CN1115375A - 燃气轮发动机控制方法及装置 - Google Patents

燃气轮发动机控制方法及装置 Download PDF

Info

Publication number
CN1115375A
CN1115375A CN94119908A CN94119908A CN1115375A CN 1115375 A CN1115375 A CN 1115375A CN 94119908 A CN94119908 A CN 94119908A CN 94119908 A CN94119908 A CN 94119908A CN 1115375 A CN1115375 A CN 1115375A
Authority
CN
China
Prior art keywords
exhaust gas
control
turbine
temperature
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN94119908A
Other languages
English (en)
Inventor
山田太郎
佐藤勋
广濑文之
鹰羽稔
志村明
高桥正卫
池田启
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of CN1115375A publication Critical patent/CN1115375A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C9/00Controlling gas-turbine plants; Controlling fuel supply in air- breathing jet-propulsion plants
    • F02C9/48Control of fuel supply conjointly with another control of the plant
    • F02C9/50Control of fuel supply conjointly with another control of the plant with control of working fluid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2270/00Control
    • F05D2270/01Purpose of the control system
    • F05D2270/07Purpose of the control system to improve fuel economy
    • F05D2270/071Purpose of the control system to improve fuel economy in particular at idling speed

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Supercharger (AREA)
  • Control Of Turbines (AREA)

Abstract

在负载减小状态期间使燃料空气混合物最佳化的燃气机控制方法和装置,在发电用大功率燃气轮机系统中,使透平以较恒定转速运行。透平负载因电力需求而在全天中变化。正常负载条件下,改变燃料供应以控制混合气,压缩机入口导向叶片保持基本不变的打开位置。为适应负载减小条件,系统转换成入口导向叶片控制方式,以比正常负载运转更精确的温度修正灵敏度控制入口导向叶片,以保证改善燃料空气混合物,提高效率并降低NOx排放。

