Of The University Of Alabama Systems and methods for designing and fabricating contact-free support structures for overhang geometries of parts in powder-bed metal additive manufacturing
US9802360B2 (en) 2013-06-04 2017-10-31 Stratsys, Inc. Platen planarizing process for additive manufacturing system
GB201310762D0 (en) * 2013-06-17 2013-07-31 Rolls Royce Plc An additive layer manufacturing method
JP6581079B2 (ja) 2013-06-26 2019-09-25 レニショウ パブリック リミテッド カンパニーRenishaw Public Limited Company 付加製造において使用するための幾何学的データを生成するための方法および装置
JP6270353B2 (ja) 2013-06-28 2018-01-31 シーメット株式会社 三次元造形体およびサポート形成方法
US9192999B2 (en) 2013-07-01 2015-11-24 General Electric Company Methods and systems for electrochemical machining of an additively manufactured component
US10543549B2 (en) 2013-07-16 2020-01-28 Illinois Tool Works Inc. Additive manufacturing system for joining and surface overlay
GB201313926D0 (en) 2013-08-05 2013-09-18 Renishaw Plc Additive manufacturing method and apparatus
US20150048209A1 (en) 2013-08-16 2015-02-19 Robert Hoyt Structures with Internal Microstructures to Provide Multifunctional Capabilities
GB201315036D0 (en) 2013-08-22 2013-10-02 Renishaw Plc Apparatus and method for building objects by selective solidification of powder material
US8974213B1 (en) 2013-09-02 2015-03-10 Massivit 3D Printing Technologies Ltd Large shells manufacturing apparatus
GB201316670D0 (en) 2013-09-19 2013-11-06 3T Rpd Ltd manufacturing method
US9676032B2 (en) 2013-09-20 2017-06-13 Arcam Ab Method for additive manufacturing
US20160238324A1 (en) 2013-09-23 2016-08-18 United Technologies Corporation Method of generating support structure of tube components to become functional features
WO2015053940A1 (en) 2013-10-07 2015-04-16 United Technologies Corporation Additively grown enhanced impact resistance features for improved structure and joint protection
US9879544B2 (en) 2013-10-16 2018-01-30 Honeywell International Inc. Turbine rotor blades with improved tip portion cooling holes
US20160243620A1 (en) 2013-12-13 2016-08-25 United Technologies Corporation Additive manufacturing shroud support structure
US9789563B2 (en) 2013-12-20 2017-10-17 Arcam Ab Method for additive manufacturing
GB201322833D0 (zh) 2013-12-23 2014-02-12 Rolls Royce Plc
JP6695801B2 (ja) 2013-12-23 2020-05-20 ゼネラル・エレクトリック・カンパニイ 可撓性支持構造体を備えた燃料ノズル
WO2015103476A1 (en) 2014-01-02 2015-07-09 United Technologies Corporation Additive manufacturing process distortion management
US9902114B2 (en) * 2014-01-09 2018-02-27 Siemens Product Lifecycle Management Software Inc. Method for creating three dimensional lattice structures in computer-aided design models for additive manufacturing
WO2015106193A1 (en) 2014-01-13 2015-07-16 Kevin Engel Additive metal deposition process
JP6574187B2 (ja) 2014-01-16 2019-09-11 ダウ グローバル テクノロジーズ エルエルシー 付加製造支持材料の回収
US9932841B2 (en) 2014-01-17 2018-04-03 United Technologies Corporation Workpiece manufactured from an additive manufacturing system having a particle separator and method of operation
EP3096906A4 (en) 2014-01-22 2017-03-08 United Technologies Corporation Additive manufacturing system and method of operation
WO2015112385A1 (en) 2014-01-24 2015-07-30 United Technologies Corporation Thermally compliant additively manufactured fuel injector
US9011136B1 (en) 2014-02-19 2015-04-21 Massivit 3D Printing Technologies Ltd Additive manufacturing device
US9789541B2 (en) 2014-03-07 2017-10-17 Arcam Ab Method for additive manufacturing of three-dimensional articles
US9636872B2 (en) 2014-03-10 2017-05-02 Stratasys, Inc. Method for printing three-dimensional parts with part strain orientation
US9868155B2 (en) 2014-03-20 2018-01-16 Ingersoll-Rand Company Monolithic shrouded impeller
US10144207B2 (en) 2014-05-08 2018-12-04 The Exone Company Three-dimensional printing excess deposited particulate handling
US9844917B2 (en) 2014-06-13 2017-12-19 Siemens Product Lifestyle Management Inc. Support structures for additive manufacturing of solid models
US9915480B2 (en) 2014-07-03 2018-03-13 United Technologies Corporation Tube assembly
FR3024060B1 (fr) 2014-07-28 2021-01-29 Michelin & Cie Procede de fabrication additive a base de poudre d'une piece, notamment d'une lamelle de garniture pour moule de pneumatiques, et d'un element de renfort associe
KR101628944B1 (ko) 2014-08-08 2016-06-09 주식회사 캐리마 복합재료 3d 프린팅 장치 및 방법
US10213966B2 (en) 2014-08-20 2019-02-26 Formlabs, Inc. Techniques for applying a peel operation during additive fabrication and related systems and methods
US20160059314A1 (en) 2014-09-03 2016-03-03 Arcam Ab Method for improved material properties in additive manufacturing
GB201416223D0 (en) 2014-09-15 2014-10-29 Rolls Royce Plc Manufacturing method
US9724878B2 (en) 2014-10-20 2017-08-08 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Three-dimensional printer having an expandable envelope
US10040115B2 (en) 2014-10-31 2018-08-07 United Technologies Corporation Additively manufactured casting articles for manufacturing gas turbine engine parts
US9878371B2 (en) 2014-11-07 2018-01-30 Ge Avio S.R.L. Powder dispenser for making a component by additive manufacturing
US10449692B2 (en) 2014-12-08 2019-10-22 Tethon Corporation Three-dimensional (3D) printing
US10099290B2 (en) 2014-12-18 2018-10-16 General Electric Company Hybrid additive manufacturing methods using hybrid additively manufactured features for hybrid components
