CN111534805A - 一种基于氮化钽功能膜的压敏芯片 - Google Patents

一种基于氮化钽功能膜的压敏芯片 Download PDF

Info

Publication number
CN111534805A
CN111534805A CN202010569073.8A CN202010569073A CN111534805A CN 111534805 A CN111534805 A CN 111534805A CN 202010569073 A CN202010569073 A CN 202010569073A CN 111534805 A CN111534805 A CN 111534805A
Authority
CN
China
Prior art keywords
tantalum nitride
sensitive chip
film
silicon dioxide
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010569073.8A
Other languages
English (en)
Other versions
CN111534805B (zh
Inventor
王国秋
黄坚
陈璀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hunan Qitai Sensing Technology Co ltd
Original Assignee
Hunan Qitai Sensing Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hunan Qitai Sensing Technology Co ltd filed Critical Hunan Qitai Sensing Technology Co ltd
Priority to CN202010569073.8A priority Critical patent/CN111534805B/zh
Publication of CN111534805A publication Critical patent/CN111534805A/zh
Application granted granted Critical
Publication of CN111534805B publication Critical patent/CN111534805B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/50Substrate holders
    • C23C14/505Substrate holders for rotation of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种基于氮化钽功能膜的压敏芯片,涉及压敏芯片技术领域。所述的压敏芯片包括基板、绝缘层和氮化钽功能膜;所述的基板为不锈钢基板,所述的绝缘层为二氧化硅层,所述的氮化钽功能膜设置于二氧化硅层表面。在实施过程中通过溅射的方式将氮化钽薄膜设置于二氧化硅层表面,在溅射过程中控制腔体中氮气和氩气的体积,以及其他各种参数可以使氮化钽薄膜与二氧化硅层结合,从而提高薄膜之间的结合力,通过控制氮化钽薄膜和二氧化硅层的厚度比,使薄膜通过不同原子间的相互作用以及错位结构使薄膜之间的微结构错综复杂,从而明显降低了薄膜的温度系数,提高了薄膜稳定性以及芯片的灵敏性。