Description

燃气轮发动机 控制方法及装置
本发明涉及燃气轮发动机控制方法及装置。更具体来说,本发明涉及一种用于控制送入燃气轮机燃烧室的燃料空气混合物的系统。
在大功率燃气轮机系统中,如发电中使用的燃气轮机系统中,燃气轮机以比较恒定的透平转速工作以驱动发电机组。由于电力需求的变化,燃气轮机的负载在一天中是变化的。为了得到最大的效率及最小的NOx化合物的排放量,在整个工作范围需要保持向燃室提供具有最佳燃料空气混合比的燃料空气混合物。
美国专利第4,529,887号公开了一种本发明试图加以改进的那种燃气轮机系统。
在上述普通的燃气轮机系统中,燃料流动速率是通过按照燃气轮机负载变化而改变压缩机入口导向叶片的方式加以控制的。在燃气轮机负载减小期间,燃料流动速率减小,压缩机入口导向叶片的开度受控而关闭以减少供气。但是,由于压缩机入口导向叶片的闭合滞后于燃料流供应的减少,使得向燃烧室提供的混合物的燃料空气混合比中供气量过大,因而在上述系统中就会出现问题,尤其是在负载减小的情况下。向燃烧室提供的燃料空气混合比的这种失衡会导致燃烧不稳定,从而影响燃气轮机的排放物和效率。
另外,对于现有技术来说,在气温低的条件下,例如在冬季,由于空气密度大,有效空气流动速率会下降。因此,特别是在低气温条件下,在负载减小期间,由于压缩机入口导向叶片滞后闭合,会造成更多过剩的空气与燃料相混合。
本发明的一个目的是提供一种控制燃气轮机系统的方法和装置,其具有高的可靠性,同时在负载减小时可改善燃烧的稳定性。本发明的另一个目的是,在外界温度条件变化时,例如与夏季相比,在冬季的工作中,能够获得最佳的燃烧稳定性。
为实现上述目的,按照本发明可提供的控制方法和系统包括在负载减小到比燃气轮机预定的负载范围低时的不同的操作控制方法。在具体的推荐实施例中,在额定负载工作期间,入口导向叶片处于完全打开状态,燃料空气混合物只是通过调节作为测出的燃气轮机排出废气的温度变化的函数的燃料流动速率而加以控制的。在额定负载工作范围期间,燃料供应的调节是响应于燃气轮机废气温度与所需要的透平废气温度的较大偏差(例如5℃)作出的,燃油流动速率的调节是以较快的速率作出的,在推荐实施例中该速率相应于1℃/秒的燃气轮机废气温度修正率。这就是所谓的“废气温度控制”工作方式,下文中简称EGT控制。在负载减小的工作期间,当透平废气温度下降得低于预定的需要温度减去一预定值时,控制从EGT控制转换成“压缩机入口导向叶片控制”(以下简称IGV控制),导向叶片开度变化是以不同的变化速率及响应于比EGT控制低的,与所需要的透平废气温度的偏差而开始和施行的。本发明的系统在负载浮动时,特别是在负载下降时,可很好地保证适当的燃料空气混合比,因为IGV控制可以比现有技术更精确、更及时地减少燃烧空气的供应。
从对照以下附图的详细说明中可更清楚地理解本发明的其它目的,优点和新颖特征。
图1是使用本发明的控制系统和控制方法来控制的那种燃气轮机和发电机系统的示意剖视图;
图2所示曲线图表示作为燃气轮机工作条件的函数的,通过图1所示燃气轮机的压缩机入口导向叶片提供的最大空气百分比;
图3所示曲线图表示作为压缩机压力的函数的透平废气温度,描述使用按照本发明推荐实施例的控制系统和控制方法的工作情况;
图4所示过程控制图表示按照本发明的推荐实施例的燃气轮机控制过程;以及
图5所示框图表示执行图4所示燃气轮机系统的控制过程。
现参阅图1,图1表示燃气轮机系统的示意剖视图,该系统具有采用预先混合室的两级燃烧式的低NOx燃烧室。压缩空气2从一示意画出的压缩机3流至燃烧室3,在燃烧室中空气与燃料混合成为燃气4,燃气流入并驱动透平部分5,透平部分5与压缩机1一起示意地画出。入口导向叶片50在压缩机入口处调节提供的空气流动速率。透平部分5驱动发电机G。在使用中,透平以基本恒定的转速运转,发电机G向系统施加变化的负载。
CP表示压缩机1的出口压力(Kg/cm2计示压力),TTA(℃)表示透平部分5的实际排出的废气的温度。当下面讨论按照本发明的系统的工作时将提到上述参数CP和TTA
CT表示燃烧室温度。由于温度CT极高,在燃气轮机工作状态时超过1000℃(例如,在额定满负载工作时为1295°至1300℃),因而很难直接监测。因此,在本发明的推荐实施例中检测的是透平废气温度TTA,并将其用作控制温度。
燃烧室3包括第一级燃烧部分6和第二级燃烧部分7。燃料F送至三条燃料管线8.1,8.2和9。由管线8.1输送的燃料用于燃气轮机的启动工作。燃料管线8.2通入第一级燃烧部分6,燃料管线9通入第二级燃烧部分7。第二级燃烧部分7是预先混合型的,其中,(由压缩机1提供的)燃烧空气10和来自燃料喷嘴11的燃料在预先混合部分12中混合。为控制燃烧空气10的流动速率设有空气的调节器13,以便获得预定的燃料空气混合比。
上述燃气轮机和燃油供送系统基本是公知的。因此这里不再赘述。来自管线8.1的燃料用于燃气轮机的启动,通过管线8.2送至第一燃烧部分6的燃料和通过管线9送至第二燃烧部分和预先混合室的燃料为正常的燃气轮机操作提供燃料。