US9453461B2 (en) 2014-12-23 2016-09-27 General Electric Company Fuel nozzle structure
JP5921732B2 (ja) 2015-01-16 2016-05-24 株式会社キーエンス 三次元造形装置及び三次元造形方法
KR101591938B1 (ko) 2015-01-19 2016-02-04 숭실대학교산학협력단 듀얼 스테이지 구조를 갖는 3-d 프린터
US9808865B2 (en) 2015-01-30 2017-11-07 Solar Turbines Incorporated Method for manufacturing a metallic component
US10913258B2 (en) 2015-02-02 2021-02-09 Raytheon Technologies Corporation Method and system for providing thermal support in an additive manufacturing process
DE102015001480A1 (de) 2015-02-09 2016-08-11 Werkzeugbau Siegfried Hofmann Gmbh Verfahren zum Herstellen eines dreidimensionalen Objekts durch aufeinander folgendes Verfestigen von Schichten
US10668532B2 (en) 2015-02-12 2020-06-02 Raytheon Technologies Corporation Additively manufactured non-contact support
EP3061546A1 (en) 2015-02-25 2016-08-31 General Electric Technology GmbH Method for manufacturing a part by means of an additive manufacturing technique
US20160263837A1 (en) 2015-03-13 2016-09-15 Carbon3D, Inc. Methods, systems, and computer program products for determining fabrication parameters used in three-dimensional (3d) continuous liquid interface printing (clip) systems, and related printers
GB201504603D0 (en) 2015-03-18 2015-05-06 Materials Solutions Additive manufacturing
US11207837B2 (en) 2015-04-17 2021-12-28 Eos Gmbh Electro Optical Systems Method and control command generating unit for an automatic generation of control commands of an additive layer-wise building device
US10946473B2 (en) 2015-05-14 2021-03-16 General Electric Company Additive manufacturing on 3-D components
GB201509230D0 (en) 2015-05-29 2015-07-15 Rolls Royce Plc Vibratory finishing apparatus, fixtures and methods
US10906256B2 (en) 2015-06-04 2021-02-02 Massachusetts Institute Of Technology Methods for fabricating low cost 3-D printed parts with expanded material properties
US20160375489A1 (en) 2015-06-26 2016-12-29 Caterpillar Inc. Build Reinforcement for Sintering Laser Manufacturing
JP6358206B2 (ja) 2015-09-09 2018-07-18 トヨタ自動車株式会社 金属部材の製造方法
FR3043347B1 (fr) 2015-11-06 2021-06-25 Michelin & Cie Procede de fabrication additive a base de poudre d'une piece, notamment d'un element de garniture pour moule de pneumatique
US10010936B2 (en) 2015-11-13 2018-07-03 The Board of Trustees of The University of Alabma Systems and methods for designing and fabricating support structures for overhang geometries of parts in additive manufacturing
US10557464B2 (en) * 2015-12-23 2020-02-11 Emerson Climate Technologies, Inc. Lattice-cored additive manufactured compressor components with fluid delivery features
US10549478B2 (en) 2016-02-11 2020-02-04 General Electric Company Methods and surrounding supports for additive manufacturing
US10744713B2 (en) 2016-02-11 2020-08-18 General Electric Company Methods and breakable supports for additive manufacturing
US10799951B2 (en) 2016-02-11 2020-10-13 General Electric Company Method and conformal supports for additive manufacturing
US10583606B2 (en) 2016-02-11 2020-03-10 General Electric Company Method and supports with powder removal ports for additive manufacturing
US10391753B2 (en) 2016-02-11 2019-08-27 General Electric Company Methods and keyway supports for additive manufacturing
US10486362B2 (en) 2016-02-11 2019-11-26 General Electric Company Method and connecting supports for additive manufacturing
US10357828B2 (en) 2016-02-11 2019-07-23 General Electric Company Methods and leading edge supports for additive manufacturing
CN205414417U (zh) 2016-03-25 2016-08-03 湖南久泰冶金科技有限公司 一种等离子雾化制备增材制造用高性能粉末的装置
US10556383B2 (en) 2016-05-12 2020-02-11 General Electric Company Methods and rail supports for additive manufacturing
US11511340B2 (en) 2016-07-01 2022-11-29 General Electric Company Methods and multi-purpose powder removal features for additive manufacturing
EP3484642B1 (en) * 2016-07-15 2021-04-21 Arizona Board of Regents on behalf of Arizona State University Dissolving metal supports in 3d printed metals and ceramics using sensitization
US20180029306A1 (en) 2016-07-26 2018-02-01 General Electric Company Methods and ghost supports for additive manufacturing
US20180029123A1 (en) 2016-07-29 2018-02-01 General Electric Company Removable support package for additive manufacture
US11298881B2 (en) 2016-09-01 2022-04-12 3D Systems, Inc. Additive manufacturing of a three-dimensional object
US10471695B2 (en) 2016-10-26 2019-11-12 General Electric Company Methods and thermal structures for additive manufacturing
US20180141122A1 (en) 2016-11-18 2018-05-24 General Electric Company Methods and spoke supports for additive manufacturing
US20180154441A1 (en) 2016-12-07 2018-06-07 General Electric Company Methods and table supports for additive manufacturing
JP2018095946A (ja) * 2016-12-16 2018-06-21 キヤノン株式会社 三次元造形物の製造方法、および三次元造形装置
US20180169756A1 (en) 2016-12-20 2018-06-21 General Electric Company Self-breaking support for additive manufacturing
US10802467B2 (en) 2017-01-06 2020-10-13 General Electric Company Methods of defining internal structures for additive manufacturing
US20180333777A1 (en) 2017-05-18 2018-11-22 General Electric Company Powder packing mechanism
EP3643430A4 (en) * 2017-07-26 2020-04-29 Yamaha Hatsudoki Kabushiki Kaisha METHOD FOR MANUFACTURING METAL MEMBER