Description

一种基于氮化钽功能膜的压敏芯片
技术领域
本发明涉及压敏芯片技术领域,具体涉及一种基于氮化钽功能膜的压敏芯片。
背景技术
钽是工业上的重要金属材料,具有熔点高、耐腐蚀性能好的优点,因此可应用于比较宽的领域,主要用作电解电容器的烧结阳极的钽粉和钽丝,制作高温真空炉的发热体和保温层等结构材料以及化工防腐蚀材料,高温合金、硬质合金和超级合金,在微电子上的应用有动态随机存取记忆的薄膜氧化物镀层的储存芯片。
由于氮化钽薄膜具有很多优异的性能,如:较高的硬度、密度,优异的化学稳定性、抗腐蚀性,良好的热稳定性等。氮化钽薄膜作为一种高性能、高稳定的阻隔材料和压阻材料被广泛地应用到集成电路中。氮化钽薄膜具有电阻温度系数低、应变因子大,高温稳定性好等优点,特别是在环境、温度变化很大的电子设备中,更是不可替代的功能薄膜之一。在微机电系统器件制造工艺中,氮化钽是一种常用的导电材料和掩膜材料,特别是磁传感器的制造中,氮化钽薄膜起到无可替代的作用。
由于薄膜材料在当前社会应用的范围越来越广,在高新技术中的地位也越来越重要,要求制作越来越多的性能优异、功能独特的各种薄膜,在制膜技术上要求从原理上研究新的制膜方法或者利用新的能源对现有的制膜设备进行改进。氮化钽薄膜使制造混合集成电路的重要材料,具有优异的电学性能,稳定的化学性能和热性能,比如低的电阻温度系数,低的温度膨胀系数,对热循环不敏感等,具有优异的耐磨性能,因此被广泛研究。
溅射法是利用荷能离子(如正离子)轰击靶材,使靶材表面原子或原子团以一定的能量逸出的现象,逸出的原子在工件表面形成于靶材表面成分相同的薄膜。
但是目前一般公开的氮化钽薄膜均为单层薄膜,或者将钽于其他原子混合共同溅射,从而形成混合的膜结构,以便于提高膜的性能,但是本发明在研究过程中发现在芯片基板上设置两层膜,并控制两层膜的厚度比,可以使膜与膜之间性能一定的作用力,从而加强膜与基板之间的结合力,并且薄膜通过不同原子间的相互作用以及错位结构使薄膜之间的微结构错综复杂,从而明显提高了薄膜的稳定性和芯片的灵敏性。
发明内容
为了解决现有技术中的不足,本发明的目的在于提供一种基于氮化钽功能膜的压敏芯片,所述的压敏芯片包括基板、绝缘层和氮化钽功能膜。
所述的基板为不锈钢基板,所述的绝缘层为二氧化硅层,所述的氮化钽功能膜设置于二氧化硅层表面。
在一些实施方案中,通过在所述的二氧化硅层表面溅射钽,从而形成氮化钽薄膜。
在一些优选实施方案中,所述的二氧化硅层通过化学气相沉积的方法形成。
所述的氮化钽功能膜的溅射方法为:
(1)将干燥基板置于磁控溅射腔室内,使基板与靶材的距离为50-80mm;所述的靶材为钽;
(2)对腔体进行抽真空处理,然后加热,使腔体温度为120-200℃后保温;
(3)向腔体中通入氩气和氮气后开启电源,进行预溅射,然后打开样品台,调节转速,打开挡板待氮化钽薄膜形成后关闭电源,待样品冷却。
上述步骤(2)中所述的真空度为3-4×10-4Pa,优选为4×10-4Pa。
上述步骤(3)中所述的氮气和氩气在磁控溅射腔室内的体积比为2-5:5-8;
所述的氮气与氩气在磁控溅射腔室内的体积比为2:8、3:7、4:6或5:5;
优选地,所述的氮气与氩气在磁控溅射腔室内的体积比为3:7或4:6。
再优选地,所述的氮气与氩气在磁控溅射腔室内的体积比为4:6。
上述步骤(3)中所述的工作过程中的腔体内的气压为0.4-0.8Pa,优选为0.5-0.7Pa,再优选为0.6Pa。
上述步骤(3)中所述的溅射过程的功率为120-150W,优选为125-145W,再优选为130-140W,进一步优选为140W。
上述步骤(3)中样品台转速为8-15rpm,优选为9-14rpm,再优选为10-13rpm,进一步优选为11-12rpm。
工作过程中氮气的分压为20-60%,优选为30-50%,再优选为40%。
所述的氮化钽薄膜的厚度为0.24-0.4μm,优选为0.28-0.35μm,再优选为0.30-0.32μm。
所述的二氧化硅薄膜的厚度为5-10μm,优选为6-9μm,再优选为7-8μm。
所述的氮化钽薄膜与二氧化硅薄膜的厚度比为1:20-40;优选为1:25-35;再优选为1:30。
一种基于氮化钽功能膜的压敏芯片,所述的压敏芯片包括基板、绝缘层和氮化钽功能膜。
所述的基板表面设置一层二氧化硅层,具体操作为通过化学气相沉积的方法形成二氧化硅层。
所述的氮化钽功能膜通过溅射方法形成,具体操作为:
(1)将干燥基板置于磁控溅射腔室内,使基板与靶材的距离为50-80mm;所述的靶材为钽;
(2)对腔体进行抽真空处理,真空度为3-4×10-4Pa,然后加热,使腔体温度为120-200℃后保温;
(3)向腔体中通入氩气和氮气后开启电源,所述的氮气和氩气在磁控溅射腔室内的体积比为2-5:5-8,进行预溅射,溅射过程的功率为120-150W,然后打开样品台,保持腔体内的气压为0.4-0.8Pa,调节转速为8-15rpm,打开挡板待氮化钽薄膜形成后关闭电源,待样品冷却。
工作过程中氮气的分压为20-60%。
所述的氮化钽薄膜的厚度为0.24-0.4μm,优选为0.28-0.35μm,再优选为0.30-0.32μm。
所述的二氧化硅薄膜的厚度为5-10μm,优选为6-9μm,再优选为7-8μm。
所述的氮化钽薄膜与二氧化硅薄膜的厚度比为1:20-40;优选为1:25-35;再优选为1:30。
与现有技术相比,本发明的有益效果在于:
(1)本发明通过控制溅射过程中腔体中氮气和氩气的体积,并通过控制氮气的分压可以更好的使形成的氮化钽薄膜与基板结合,提高两者的结合力;
(2)本发明在实施过程中通过控制溅射的功率,以及其他参数的设置,可以明显降低了氮化钽薄膜的温度系数,从而提高了芯片的稳定性;
(3)本发明公开的芯片通过绝缘层与氮化钽薄膜的厚度比,薄膜通过不同原子间的相互作用以及错位结构使薄膜之间的微结构错综复杂,硅原子与钽原子以及各种化合物之间的相互作用,明显提高了芯片的灵敏性。
具体实施方式
基础实施例一种基于氮化钽功能膜的压敏芯片
所述的压敏芯片包括基板、绝缘层和氮化钽功能膜,所述的基板为不锈钢基板,所述的绝缘层为二氧化硅层,所述的氮化钽功能膜设置于二氧化硅层表面。二氧化硅层通过化学气相沉积的方法形成,所述的氮化钽功能膜通过溅射方法形成,所述的氮化钽薄膜的厚度为0.24-0.4μm;所述的二氧化硅薄膜的厚度为5-10μm,所述的氮化钽薄膜与二氧化硅薄膜的厚度比为1:20-40。
实施例1一种氮化钽功能膜通过溅射方法涂敷
具体操作为:
(1)将干燥基板置于磁控溅射腔室内,使基板与靶材的距离为70mm;所述的靶材为钽;
(2)对腔体进行抽真空处理,真空度为4×10-4Pa,然后加热,使腔体温度为180℃后保温;
(3)向腔体中通入氩气和氮气后开启电源,所述的氮气和氩气在磁控溅射腔室内的体积比为3:7,进行预溅射,溅射过程的功率为140W,然后打开样品台,保持腔体内的气压为0.5Pa,氮气分压为30%,调节转速为12rpm,打开挡板待氮化钽薄膜形成后关闭电源,待样品冷却。
所述的氮化钽薄膜的厚度为0.32μm。
二氧化硅层厚度为9.6μm。
实施例2一种氮化钽功能膜通过溅射方法涂敷
具体操作为:
(1)将干燥基板置于磁控溅射腔室内,使基板与靶材的距离为80mm;所述的靶材为钽;
(2)对腔体进行抽真空处理,真空度为4×10-4Pa,然后加热,使腔体温度为200℃后保温;
(3)向腔体中通入氩气和氮气后开启电源,所述的氮气和氩气在磁控溅射腔室内的体积比为5:5,进行预溅射,溅射过程的功率为150W,然后打开样品台,保持腔体内的气压为0.4Pa,氮气分压为50%,调节转速为15rpm,打开挡板待氮化钽薄膜形成后关闭电源,待样品冷却。
所述的氮化钽薄膜的厚度为0.40μm。
二氧化硅层厚度为10μm。
实施例3一种氮化钽功能膜通过溅射方法涂敷
具体操作为:
(1)将干燥基板置于磁控溅射腔室内,使基板与靶材的距离为60mm;所述的靶材为钽;
(2)对腔体进行抽真空处理,真空度为3×10-4Pa,然后加热,使腔体温度为150℃后保温;
(3)向腔体中通入氩气和氮气后开启电源,所述的氮气和氩气在磁控溅射腔室内的体积比为4:6,进行预溅射,溅射过程的功率为140W,然后打开样品台,保持腔体内的气压为0.6Pa,氮气分压为40%,调节转速为10rpm,打开挡板待氮化钽薄膜形成后关闭电源,待样品冷却。
所述的氮化钽薄膜的厚度为0.24μm。
二氧化硅层厚度为9.6μm。
实施例4一种氮化钽功能膜通过溅射方法涂敷,具体操作为:
(1)将干燥基板置于磁控溅射腔室内,使基板与靶材的距离为50mm;所述的靶材为钽;
(2)对腔体进行抽真空处理,真空度为3×10-4Pa,然后加热,使腔体温度为120℃后保温;
(3)向腔体中通入氩气和氮气后开启电源,所述的氮气和氩气在磁控溅射腔室内的体积比为2:8,进行预溅射,溅射过程的功率为120W,然后打开样品台,保持腔体内的气压为0.8Pa,氮气分压为20%,调节转速为8rpm,打开挡板待氮化钽薄膜形成后关闭电源,待样品冷却。
所述的氮化钽薄膜的厚度为0.30μm。
二氧化硅层厚度为9μm。
对比例1
与实施例3的区别在于:氮气和氩气在磁控溅射腔室内的体积比为9:1,其他操作和步骤与实施例3相同。
对比例2