通过压缩机1和可控的入口导向叶片50的空气供应,在燃气轮机系统的负载操作范围上的情况如图2所示。现参阅图2,点A表示压缩机/燃气轮机组1,5达到100%的透平工作转速。如图2所示,在启动时入口导向叶片初始时调节至完全打开位置的30%,然后当燃气轮机达到其额定转速时逐渐增至50%。图2中的C段表示在负载减小状态时入口导向叶片的控制(所谓IGV控制)(下文将详述)。图2中的B段表示在额定负载状态的操作,此时入口导向叶片处于其完全打开位置,由于负载的变化(及因而产生的透,平废气温度TTA的变化)而对燃气轮机的控制只借助燃料供应的变化进行。应注意的是,图2中B段和C段为下面对燃气轮机控制系统的描述提供了基础,本发明是针对一般操作范围的,并不局限于推荐实施例中的特定范围。
图3所示曲线图表示图1系统的作为透平废气温度TTA的函数的压缩机出口压力CP,示意地表示EGT控制和IGV控制的不同控制曲线。
图4所示为按照本发明的控制流程图。框101表示燃气轮机处于相应于图2中B段和C段的工作范围,从其开始,框102表示实际透平废气温度TTA与透平废气的需要的设定温度TTD之间的比较。如果TTA比TTD—1℃大,如框103所示,那么,系统即以正常额定负载操作方式框104所示那样工作,也就是说,在“废气温度控制”即EGT控制(框105)下工作,其中,只控制燃料供应,而入口导向叶片完全打开。框106表示这种EGT控制是以1℃/秒的温度修正率完成的,并且被TTA与TTD的5℃偏差触发。换言之,实际废气温度TTA比TTD大5℃,那么,系统将转换至EGT控制方式,调节将对燃料供应以预定的控制速率进行,在5秒的时间内,温度TTA每秒变化1℃,也就是说在5秒时间内温度TTA变化5℃。线107表示过程是连续的,温度TTA将被连续地监测。
现参阅框102,如TTA小于TTD—1℃(框108),指示框109所示的负载减小的状态,那么系统转换至框110所示的入口导向叶片(IGV)控制方式。在IGV控制期间,通过控制入口导向叶片50来控制空气供应。框111表示在操作的IGV控制下的控制程度和速率,其中,调节导向叶片从而以0.1℃/秒的温度修正速率调节(减少)空气供应,控制是被TTA相对于TTD的1℃负变化而触发的。这就是说,当温度比TTD低1℃时,系统转换至IGV控制,导向叶片以0.1℃/秒的速率被调节,因而在5秒的过程中应完成半度的温度调节。线112表示控制过程是连续的,温度受到连续监测,从一种操作方式向另一种操作方式的转换,是在实际测出的温度与预定的需要温度进行比较的基础上进行的,如框102所示。
由于这种系统在负载减小期间提供了更精细的温度修正调节,与现有技术方案相比,燃料空气混合比可更精确地保持在需要的范围内。
图5表示执行图4流程图所示本发明控制过程的电话框图。电信号51代表温度TTA,电信号52代表温度TTA,上述两信号送至比较器53,以便对这两个温度进行比较。比较器53测定的温差作为输出信号57送至最终加法器56和一比较器55。假定系统正在EGT控制方式下工作,当送至比较器55的信号57指示TTA小于TTD—1℃时,指示1℃温度修正设定的元件58输送一信号,该1℃温度修正设定直接送至锁存元件59,也通过5秒延迟定时器58A间接送至锁存元件59。然后,元件59向速率限制器60发送一信号,速率限制器60又向最终加法器56输出一个0.1℃/秒或1℃/秒的信号。然后,加法器56发出一控制信号,(ⅰ)以相应于0.1℃/秒的温度修正速率控制入口导向叶片(IGV控制),或者(ⅱ)以相应于1℃/秒的温度修正速率控制燃料供给(EGT控制)。
由于透平废气温度是连续监测的,因而无论何时温度比较器53测定出变换条件,系统都可自动工作以便在两种操作方式之间转换。例如,如果TTA超出TTD5℃或更多,则比较器55将发出相应的信号以启动元件58,元件58又直接向锁存元件59发出相应信号,而且借助5秒延迟定时器58A间接发出相应信号,因而触发速率限制器的转换,向最终加法器56发出信号以实施利用废气温度的控制(EGT控制),其中,只改变燃料供应而入口导向叶片完全打开,所述变化以相应于1.0℃/秒的速度实施,直至达到TTD。进一步的燃气轮机废气温度变化将触发控制方式(EGT或IGV)的变化。
本发明人的分析表明,本发明的控制系统在负载减小的操作期间基本改善了燃料空气的混合。上述分析表明在修正方向上燃料空气混合比的修正大约为4%,从而在负载减小的操作期间改善了系统的操作。在低温(冬季)条件下,空气密度具有进一步恶化现有技术的系统的倾向,以致在负载减小的操作期间不能足够精确地修正空气气流量,因而本发明的上述改善对适应低温(冬季)条件具有特殊意义。
有了本发明的方法和系统,可改善燃烧稳定性,维持稳定的燃烧,同时在全年都保持低的NOx排放。
虽然已对本发明进行了详细描述,但是显然这是对本发明的举例描述而并不是限定。