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105499575A (zh) * 2015-12-20 2016-04-20 北京工业大学 一种多孔网格结构材料的设计及制作方法

Also Published As

Publication number Publication date
US11440097B2 (en) 2022-09-13
US20200254519A1 (en) 2020-08-13
EP3695924A1 (en) 2020-08-19
CN111546628A (zh) 2020-08-18

Similar Documents

Publication Publication Date Title
CN111546628B (zh) 用于使用格子支撑结构增材制造部件的方法
JP6496758B2 (ja) 積層造形法のための方法及びコンフォーマル支持体
EP2266727B1 (en) A method of forming a functional razor cartridge
EP2317075B1 (en) Method for repairing a gas turbine component
EP3026638A1 (en) Method and system for adapting a 3D printing model
CN115673337A (zh) 用于加性制造的方法和前缘支承
US11472123B2 (en) Support structures for additively-manufactured components
US11192207B2 (en) Additive manufactured object with passage having varying cross-sectional shape
CN112059185B (zh) 带悬臂结构的成形件及其成形方法
US11229955B2 (en) Method for manufacturing a part of electroconductive material by additive manufacturing
EP3888798B1 (en) Cantilevered mask for openings in additively manufactured part
US11199202B2 (en) Acoustic attenuator for a turbomachine and methodology for additively manufacturing said acoustic attenuator
EP3695923B1 (en) Methods for additively manufacturing components with reduced build failures caused by temperature variations
Jhavar et al. Development of micro-plasma wire deposition process for layered manufacturing
US11407174B2 (en) Cantilevered mask for openings in additively manufactured part
US11485073B2 (en) Method for creating an aircraft turbomachine vane using additive manufacturing
US11193216B2 (en) Methods and systems for electrochemical machining of articles formed by additive manufacturing
Ader et al. Research on layer manufacturing techniques at fraunhofer
Barale Characterization of Inconel 718 fabricated by Selective Laser Melting (SLM) to achieve more productive parameters
Pinto Additive Manufacturing of Nickel components using CMT process
Gupta 3D printing–manufacturing technology of present and future
CN114131041A (zh) 用于估计增材制造过程中的粉末配量的系统和方法
Navale et al. SOURCES OF ERRORS IN SELECTIVE LASER SINTERING (SLS) PROCESS
Flemmer et al. LACAM3D, CAM solution for tool path generation for build up of complex aerospace components by laser powder deposition
Madrigal RAPID PROTOTYPING FOR COMPLEX BIOMEDICAL AND AEROSPACE COMPONENTS WITH INTERNAL FEATURES

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant