CN111538164A - 一种基于数字微镜器件的空心光斑阵列并行调控装置 - Google Patents

一种基于数字微镜器件的空心光斑阵列并行调控装置 Download PDF

Info

Publication number
CN111538164A
CN111538164A CN202010654713.5A CN202010654713A CN111538164A CN 111538164 A CN111538164 A CN 111538164A CN 202010654713 A CN202010654713 A CN 202010654713A CN 111538164 A CN111538164 A CN 111538164A
Authority
CN
China
Prior art keywords
lens
light spot
hollow light
spot array
digital micromirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010654713.5A
Other languages
English (en)
Other versions
CN111538164B (zh
Inventor
丁晨良
朱大钊
匡翠方
刘旭
徐良
郝翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Lab
Original Assignee
Zhejiang Lab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Lab filed Critical Zhejiang Lab
Priority to CN202010654713.5A priority Critical patent/CN111538164B/zh
Publication of CN111538164A publication Critical patent/CN111538164A/zh
Application granted granted Critical
Publication of CN111538164B publication Critical patent/CN111538164B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/0977Reflective elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2051Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source
    • G03F7/2053Exposure without an original mask, e.g. using a programmed deflection of a point source, by scanning, by drawing with a light beam, using an addressed light or corpuscular source using a laser
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70383Direct write, i.e. pattern is written directly without the use of a mask by one or multiple beams

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Light Control Or Optical Switches (AREA)
  • Laser Beam Processing (AREA)

Abstract

本发明公开了一种基于数字微镜器件的空心光斑阵列并行调控装置,该装置利用空间光调制器对入射光束进相位调制,形成空心光斑阵列成像到数字微镜器件上,随后经过第四透镜与物镜,最终在样品材料上形成空心光斑阵列。本发明可以通过空间光调制器生成高质量的空心光斑阵列,利用数字微镜器件对阵列中每个单独的空心光斑实现快速地开关,从而控制样品材料处空心光斑阵列图案。本发明利用数字微镜器件的快速调制特点,结合空间光调制器在产生空心光斑阵列质量上的优势,可以为基于受激辐射损耗的高通量光刻技术提供可高速独立调控的空心光斑阵列,推动高速、纳米尺度三维光刻的发展。