Claims (23)

1.一种控制燃气轮机系统的方法,这种燃气轮机具有:
一个燃烧室,
一个通往燃烧室的可控燃料供应系统及一通往燃烧室的可控燃烧空气供应系统,所述燃料供应系统和燃烧空气供应系统用于向燃烧室提供可燃的燃料空气混合物;
一个可由来自燃烧室的废气驱动的透平,所述透平传动地连接于负载如发电机或类似装置,
一个传动地连接于所述透平的压缩机,所述压缩机构成燃烧空气供应系统的一部分,以及
可控的压缩机入口导向叶片,其用于控制向压缩机提供的空气量,
所述方法包括按照燃气轮机上的负载是否正在增加或减少而以不同的变化控制速率来控制所述燃料供应系统和燃烧空气供应系统。
2.如权利要求1所述的方法,其特征在于该方法包括:
连续地监测透平废气的温度从而检测由透平驱动的负载变化并发出相应于透平废气温度的信号TTA
连续地产生相应于预定的需要的透平废气温度的信号,以及
比较信号TTA和TTD,在第一和第二控制方式中选择一个,以便按照TTA和TTD的值控制燃料空气混合物。
3.如权利要求2所述的方法,其特征在于:所述第一控制方式是废气温度控制方式,其中,压缩机入口导向叶片保持在一设定的位置上,只是通过改变燃料供应将废气温度向着所述需要的温度TTD修正。
4.如权利要求3所述的方法,其特征在于:所述第二控制方式是入口叶片控制方式,其中,通过控制压缩机入口导向叶片将废气温度向着所述需要的温度TTD修正。
5.如权利要求4所述的方法,其特征在于:对于系统的额定负载操作,保持所述废气温度控制方式,在系统的额定负载操作中,透平废气温度高于所述需要的温度TTD减去一个预定最小值,而且在负载减小状态期间,当所述透平废气温度下降得低于所述需要的温度TTD减去预定最小值时,转换成所述入口导向叶片控制。
6.如权利要求5所述的方法,其特征在于:在所述废气温度控制方式中,燃料供应以相应于1℃/秒的透平废气温度修正速率的变化速率被控制。
7.如权利要求6所述的方法,其特征在于:在所述入口导向叶片控制方式中,压缩机入口导向叶片以相应于0.1℃/秒的透平废气温度修正速率的速率被控制。
8.如权利要求7所述的方法,其特征在于:所述最小额定值是1℃。
9.如权利要求6所述的方法,其特征在于:在所述废气温度控制方式中,对燃料供应的控制只是响应于与所述需要的温度TTD有5℃的偏差才开始。
10.如权利要求8所述的方法,其特征在于:在所述入口导向叶片控制方式中,借助导向叶片对空气供应的控制响应于与所述需要的温度TTD有1℃的偏差时开始。
11.一种控制燃气轮机系统的方法,这种燃气轮机系统具有:
一个燃烧室,
一个通向燃烧室的可控燃料供应系统和一个通向燃烧室的可控燃烧空气供应系统,所述燃料供应系统和燃烧空气供应系统用于向燃烧室提供可燃烧的燃料空气混合物,
一个可由来自燃烧室的废气驱动的透平,所述透平传动地连接于负载如发电机或类似装置,
一个传动地连接于所述透平的压缩机,所述压缩机构成所述燃烧空气供应系统的一部分,以及
可控的压缩机入口导向叶片,其用于控制向压缩机提供的空气量,
所述方法包括:
操纵所述系统以恒定的压缩机和透平转速驱动发电机,
连续地产生一个相应于需要的透平废气温度的第一电信号,
连续地产生一个相应于实际测出的透平废气温度的第二电信号,
连续地比较所述第一和第二电信号,以便产生一个代表所述需要的和实际测出的温度之间的差的温差电信号,以及
利用所述温差电信号选择第一和第二控制方式之一,以便按照所述第一和第二电信号的有关值控制燃烧室中的燃料空气混合物。
12.如权利要求11所述的方法,其特征在于:所述第一控制方式是废气温度控制方式,其中,压缩机入口导向叶片保持在一个设定的位置上,只是通过改变燃料供应而向着需要的温度TTD修正废气温度。