与实施例3的区别在于:样品台转速为18rpm,其他操作与实施例3相同。
对比例3
与实施例3的区别在于:样品台转速为5rpm,其他操作与实施例3相同。
对比例4
与实施例4的区别在于:溅射过程的功率为180W,其他操作与实施例4相同。
对比例5
与实施例4的区别在于:溅射过程的功率为100W,其他操作与实施例4相同。
对比例6
与实施例4的区别在于:氮化钽薄膜与二氧化硅薄膜的厚度比为1:10,其操作与实施例4相同。
对比例7
与实施例4的区别在于:氮化钽薄膜与二氧化硅薄膜的厚度比为1:50,其操作与实施例4相同。
试验例1温度系数测试
将制备得到的芯片,首先在氮化钽膜层用光刻的方式做出所需线路,然后在不同的温度条件下用万用表测出线路的电阻,然后计算出来,计算公式:TCR=(R2-R1)/[R1*(t2-t1)]*1000000式中R1为温度为t1时的电阻值;R2为温度为t2时的电阻值。具体测试数据见下表1。
表1
Figure BDA0002548701520000061
Figure BDA0002548701520000071
根据上表1的检测结果可以看出本发明实施例1-4制备的芯片薄膜的温度系数小,因此具有较高的稳定性,对比例1中改变氮气的含量会明显影响芯片的温度系数,使温度系数明显升高;对比例2和对比例3中改变样品台转速,从而会影响薄膜的形成进而影响薄膜的内部结构,因此会对温度系数产生一定程度的影响;对比例4和对比例5改变溅射过程中的功率也会对薄膜的温度系数产生较大影响,使温度系数变大;对比例6和7改变薄膜的厚度比也会在一定程度上影响膜的结构,从而使温度系数增加,影响薄膜稳定性。
试验例2灵敏度测试
测试方法:以测试10MPa的压力为例,测试时候给氮化钽电路施加5V的输入电压,测试对应的输出电压,输出电压越大表示越灵敏,具体测试结果见下表2。
表2
灵敏度
实施例1 2.8mv/v
实施例2 2.5mv/v
实施例3 2.0mv/v
实施例4 2.4mv/v
对比例1 1.2mv/v
对比例2 1.0mv/v
对比例3 1.2mv/v
对比例4 1.0mv/v
对比例5 0.9mv/v
对比例6 1.2mv/v
对比例7 1.0mv/v
根据上表2得检测数据可以看出,本发明制备的芯片具有较好的测试压力灵敏度,灵敏度最高位2.8mv/v,而对比例1中改变氮气的比例会在一定程度上影响薄膜的形成从而影响到薄膜的灵敏性;对比例2-3改变样品台转速,同样会影响薄膜的生成,即影响薄膜中化合物中的组分,从而影响灵敏度;对比例4-5改变溅射过程的功率,从而对灵敏性产生了影响,使灵敏度降低;对比例6-7改变薄膜的厚度比,改变了原子之间的连接关系,使灵敏度降低。
试验例3附着力测试
采用划圈法检测,在23±2和相对适度为50±5%的条件下试验,测试时,使转针得尖端触到涂膜,按顺时针方向均匀摇动摇柄,转速为80-100转/min,圆滚线划痕长度为7.5±0.5mm。
附着力分为1-7七级,1级为最好,7级最差,具体检测见下表3。
表3
附着力等级
实施例1 1
实施例2 2
实施例3 1
实施例4 2
对比例1 5
对比例2 6
对比例3 5
对比例4 5
对比例5 6
根据上表3的检测数据可以看出本发明实施例1-4制备的薄膜的附着力较好,而对比例1改变氮气和氩气的体积比,使氮气体积减少会在一定程度上影响氮原子与钽原子的化合,从而会影响氮化钽的形成,从而影响薄膜的附着力;对比例2-5改变样品台的转速,以及溅射功率,会影响氮化钽薄膜的生成,从而影响薄膜的附着力。
试验例4耐酸碱测试
分别使用3%的盐酸溶液和5%的氢氧化钠溶液浸泡240h,按照GB/T 9274中的方法进行试验,检测腐蚀情况,具体见下表4。
表4
耐酸性 耐碱性
实施例1 优异 优异
实施例2 优异 优异
实施例3 优异 优异
实施例4 优异 优异
对比例1 较差 较差
对比例2 良好 良好
对比例3 良好 良好
对比例4 良好 良好
对比例5 良好 良好
对比例6 良好 良好
对比例7 良好 良好
根据上表4的检测数据可以看出本发明实施例1-4制备的薄膜具有优异的抗酸碱性能,而对比例1改变氮气与氩气的体积比,会在一定程度上影响氮化钽薄膜的形成,从而影响薄膜中的错位结构,从而影响薄膜的耐酸碱性。对比例2-5改变样品台的转速和功率,也会影响薄膜的形成,进而影响耐酸碱性,所得薄膜的耐酸碱性良好,不影响使用,对比例6-7改变薄膜的厚度比,同样会在一定程度上影响耐酸碱行,但是并不影响使用。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (10)

1.一种基于氮化钽功能膜的压敏芯片,其特征在于:所述的压敏芯片包括基板、绝缘层和氮化钽功能膜;所述的基板为不锈钢基板,所述的绝缘层为二氧化硅层,所述的氮化钽功能膜设置于二氧化硅层表面;所述的氮化钽薄膜与二氧化硅层的厚度比为1:20-40。
2.根据权利要求1所述的压敏芯片,其特征在于:所述的二氧化硅层通过化学气相沉积的方法形成。
3.根据权利要求1所述的压敏芯片,其特征在于:所述的氮化钽功能膜通过溅射的方式设置于二氧化硅层表面,所述的溅射方法为:
(1)将干燥基板置于磁控溅射腔室内,使基板与靶材的距离为50-80mm;所述的靶材为钽;
(2)对腔体进行抽真空处理,然后加热,使腔体温度为120-200℃后保温;
(3)向腔体中通入氩气和氮气后开启电源,进行预溅射,然后打开样品台,调节转速,打开挡板待氮化钽薄膜形成后关闭电源,待样品冷却。
4.根据权利要求3所述的压敏芯片,其特征在于:步骤(2)中所述的真空度为3-4×10- 4Pa。
5.根据权利要求3所述的压敏芯片,其特征在于:步骤(3)中所述的氮气和氩气在磁控溅射腔室内的体积比为2-5:5-8。
6.根据权利要求5所述的压敏芯片,其特征在于:所述的氮气与氩气在磁控溅射腔室内的体积比为4:6。
7.根据权利要求3所述的压敏芯片,其特征在于:步骤(3)中所述的工作过程中的腔体内的气压为0.4-0.8Pa;溅射过程的功率为120-150W。
8.根据权利要求3所述的压敏芯片,其特征在于:步骤(3)中所述的样品台转速为8-15rpm。
9.根据权利要求1所述的压敏芯片,其特征在于:所述的氮化钽薄膜的厚度为0.24-0.4μm。
10.根据权利要求1所述的压敏芯片,其特征在于:所述的二氧化硅层的厚度为5-10μm。
CN202010569073.8A 2020-06-19 2020-06-19 一种基于氮化钽功能膜的压敏芯片 Active CN111534805B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010569073.8A CN111534805B (zh) 2020-06-19 2020-06-19 一种基于氮化钽功能膜的压敏芯片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010569073.8A CN111534805B (zh) 2020-06-19 2020-06-19 一种基于氮化钽功能膜的压敏芯片

Publications (2)

Publication Number Publication Date
CN111534805A true CN111534805A (zh) 2020-08-14
CN111534805B CN111534805B (zh) 2021-01-01

Family

ID=71974566

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010569073.8A Active CN111534805B (zh) 2020-06-19 2020-06-19 一种基于氮化钽功能膜的压敏芯片

Country Status (1)

Country Link
CN (1) CN111534805B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113201773A (zh) * 2021-04-02 2021-08-03 泰杋科技股份有限公司 一种氮化钽被覆钢材料的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104789928A (zh) * 2014-01-16 2015-07-22 电子科技大学 一种低电阻温度系数、高电阻率氮化钽与钽多层膜的制备方法
CN105547535A (zh) * 2015-12-11 2016-05-04 中国电子科技集团公司第四十八研究所 用于薄膜压力传感器的应变薄膜及其制备方法、薄膜压力传感器芯体

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104789928A (zh) * 2014-01-16 2015-07-22 电子科技大学 一种低电阻温度系数、高电阻率氮化钽与钽多层膜的制备方法
CN105547535A (zh) * 2015-12-11 2016-05-04 中国电子科技集团公司第四十八研究所 用于薄膜压力传感器的应变薄膜及其制备方法、薄膜压力传感器芯体

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113201773A (zh) * 2021-04-02 2021-08-03 泰杋科技股份有限公司 一种氮化钽被覆钢材料的制备方法

Also Published As

Publication number Publication date
CN111534805B (zh) 2021-01-01

Similar Documents

Publication Publication Date Title
CN103308242B (zh) 一种以氮氧化钛为应变材料的薄膜压力传感器及其制造方法
CN111534805B (zh) 一种基于氮化钽功能膜的压敏芯片
CN109234728A (zh) 一种钼合金表面激光熔覆制备MoSi2涂层的方法
TWI763329B (zh) 疏水性表面塗層及其製備方法
CN117051368B (zh) 一种掺铌钛酸锶薄膜的制备方法及掺铌钛酸锶薄膜
CN105547535B (zh) 用于薄膜压力传感器的应变薄膜及其制备方法、薄膜压力传感器芯体
CN112553576A (zh) 一种多孔高熵合金氧化物薄膜及其制备方法
Ding et al. The properties of chromium oxide coatings on NdFeB magnets by magnetron sputtering with ion beam assisted deposition
US8367162B2 (en) Pretreatment method for improving antioxidation of steel T91/P91 in high temperature water vapor
CN109338301A (zh) 一种在氧化铝陶瓷基底上制备氮化钽薄膜的方法
CN108330455A (zh) 一种Cr2AlC相纯度可调控的涂层制备方法
EP4006115A1 (en) Hydrophobic surface coating and preparation method therefor
CN113501724B (zh) 一种抗氧化陶瓷涂料及其制备方法和应用
Peng et al. Microstructure and dielectric properties of silicon carbonitride dielectric barrier films deposited by sputtering
CN114622258A (zh) 一种钕铁硼磁体的抗氧化涂层制备方法
CN109487214A (zh) 一种镁合金表面镀膜方法及由其制备的抗腐蚀镁合金
CN105967665B (zh) 氧化铝陶瓷及其制备方法和等离子体刻蚀设备
CN110927016B (zh) 一种锂离子电池涂布打卷问题的预测方法
CN114150281B (zh) 一种氮化钽薄膜及其制备方法
CN114226147A (zh) 一种取向硅钢极薄带绝缘涂层涂覆方法
CN108831754B (zh) 一种高比表面积的MeN涂层及其制备方法和超级电容器
CN202853788U (zh) 物理沉淀法制作的薄膜型热敏电阻温度传感器芯片
Zuo et al. Corrosion behavior of ZrCrMoNb high-entropy alloy coating in ethylene glycol solution
Sytchenko et al. Structure and Properties of Ta–Si–N Coatings Produced by Pulsed Magnetron Sputtering
CN109799270B (zh) 一种能有效提高对乙醇气体响应性能的敏感膜

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
PE01 Entry into force of the registration of the contract for pledge of patent right
PE01 Entry into force of the registration of the contract for pledge of patent right

Denomination of invention: A pressure sensitive chip based on tantalum nitride functional film

Effective date of registration: 20211008

Granted publication date: 20210101

Pledgee: China Construction Bank Corporation Liuyang sub branch

Pledgor: HUNAN QITAI SENSING TECHNOLOGY Co.,Ltd.

Registration number: Y2021430000058