Description

一种基于数字微镜器件的空心光斑阵列并行调控装置
技术领域
本发明属于高通量纳米三维光刻领域,尤其涉及一种基于数字微镜器件的空心光斑阵列并行调控装置。
背景技术
纳米器件是人类探索电学、磁学、力学和生物系统极限技术等的关键。纳米器件的发展将大幅推动信息、医疗、安防等领域的变革。世界各国在纳米技术发展战略和计划中,将纳米器件作为研究和投资的重点,纷纷制订发展计划,旨在提升本国的国际竞争力。世界许多国家的企业也看好纳米器件的发展前景,纷纷新建相关的企业和投入风险资金。
微纳加工制造技术是纳米加工装备研发的关键,随着纳米技术的不断发展,纳米技术领域的创新促进了人工设计的微观结构和具有可定义的可控特性的纳米结构的发展。各领域对纳米尺寸结构的加工需求逐渐从二维转向三维,从简单材料转向复杂材料,从单一结构转向复杂大面积结构。三维纳米结构具有更大空间自由度、更丰富和更新奇的功能特性,在力学、生物医学、微电子及微纳光子学等领域展示出巨大优势和应用前景。
传统的极紫外光刻与电子束刻蚀技术虽然可以达到纳米分辨率,但是从机理上都无法实现任意形状的三维加工能力。飞秒激光直写技术是解决未来三维纳米器件制备难题最具潜力的技术之一。该技术采用近红外波段的波长,可以低损耗地进入材料内部加工,并且基于双光子效应,可以将加工精度提升至200nm以下,且无需要掩模板和真空加工环境,因此具有优异的工业化应用前景。
为了获得更高的刻写精度,科研人员将1994年德国物理学家Hell所提出的受激发射损耗(Stimulated emission depletion, STED)技术运用到双光子激光直写技术中,提出了双光束超分辨激光直写技术,获得了50nm左右的刻写精度。该技术主要利用材料与光的非线性作用,将光反应限制在光焦点中心极小的区域来实现超高精度的三维纳米刻写。通常采用一束激发光来引发光聚合反应,一束中空形状的抑制光对激发光束与抑制光束重叠区域内的聚合反应进行限制,通过将聚合反应限制在光强中心附近,达到压缩反应区域尺寸的目的。
为了有效提高激光直写效率,科研人员尝试采用多束光并行刻写来提升刻写速度。目前并行刻写系统中用于生成空心光斑阵列的器件主要包括微透镜阵列、衍射光学元件和空间光调制器。然而,采用微透镜阵列与衍射光学元件产生的空心光斑阵列,无法实现对空心光斑的光场调控和特异性调控,无法很好地应对复杂三维结构的加工需求。采用空间光调制器虽然可以实现动态的相位编码,进而可以调控空心光斑阵列,对于实现并行直写具有一定的优势,不过,空间光调制器的刷新频率较慢,在加工复杂结构时依然是限制加工速度的短板。
发明内容
本发明的目的在于针对现有技术的不足,提供一种基于数字微镜器件的空心光斑阵列并行调控装置。
本发明的目的是通过以下技术方案来实现的:一种基于数字微镜器件的空心光斑阵列并行调控装置,包括激光光源、第一透镜、可变光阑、第二透镜、二分之一波片、空间光调制器、第三透镜、数字微镜器件、第四透镜、物镜、样品台和电脑;激光光源发出激光光束,经过第一透镜、可变光阑与第二透镜后完成滤波与扩束;随后经过二分之一波片调整光束偏振方向,控制空间光调制器生成涡旋光阵列调制图像,光束在经过第三透镜后聚焦到数字微镜器件形成空心光斑阵列;空心光斑阵列经过数字微镜器件反射后,通过第四透镜和物镜在物镜像面上生成共轭缩小的空心光斑阵列,此时通过控制数字微镜器件上各空心光斑子部分区域的开关,控制物镜像面上空心光斑阵列的图案,电脑分别连接空间光调制器和数字微镜器件。
进一步地,所述数字微镜器件与第三透镜的距离与第三透镜的焦距相同。
进一步地,所述数字微镜器件与第四透镜的距离与第四透镜的焦距相同。
本发明的有益效果是:本发明利用空间光调制器对入射光束进行相位调制,通过透镜成像到数字微镜器件上,形成空心光斑阵列。随后数字微镜器件将空心光斑反射,经过第四透镜与物镜成像到焦面,形成与数字微镜器件上共轭、缩小的空心光斑阵列。最终利用电脑控制数字微镜器件上部分区域的微镜反射角度,从而使空心光斑阵列中的部分光斑不再进入之后的成像系统,最终对物镜焦面的空心光斑阵列进行调制,形成单点可控的空心光斑阵列。有效解决了目前基于微透镜阵列与衍射光学元件的并行技术中无法对单点进行独立调控的问题,也解决了之前依赖于空间光调制器进行特异性调控时调制速度过慢的问题。本发明利用数字微镜器件的快速调制特点,结合空间光调制器在产生空心光斑阵列质量上的优势,生成可快速、特异性调控的空心光斑阵列,可以为高速、高精度、可实现复杂大面积刻写直写方法与系统的实现提供必要技术基础。
附图说明
图1是本发明一种基于数字微镜器件的空心光斑阵列并行调控方法与装置示意图;
图2是空间光调制器上的相位图;
图3是数字微镜器件上聚焦后的成像结果图;
图4是本发明空间光调制器生成2*2阵列涡旋光的光路传播示意图;
图5是本发明并行光束间特异性调控示意图;
图中,1-激光光源,2-第一透镜,3-可变光阑,4-第二透镜,5-二分之一波片,6-空间光调制器,7-第三透镜,8-数字微镜器件,9-第四透镜,10-物镜,11-样品台,12-电脑。
具体实施方式
下面通过实施例和附图对本发明作进一步说明,但不应以此限制本发明的保护范围。
如图1所示,本发明一种基于数字微镜器件的空心光斑阵列并行调控装置,包括激光光源1、第一透镜2、可变光阑3、第二透镜4、二分之一波片5、空间光调制器6、第三透镜7、数字微镜器件8、第四透镜9、物镜10、样品台11和电脑12。电脑12分别连接空间光调制器6和数字微镜器件8。
激光光源1发出波长为532nm的光束,直径约为2mm,经过第一透镜2(焦距为10mm)汇聚到可变光阑3上,两者相距10mm,根据聚焦光斑大小对可变光阑3进行调整使光阑孔径和光斑直径相同。激光光束出射可变光阑3后入射到第二透镜4(焦距为100mm)上,两者相距100mm,出射后光束变为直径约20mm的平行光束。入射平行光束经过二分之一波片5后调整为线偏振光后入射到空间光调制器6上。空间光调制器6选择滨松公司的X13138-01,可运用于400-700nm波长的光束调制,有效面积为15.9mm*12.8mm。
利用电脑12控制空间光调制器6加载如图2所示的相位图后,出射光束经过第三透镜7(焦距为200mm)聚焦到数字微镜器件8上,形成如图3所示的2*2的空心光斑矩阵。
图4为本发明空间光调制器6生成2*2阵列涡旋光的光路传播示意图,图中省略了两路光束,当光束入射到数字微镜器件8后,通过电脑12控制数字微镜器件8上各空心光斑子部分区域的开关,将其全部反射到第四透镜9中。数字微镜器件8位于第三透镜7的焦面处,位于第四透镜9焦点处,光束在出射第四透镜9后为传播角度不同的平行光束。随后入射到物镜10中,在像面形成共轭且缩小的2*2空心光斑阵列图案。数字微镜器件8选用德国VIALUX公司的V-7001,像素为1024*768,适合于可见光波段,刷新率可达22Khz。第四透镜9是型号为TTL200的套筒透镜,焦距为200mm,工作波段为450-700nm。
图5为本发明并行光束间特异性调控示意图,此时空间光调制器仍然生成2*2阵列的涡旋光束,在数字微镜器件8面上生成2*2的空心光斑阵列。通过电脑12控制数字微镜器件8上微镜的反射情况,只让一个空心光斑反射到后续系统中,从而经过物镜10后,最终在像面形成一个空心光斑的图案。
通过电脑控制数字微镜器件8上微镜的反射情况,就可以快速对物镜像面空心光斑的阵列图案进行调控,有效解决了目前基于微透镜阵列与衍射光学元件的并行技术中无法对单点进行独立调控的问题。本发明还利用了数字微镜器件8可达Khz的调控速度,也解决了之前依赖于空间光调制器进行特异性调控时调制速度过慢的问题。利用该方法与装置生成可快速、特异性调控的空心光斑阵列,为高速、高精度、可实现复杂大面积刻写直写方法与系统的实现提供必要技术基础。
以上所述仅为本发明的较佳实施举例,并不用于限制本发明,凡在本发明精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (3)