13.如权利要求12所述的方法,其特征在于:所述第二控制方式是入口导向叶片控制方式,其中,通过控制压缩机入口导向叶片向着所述需要的温度修正废气温度。
14.如权利要求13所述的方法,其特征在于:对于系统的额定负载工作维持所述废气温度控制,在系统的额定负载工作中废气温度高于需要的温度TTD减去一个预定的最小值,而且在负载减小状态期间,当所述透平废气温度下降得低于所述需要的温度TTD减去所述预定的最小值时即转换成所述入口导向叶片控制。
15.如权利要求14所述的方法,其特征在于:在所述废气温度控制方式中,燃料供应以相应于1℃/秒的废气温度修正速率的速率被控制。
16.如权利要求15所述的方法,其特征在于:在所述入口导向叶片控制方式中,压缩机入口导向叶片以相当于0.1℃/秒的透平废气温度修正速率的速率被控制。
17.如权利要求16所述的方法,其特征在于:所述预定的最小值是1℃。
18.如权利要求17所述的方法,其特征在于:在所述废气温度控制方式中,燃料供应的控制只是响应于与所述需要的温度TTD有5℃的偏差才开始。
19.如权利要求18所述的方法,其特征在于:在所述入口导向叶片控制方式中,借助所述入口导向叶片对空气供应的控制响应于与所述需要的温度TTD有1℃的偏差开始。
20.一种控制燃气轮机系统的控制系统,所述燃气轮机系统具有:
一个燃烧室,
一个通往燃烧室的可控燃料供应系统和一个通往燃烧室的可控燃烧空气供应系统,所述燃料供应系统和燃烧空气供应系统用于向燃烧室提供可燃的燃料空气混合物,
一个由来自燃烧室的废气驱动的透平,所述透平传动地连接于负载如发电机或类似装置,
一个传动地连接于所述透平的压缩机,所述压缩机构成燃烧空气供应系统的一部分,以及
可控的压缩机入口导向叶片,其用于控制向压缩机提供的空气量,
所述控制系统包括:
速度控制装置,其用于以恒定的透平和压缩机转速来操纵系统以便驱动发电机,
第一电信号产生装置,其用于连续地产生相应于需要的透平温度的第一电信号,
第二电信号产生装置,其用于连续地产生相应于实际测出的透平废气温度的第二电信号,
比较装置,其用于连续比较所述第一和第二电信号以便产生一个代表所述需要的和实际测出的温度之间的差的温差电信号,以及
利用所述温差电信号选择第一和第二控制方式之一的装置,从而按照所述第一和第二电信号的有关值控制在所述燃烧室中的燃料空气混合物。
21.如权利要求20所述的控制系统,其特征在于:所述第一控制方式是废气温度控制方式,其中,压缩机入口导向叶片保持在一个设定的位置上,只是通过改变燃料供应而向着所述需要的温度TTD修正废气温度。
22.如权利要求21所述的控制系统,其特征在于:所述第二控制方式是入口导向叶片控制方式,其中,通过控制压缩机入口导向叶片而向着所述需要的温度TTD修正废气温度。
23.如权利要求22所述的控制系统,其特征在于:对于系统的额定负载操作保持所述废气温度控制方式,在所述系统的额定负载操作中透平废气温度高于所述需要的温度TTD减去一个预定的最小值,而且在负载减小状态期间,当所述透平废气温度下降得低于所述需要的温度TTD减去所述预定的最小值时,转换成所述入口导向叶片控制。
CN94119908A 1993-12-28 1994-12-27 燃气轮发动机控制方法及装置 Pending CN1115375A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP334900/93 1993-12-28
JP5334900A JPH07189746A (ja) 1993-12-28 1993-12-28 ガスタービン燃焼器の制御方法

Publications (1)

Publication Number Publication Date
CN1115375A true CN1115375A (zh) 1996-01-24

Family

ID=18282498

Family Applications (1)

Application Number Title Priority Date Filing Date
CN94119908A Pending CN1115375A (zh) 1993-12-28 1994-12-27 燃气轮发动机控制方法及装置

Country Status (5)

Country Link
US (1) US5584171A (zh)
JP (1) JPH07189746A (zh)
KR (1) KR0161315B1 (zh)
CN (1) CN1115375A (zh)
TW (1) TW255005B (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100347427C (zh) * 2002-12-17 2007-11-07 诺沃·皮戈农控股公司 用于双轴燃气轮机的校正参数控制方法
CN100398795C (zh) * 2002-12-23 2008-07-02 诺沃·皮戈农控股公司 单轴燃气轮机中催化燃烧器的排放物的控制与优化系统
CN100470017C (zh) * 2005-06-21 2009-03-18 上海电力学院 一种燃气轮机运行状态的确定方法
CN101166935B (zh) * 2005-05-13 2010-05-19 西门子公司 燃气轮机燃烧室工作曲线的调整方法和调整设备
CN101029599B (zh) * 2006-02-21 2011-10-05 通用电气公司 组装燃气涡轮发动机的方法和设备
CN102401397A (zh) * 2010-09-08 2012-04-04 通用电气公司 用于在燃气涡轮喷嘴中混合燃料的装置与方法
CN101210519B (zh) * 2006-12-26 2013-05-29 通用电气公司 用于燃气涡轮机的非线性燃料转换
CN105134386A (zh) * 2015-09-02 2015-12-09 哈尔滨工业大学 基于测点加权值的燃气轮机燃烧系统在线监测方法

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5937634A (en) * 1997-05-30 1999-08-17 Solar Turbines Inc Emission control for a gas turbine engine
JP3783442B2 (ja) * 1999-01-08 2006-06-07 株式会社日立製作所 ガスタービンの制御方法
GB9911871D0 (en) * 1999-05-22 1999-07-21 Rolls Royce Plc A gas turbine engine and a method of controlling a gas turbine engine
US6513318B1 (en) 2000-11-29 2003-02-04 Hybrid Power Generation Systems Llc Low emissions gas turbine engine with inlet air heating
US6672071B2 (en) 2001-09-27 2004-01-06 General Electric Company Methods for operating gas turbine engines
AU2003208011A1 (en) * 2002-02-15 2003-09-04 Ebara Corporation Gas turbine apparatus
JP3684208B2 (ja) * 2002-05-20 2005-08-17 株式会社東芝 ガスタービン制御装置
US6819999B2 (en) * 2002-09-13 2004-11-16 Elliott Energy Systems, Inc. Multiple control loop acceleration of turboalternator previous to self-sustaining speed
US6935117B2 (en) 2003-10-23 2005-08-30 United Technologies Corporation Turbine engine fuel injector
KR100436601B1 (ko) * 2003-12-20 2004-06-18 학교법인 영남학원 저 질소산화물 배출 및 고부하 연소용 예혼합 연료분출장치
US7093444B2 (en) * 2003-12-20 2006-08-22 Yeungnam Educational Foundation Simultaneous combustion with premixed and non-premixed fuels and fuel injector for such combustion
US7685737B2 (en) 2004-07-19 2010-03-30 Earthrenew, Inc. Process and system for drying and heat treating materials
US7694523B2 (en) * 2004-07-19 2010-04-13 Earthrenew, Inc. Control system for gas turbine in material treatment unit
US7024800B2 (en) 2004-07-19 2006-04-11 Earthrenew, Inc. Process and system for drying and heat treating materials
US7024796B2 (en) 2004-07-19 2006-04-11 Earthrenew, Inc. Process and apparatus for manufacture of fertilizer products from manure and sewage
US7269953B2 (en) * 2004-08-27 2007-09-18 Siemens Power Generation, Inc. Method of controlling a power generation system
US7469545B2 (en) * 2005-09-27 2008-12-30 Honeywell International Inc. Auxiliary power unit inlet door position control system and method
KR100680238B1 (ko) * 2005-10-24 2007-02-07 한국전력공사 분산형 발전기의 제어장치 및 그 방법
US7610692B2 (en) 2006-01-18 2009-11-03 Earthrenew, Inc. Systems for prevention of HAP emissions and for efficient drying/dehydration processes
JP4275690B2 (ja) * 2006-09-07 2009-06-10 株式会社日立製作所 ガスタービンシステム
US8504276B2 (en) * 2008-02-28 2013-08-06 Power Systems Mfg., Llc Gas turbine engine controls for minimizing combustion dynamics and emissions
US8437941B2 (en) * 2009-05-08 2013-05-07 Gas Turbine Efficiency Sweden Ab Automated tuning of gas turbine combustion systems
IT1396517B1 (it) * 2009-11-27 2012-12-14 Nuovo Pignone Spa Metodo di controllo di modo basato su temperatura di scarico per turbina a gas e turbina a gas
US8650883B2 (en) * 2010-08-11 2014-02-18 General Electric Company System and method for operating a gas turbine
US8832563B2 (en) 2011-07-27 2014-09-09 General Electric Company Automatic detection of designated controller in a distributed control system using a web client
US20130098051A1 (en) * 2011-10-19 2013-04-25 Jaimer Valdez Auxiliary power unit bleed cleaning function
US10378456B2 (en) * 2012-10-01 2019-08-13 Ansaldo Energia Switzerland AG Method of operating a multi-stage flamesheet combustor
US9328669B2 (en) * 2013-03-15 2016-05-03 Alstom Technology Ltd Dynamic and automatic tuning of a gas turbine engine using exhaust temperature and inlet guide vane angle
EP2840245A1 (en) 2013-08-20 2015-02-25 Alstom Technology Ltd Method for controlling a gas turbine group
DE202015101151U1 (de) 2015-03-09 2015-03-19 Hsieh Kuan-Fu Hilfskonstruktion zum Aufstehen und Hinsetzen
EP3530913A1 (en) * 2018-02-23 2019-08-28 Siemens Aktiengesellschaft Controller and method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4178754A (en) * 1976-07-19 1979-12-18 The Hydragon Corporation Throttleable turbine engine
US4299088A (en) * 1979-10-26 1981-11-10 General Electric Company Cyclic load duty control for gas turbine
US4529887A (en) * 1983-06-20 1985-07-16 General Electric Company Rapid power response turbine
US4550565A (en) * 1984-01-16 1985-11-05 Tokyo Shibaura Denki Kabushiki Kaisha Gas turbine control systems