1.一种基于数字微镜器件的空心光斑阵列并行调控装置,其特征在于,包括激光光源(1)、第一透镜(2)、可变光阑(3)、第二透镜(4)、二分之一波片(5)、空间光调制器(6)、第三透镜(7)、数字微镜器件(8)、第四透镜(9)和物镜(10);激光光源(1)发出激光光束,经过第一透镜(2)、可变光阑(3)与第二透镜(4)后完成滤波与扩束;随后经过二分之一波片(5)调整光束偏振方向,控制空间光调制器(6)生成涡旋光阵列调制图像,光束在经过第三透镜(7)后聚焦到数字微镜器件(8)形成空心光斑阵列;空心光斑阵列经过数字微镜器件(8)反射后,通过第四透镜(9)和物镜(10)在物镜(10)像面上生成共轭缩小的空心光斑阵列,此时通过控制数字微镜器件(8)上各空心光斑子部分区域的开关,控制物镜(10)像面上空心光斑阵列的图案。
2.根据权利要求1所述基于数字微镜器件的空心光斑阵列并行调控装置,其特征在于,所述数字微镜器件(8)与第三透镜(7)的距离等于第三透镜(7)的焦距。
3.根据权利要求1所述基于数字微镜器件的空心光斑阵列并行调控装置,其特征在于,所述数字微镜器件(8)与第四透镜(9)的距离等于第四透镜(9)的焦距。
CN202010654713.5A 2020-07-09 2020-07-09 一种基于数字微镜器件的空心光斑阵列并行调控装置 Active CN111538164B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010654713.5A CN111538164B (zh) 2020-07-09 2020-07-09 一种基于数字微镜器件的空心光斑阵列并行调控装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010654713.5A CN111538164B (zh) 2020-07-09 2020-07-09 一种基于数字微镜器件的空心光斑阵列并行调控装置

Publications (2)

Publication Number Publication Date
CN111538164A true CN111538164A (zh) 2020-08-14
CN111538164B CN111538164B (zh) 2020-10-20

Family

ID=71980953

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010654713.5A Active CN111538164B (zh) 2020-07-09 2020-07-09 一种基于数字微镜器件的空心光斑阵列并行调控装置

Country Status (1)

Country Link
CN (1) CN111538164B (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112034626A (zh) * 2020-08-25 2020-12-04 之江实验室 一种高通量3d暗斑生成装置
CN112051714A (zh) * 2020-09-01 2020-12-08 浙江大学 一种实现高通量并行激光扫描直写光刻的方法和装置
CN112068400A (zh) * 2020-09-01 2020-12-11 浙江大学 一种实现高通量并行激光扫描直写超分辨光刻的方法和装置
CN112363322A (zh) * 2020-10-12 2021-02-12 之江实验室 一种用于激光直写的共轴超分辨焦斑阵列产生装置
CN112596349A (zh) * 2021-01-14 2021-04-02 之江实验室 一种基于多点阵产生和独立控制的双光子并行直写装置及方法
CN112987506A (zh) * 2021-02-24 2021-06-18 中山新诺科技股份有限公司 一种双光束无掩模光刻系统
CN113189709A (zh) * 2021-04-19 2021-07-30 之江实验室 一种用于光纤阵列的输入光信号发生装置及光刻系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103968945A (zh) * 2014-05-28 2014-08-06 中国科学院空间科学与应用研究中心 基于二阶压缩感知的超灵敏光谱成像天文望远镜及方法
KR20170110439A (ko) * 2016-03-23 2017-10-11 전자부품연구원 Dmd 마이크로 미러의 위상을 개별적으로 제어하기 위한 위상 변조 방법 및 이를 적용한 홀로그래픽 복원 장치
CN108627465A (zh) * 2017-03-22 2018-10-09 南开大学 一种基于压缩感知高光谱成像的快速无损监测装置
CN109416321A (zh) * 2016-05-27 2019-03-01 威里利生命科学有限责任公司 基于空间光调制器的高光谱共焦显微镜及其使用方法
CN110736539A (zh) * 2019-09-06 2020-01-31 中国科学院西安光学精密机械研究所 一种基于压缩感知的凝视型光谱成像系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103968945A (zh) * 2014-05-28 2014-08-06 中国科学院空间科学与应用研究中心 基于二阶压缩感知的超灵敏光谱成像天文望远镜及方法
KR20170110439A (ko) * 2016-03-23 2017-10-11 전자부품연구원 Dmd 마이크로 미러의 위상을 개별적으로 제어하기 위한 위상 변조 방법 및 이를 적용한 홀로그래픽 복원 장치
CN109416321A (zh) * 2016-05-27 2019-03-01 威里利生命科学有限责任公司 基于空间光调制器的高光谱共焦显微镜及其使用方法
CN108627465A (zh) * 2017-03-22 2018-10-09 南开大学 一种基于压缩感知高光谱成像的快速无损监测装置
CN110736539A (zh) * 2019-09-06 2020-01-31 中国科学院西安光学精密机械研究所 一种基于压缩感知的凝视型光谱成像系统