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100347427C (zh) * 2002-12-17 2007-11-07 诺沃·皮戈农控股公司 用于双轴燃气轮机的校正参数控制方法
CN100398795C (zh) * 2002-12-23 2008-07-02 诺沃·皮戈农控股公司 单轴燃气轮机中催化燃烧器的排放物的控制与优化系统
CN101166935B (zh) * 2005-05-13 2010-05-19 西门子公司 燃气轮机燃烧室工作曲线的调整方法和调整设备
CN100470017C (zh) * 2005-06-21 2009-03-18 上海电力学院 一种燃气轮机运行状态的确定方法
CN101029599B (zh) * 2006-02-21 2011-10-05 通用电气公司 组装燃气涡轮发动机的方法和设备
CN101210519B (zh) * 2006-12-26 2013-05-29 通用电气公司 用于燃气涡轮机的非线性燃料转换
CN102401397A (zh) * 2010-09-08 2012-04-04 通用电气公司 用于在燃气涡轮喷嘴中混合燃料的装置与方法
CN102401397B (zh) * 2010-09-08 2015-04-08 通用电气公司 用于在燃气涡轮喷嘴中混合燃料的装置与方法
CN105134386A (zh) * 2015-09-02 2015-12-09 哈尔滨工业大学 基于测点加权值的燃气轮机燃烧系统在线监测方法

Also Published As

Publication number Publication date
KR0161315B1 (ko) 1999-01-15
US5584171A (en) 1996-12-17
JPH07189746A (ja) 1995-07-28
TW255005B (en) 1995-08-21
KR950019079A (ko) 1995-07-22

Similar Documents

Publication Publication Date Title
CN1115375A (zh) 燃气轮发动机控制方法及装置
EP0059061B1 (en) Compressor bleed air control apparatus and methods
CN1055038A (zh) 控制燃气轮机燃料的方法及装置
US4428194A (en) Compressor bleed air control apparatus and methods
EP1063402B1 (en) Method for operating an industrial gas turbine with optimal performance
US4160362A (en) Gas turbine and combined cycle power plant having reduced emission of nitrogen oxide and improved coolant injection flow control system therefor
EP1649144B1 (en) Electrical power generation system and method
JP3062207B2 (ja) 一体化したブースト・コンプレッサー/ガスタービン制御装置
JP2000310128A (ja) 予備容量制御装置を有するガスタービン発電機
CN1112190A (zh) 燃气轮机装置及操作它的方法
US20070193249A1 (en) Air pressure control device in integrated gasification combined cycle system
CN101680365A (zh) 燃气轮机发电系统及其运行控制方法
RU2754490C1 (ru) Способ управления газовой турбиной, контроллер для газовой турбины, газовая турбина и машиночитаемый носитель данных
RU2754621C1 (ru) Способ управления газовой турбиной, контроллер для газовой турбины, газовая турбина и машиночитаемый носитель данных
CN114941578A (zh) 燃气轮机的运行控制装置和运行控制方法
CN114278441A (zh) 燃气涡轮及其燃料流量调整方法
JP2011038478A (ja) ガスタービンエンジンの制御装置とその制御方法
US4452585A (en) Combustion air blower surge control for a melting furnace
RU2781460C1 (ru) Способ управления газотурбинным двигателем с форсажной камерой сгорания
EP1371834B1 (en) Regulating method for gas and liquid internal combustion engine
EP4356495A1 (en) System and method for using baseload power of reserve gt system for improving gt emissions or grid stability
JPH07139373A (ja) ガスタービン制御装置及び方法
CN116529472A (zh) 控制燃烧器的方法
JPS6340245B2 (zh)
CN116529531A (zh) 控制燃烧器的方法

Legal Events

Date Code Title Description
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C06 Publication
PB01 Publication
AD01 Patent right deemed abandoned
C20 Patent right or utility model deemed to be abandoned or is abandoned