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112034626A (zh) * 2020-08-25 2020-12-04 之江实验室 一种高通量3d暗斑生成装置
CN112034626B (zh) * 2020-08-25 2022-04-08 之江实验室 一种高通量3d暗斑生成装置
CN112051714A (zh) * 2020-09-01 2020-12-08 浙江大学 一种实现高通量并行激光扫描直写光刻的方法和装置
CN112068400A (zh) * 2020-09-01 2020-12-11 浙江大学 一种实现高通量并行激光扫描直写超分辨光刻的方法和装置
CN112363322A (zh) * 2020-10-12 2021-02-12 之江实验室 一种用于激光直写的共轴超分辨焦斑阵列产生装置
CN112596349A (zh) * 2021-01-14 2021-04-02 之江实验室 一种基于多点阵产生和独立控制的双光子并行直写装置及方法
CN112596349B (zh) * 2021-01-14 2024-01-19 之江实验室 一种基于多点阵产生和独立控制的双光子并行直写装置及方法
CN112987506A (zh) * 2021-02-24 2021-06-18 中山新诺科技股份有限公司 一种双光束无掩模光刻系统
CN112987506B (zh) * 2021-02-24 2022-04-12 中山新诺科技股份有限公司 一种双光束无掩模光刻系统
CN113189709A (zh) * 2021-04-19 2021-07-30 之江实验室 一种用于光纤阵列的输入光信号发生装置及光刻系统

Also Published As

Publication number Publication date
CN111538164B (zh) 2020-10-20

Similar Documents

Publication Publication Date Title
CN111538164B (zh) 一种基于数字微镜器件的空心光斑阵列并行调控装置
CN111856892A (zh) 一种并行超分辨三维直写装置
WO2016015389A1 (zh) 一种飞秒激光双光子聚合微纳加工系统及方法
US20220227051A1 (en) Method and Device for Producing a Three-Dimensional Object in an Optically Reactive Starting Material
CN109590606B (zh) 一种飞秒激光相位振幅协同整形加工蝶形纳米缝隙的方法
CN112596349B (zh) 一种基于多点阵产生和独立控制的双光子并行直写装置及方法
CN106735925B (zh) 一种二维亚微米蝶形金属微结构的飞秒激光直写制备方法
CN108279550B (zh) 一种双光束微纳光学制造方法
CN112859534B (zh) 一种基于边缘光抑制阵列的并行直写装置和方法
CN103984211A (zh) 一种基于双光束聚合引发以及抑制的高分辨成像光刻方法
CN114743714A (zh) 目标操控装置、系统及方法
CN107831589A (zh) 一种基于球形微纳液滴透镜的聚焦可控超分辨显微装置
Wen et al. Photonic nanojet sub-diffraction nano-fabrication with in situ super-resolution imaging
CN111515524B (zh) 激光加工系统及氧化石墨烯微结构化及还原处理的方法
Luo et al. Rapid fabrication of cylindrical microlens array by shaped femtosecond laser direct writing
CN112764320A (zh) 一种多焦点激光并行直写密排纳米结构的光刻曝光系统及方法
Shunhua et al. High-speed two-photon lithography based on femtosecond laser
CN109188673B (zh) 一种可调的光镊装置
CN111290147A (zh) 光束偏振态的调控装置和方法
Luan et al. High-speed, large-area and high-precision fabrication of aspheric micro-lens array based on 12-bit direct laser writing lithography
Huang et al. Imaging/nonimaging microoptical elements and stereoscopic systems based on femtosecond laser direct writing
CN116430687B (zh) 一种基于双光束的高通量超分辨三维刻写方法与系统
WO2018176762A1 (zh) 混合光刻系统及混合光刻方法
JP3458152B2 (ja) 微粒子の配列方法
RU196430U1 (ru) Устройство формирования пучка Эйри в терагерцовом диапазоне длин волн

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant