CN111530502B - 一种ZnTe-Mo/Mg-MOF光阴极材料的制备方法 - Google Patents

一种ZnTe-Mo/Mg-MOF光阴极材料的制备方法 Download PDF

Info

Publication number
CN111530502B
CN111530502B CN202010382690.7A CN202010382690A CN111530502B CN 111530502 B CN111530502 B CN 111530502B CN 202010382690 A CN202010382690 A CN 202010382690A CN 111530502 B CN111530502 B CN 111530502B
Authority
CN
China
Prior art keywords
znte
mof
film
teo
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010382690.7A
Other languages
English (en)
Other versions
CN111530502A (zh
Inventor
武承林
熊贤强
张晓�
张川群
范利亚
李江山
付帅
褚雨潇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taizhou University
Original Assignee
Taizhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taizhou University filed Critical Taizhou University
Priority to CN202010382690.7A priority Critical patent/CN111530502B/zh
Publication of CN111530502A publication Critical patent/CN111530502A/zh
Application granted granted Critical
Publication of CN111530502B publication Critical patent/CN111530502B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2239Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/10Heat treatment in the presence of water, e.g. steam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/16Reducing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/50Processes
    • C25B1/55Photoelectrolysis
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/095Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one of the compounds being organic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/62Reductions in general of inorganic substrates, e.g. formal hydrogenation, e.g. of N2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/20Complexes comprising metals of Group II (IIA or IIB) as the central metal
    • B01J2531/22Magnesium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/60Complexes comprising metals of Group VI (VIA or VIB) as the central metal
    • B01J2531/64Molybdenum

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及一种ZnTe‑Mo/Mg‑MOF光阴极材料的制备方法,属于光电催化技术领域。所述的复合光电极由p型ZnTe半导体和Mo/Mg双金属MOF组成,其中ZnTe通过热蒸发沉积和液相反应法合成,可以有效吸收可见光,而Mo/Mg‑MOF能够有效捕获和活化CO2,二者协同作用,显著提高ZnTe还原CO2的电流密度,降低反应起始电位。本发明所述复合光电极材料制备过程简单,对CO2还原具有优异的活性和选择性,在光电催化领域具有较好的应用前景。

Description

一种ZnTe-Mo/Mg-MOF光阴极材料的制备方法
技术领域
本发明属于光电催化技术领域,具体涉及一种ZnTe-Mo/Mg-MOF光阴极材料的制备方法,可以实现CO2分子的有效捕获和活化,降低CO2还原的反应能垒,有效提升ZnTe光电催化还原CO2为CO的活性和选择性。
背景技术
能源短缺和温室效应是当今人类面临的难题,减少CO2排放,将其转变为碳氢燃料,已成为各国科学家的重点研究方向。目前,人工CO2转化的方法主要有高温催化加氢法、电催化还原法、光催化转化法和光电催化方法等,其中光催化载流子分离效率较低,电催化过电位较高,而光电催化集合光催化的低能耗与电催化的高能效等优势,有利于降低反应的过电势,促进光生载流子和产物的分离,是一种有效的CO2转化方法。
ZnTe的导带电位为-1.63V vs.NHE,比大多数碳基产物的电势更负,有利于克服CO2活化的热力学势垒,且ZnTe的带隙窄(2.26eV)、载流子迁移率高,受到越来越多关注。然而,和大多数无机半导体类似,光激发ZnTe产生的光生电子和空穴复合速率极快,导致单一ZnTe光电催化还原CO2的活性较低。此外,在含水溶液中,质子还原和CO2还原竞争激烈,且质子还原在动力学上更快,导致ZnTe光电催化还原CO2的选择性也较低。
针对上述问题,人们急切希望开发新型ZnTe基光阴极材料,以促进CO2高活性和高选择性转化。受植物光合作用启发,自然界中绿色植物的叶子能够通过卡尔文循环中的1,5-二磷酸核酮糖羧化酶(RuBisCo)固定和活化CO2,随后质子耦合电子转移将CO2转化为碳氢化合物。而金属有机框架材料MOFs具有丰富的孔道结构、高密度的配位不饱和金属位点,以及优异的CO2吸附性能,将Mo/Mg双金属MOF引入到ZnTe半导体界面,有望构筑具有优异的CO2固定和活化功能的“人工叶子”,从而实现CO2还原仿生界面的构筑。本发明发现Mo/Mg双金属MOF中的Mg位点对水溶液中的CO2分子具有优异的吸附能力,而Mo位点可以催化CO2还原,定向转化为CO,这对CO2的资源化利用具有重要的科学意义和实际应用价值。
发明内容
本发明针对现有技术的不足,提供一种ZnTe-Mo/Mg-MOF光阴极材料的制备方法。其目的在于利用ZnTe半导体和Mo/Mg-MOF材料之间的电荷转移作用,协同提高ZnTe材料光电催化CO2还原的活性和选择性。本发明的目的通过以下技术方案实现:
本发明提供一种ZnTe-Mo/Mg-MOF光阴极材料的制备方法,所述方法由以下步骤组成:
1)以水、乙醇和丙酮清洗FTO玻璃,N2吹干,备用。以TeO2作为靶材,在室温下通过热蒸发法将TeO2粉末蒸发到FTO基板上,即得TeO2薄膜;
2)配制乙酸锌和硼氢化钠的混合水溶液,将上述TeO2薄膜放置于该溶液中,90℃水浴下反应1-5小时,即得ZnTe薄膜;
3)配制乙酸钼、乙酸镁的前驱体水溶液,再加入合成金属有机框架材料(MOF)所需的有机配体,搅拌混合均匀,转入水热反应釜中。然后将ZnTe薄膜斜插入反应釜内胆中,薄膜导电面朝下,水热反应一定时间,待反应釜冷却后,取出薄膜样品,水洗、乙醇洗。最后,将获得的样品在N2气氛下煅烧一定时间,以除去MOF孔道中的溶剂分子,即得ZnTe-Mo/Mg-MOF光电极材料。
优选地,步骤1所述热蒸发的沉积速率为0.1-0.5nm s-1
优选地,步骤2所述乙酸锌和硼氢化钠的摩尔比为1:1-1:3。
优选地,步骤3所述乙酸钼和乙酸镁的摩尔比为1:1-1:5。
优选地,步骤3所述有机配体为芘基羧酸配体或2,5-二羟基对苯二甲酸。
优选地,步骤3所述水热温度为180-200℃,水热时间为15-20h。
优选地,步骤3所述N2气氛下煅烧温度为250℃,煅烧时间为9-15h。
本发明的有益效果:本发明使用热蒸发法沉积制备TeO2薄膜,随后采用液相还原法将TeO2转化为ZnTe,之后采用水热法将Mo/Mg-MOF负载在ZnTe薄膜载体上,整个制备工艺简单,可实现批量化生产。且所制备的ZnTe-Mo/Mg-MOF复合光阴极材料光电催化性能优异,可在高电流密度下将CO2定向转化为CO,且该反应的法拉第效率高,反应过电位低,可以有效利用太阳能实现低电位下CO2转化为C1化合物,具有重要的应用价值。
附图说明
图1为实施例三中制备的ZnTe-Mo/Mg-MOF和ZnTe电极的线性扫描伏安曲线图;
图2为实施例四中制备的ZnTe-Mo/Mg-MOF和ZnTe电极在模拟太阳光照射下的H2和CO生成量,电位:-0.4V,光照时间为4小时。
具体实施方式
为了更好的理解本发明,下面结合实施例和附图进一步阐明本发明的内容,但本发明的内容不仅仅局限于下面的实施例。
实施例一
一种ZnTe-Mo/Mg-MOF光阴极材料的制备方法,具体步骤如下:将FTO导电玻璃置于超声清洗器中分别经水洗、乙醇洗和丙酮洗,最后用高纯N2吹干洗净的FTO玻璃,待用。然后在室温下通过热蒸发法将TeO2粉末蒸发到FTO基板上,将TeO2靶材放置于钽舟中,并将反应室内的压力抽真空至4.5×10-5Pa,在外加电流的作用下TeO2靶材以0.2nm s-1的沉积速率蒸发,获得TeO2薄膜;随后,配制0.5mol/L的乙酸锌和0.5mol/L硼氢化钠的水溶液,将TeO2薄膜放置于该溶液中,90℃水浴下反应2小时,即得ZnTe薄膜;称200mg 2,5-二羟基对苯二甲酸、100mg乙酸钼和200mg乙酸镁,放入玻璃烧杯中,加入30mL去离子水,搅拌溶解。然后将此溶液转入50mL反应釜中,随后在190℃烘箱中反应15小时。反应结束后,反应釜自然冷却至室温,然后采用水和乙醇清洗薄膜样品。最后将该材料在N2惰性气氛下于250℃活化9小时,以除去MOF孔道中的溶剂分子,即得ZnTe-Mo/Mg-MOF光电极材料。
实施例二
一种ZnTe-Mo/Mg-MOF光阴极材料的制备方法,具体步骤如下:将FTO导电玻璃置于超声清洗器中分别经水洗、乙醇洗和丙酮洗,最后用高纯N2吹干洗净的FTO玻璃,待用。然后在室温下通过热蒸发法将TeO2粉末蒸发到FTO基板上,将TeO2靶材放置于钽舟中,并将反应室内的压力抽真空至4.5×10-5Pa,在外加电流的作用下TeO2靶材以0.3nm s-1的沉积速率蒸发,获得TeO2薄膜;随后,配制0.8mol/L的乙酸锌和1mol/L硼氢化钠的水溶液,将TeO2薄膜放置于该溶液中,90℃水浴下反应3小时,即得ZnTe薄膜;称100mg 1,3,6,8-(4-羧基苯基)芘、100mg乙酸钼和150mg乙酸镁,放入玻璃烧杯中,加入30mL去离子水,搅拌溶解。然后将此溶液转入50mL反应釜中,随后在195℃烘箱中反应16小时。反应结束后,反应釜自然冷却至室温,然后采用水和乙醇清洗薄膜样品。最后将该材料在N2惰性气氛下于250℃活化10小时,以除去MOF孔道中的溶剂分子,即得ZnTe-Mo/Mg-MOF光电极材料。
实施例三
一种ZnTe-Mo/Mg-MOF光阴极材料的制备方法,具体步骤如下:将FTO导电玻璃置于超声清洗器中分别经水洗、乙醇洗和丙酮洗,最后用高纯N2吹干洗净的FTO玻璃,待用。然后在室温下通过热蒸发法将TeO2粉末蒸发到FTO基板上,将TeO2靶材放置于钽舟中,并将反应室内的压力抽真空至4.5×10-5Pa,在外加电流的作用下TeO2靶材以0.1nm s-1的沉积速率蒸发,获得TeO2薄膜;随后,配制0.25mol/L的乙酸锌和0.5mol/L硼氢化钠的水溶液,将TeO2薄膜放置于该溶液中,90℃水浴下反应4小时,即得ZnTe薄膜;称120mg 2,5-二羟基对苯二甲酸、150mg乙酸钼和180mg乙酸镁,放入玻璃烧杯中,加入30mL去离子水,搅拌溶解。然后将此溶液转入50mL反应釜中,随后在190℃烘箱中反应15小时。反应结束后,反应釜自然冷却至室温,然后采用水和乙醇清洗薄膜样品。最后将该材料在N2惰性气氛下于250℃活化10小时,以除去MOF孔道中的溶剂分子,即得ZnTe-Mo/Mg-MOF光电极材料。
将上述ZnTe-Mo/Mg-MOF光电极材料放入光电化学反应器内,与铂片对电极和饱和甘汞参比电极组装成三电极体系,选用0.5M KHCO3作为电解质溶液,采用上海辰华CHI660E电化学工作站测试复合电极在模拟太阳光照下的电流密度。光电流测试前,往电解质溶液中鼓CO2半个小时,使溶液中的氧气排尽,CO2浓度达到饱和。图1为本实施例制备的ZnTe-Mo/Mg-MOF光电极和ZnTe薄膜电极的线性扫描伏安法图,扫描速度为20mV/s。由图可知,随着电极电位逐渐负移,光电流密度逐渐增加,说明在在光电协同催化作用下,电极的载流子分离效率增加。此外,Mo/Mg-MOF负载后,ZnTe的光电流密度显著增强,且起始电位正移,说明Mo/Mg-MOF能够提高ZnTe光电催化CO2还原活性。
实施例四
一种ZnTe-Mo/Mg-MOF光阴极材料的制备方法,具体步骤如下:将FTO导电玻璃置于超声清洗器中分别经水洗、乙醇洗和丙酮洗,最后用高纯N2吹干洗净的FTO玻璃,待用。然后在室温下通过热蒸发法将TeO2粉末蒸发到FTO基板上,将TeO2靶材放置于钽舟中,并将反应室内的压力抽真空至4.5×10-5Pa,在外加电流的作用下TeO2靶材以0.1nm s-1的沉积速率蒸发,获得TeO2薄膜;随后,配制1.25mol/L的乙酸锌和1.5mol/L硼氢化钠的水溶液,将TeO2薄膜放置于该溶液中,90℃水浴下反应3小时,即得ZnTe薄膜;称150mg 1,3,6,8-(4-羧基苯基)芘、50mg乙酸钼和80mg乙酸镁,放入玻璃烧杯中,加入30mL去离子水,搅拌溶解。然后将此溶液转入50mL反应釜中,随后在200℃烘箱中反应15小时。反应结束后,反应釜自然冷却至室温,然后采用水和乙醇清洗薄膜样品。最后将该材料在N2惰性气氛下于250℃活化12小时,以除去MOF孔道中的溶剂分子,即得ZnTe-Mo/Mg-MOF光电极材料。
图2为本实施例制备的ZnTe-Mo/Mg-MOF电极和ZnTe薄膜电极在-0.4V偏压作用下光照4小时生成的H2和CO柱图。由图可知,ZnTe光电催化CO2活性较差,碳基产物极少,而产物以H2为主。Mo/Mg-MOF负载后,ZnTe的产物以CO为主,H2析出活性得到有效抑制,且CO产量大幅增加,证实Mo/Mg-MOF能提高ZnTe光电催化活性和选择性。

Claims (7)

1.一种ZnTe-Mo/Mg-MOF光阴极材料的制备方法,其特征在于由以下步骤组成:
1)以水、乙醇和丙酮清洗FTO玻璃,N2吹干,备用,以TeO2作为靶材,在室温下通过热蒸发法将TeO2粉末蒸发到FTO基板上,即得TeO2薄膜;
2)配制乙酸锌和硼氢化钠的混合水溶液,将上述TeO2薄膜放置于该溶液中,90℃水浴下反应1-5小时,即得ZnTe薄膜;
3)配制乙酸钼、乙酸镁的前驱体水溶液,再加入合成金属有机框架材料(MOF)所需的有机配体,搅拌混合均匀,转入水热反应釜中,然后将ZnTe薄膜斜插入反应釜内胆中,薄膜导电面朝下,水热反应一定时间,待反应釜冷却后,取出薄膜样品,水洗、乙醇洗,最后,将获得的样品在N2气氛下煅烧一定时间,以除去MOF孔道中的溶剂分子,即得ZnTe-Mo/Mg-MOF光电极材料。
2.根据权利要求1所述的一种ZnTe-Mo/Mg-MOF光阴极材料的制备方法,其特征在于,步骤1所述热蒸发的沉积速率为0.1-0.5nm s-1
3.根据权利要求1所述的一种ZnTe-Mo/Mg-MOF光阴极材料的制备方法,其特征在于,步骤2所述乙酸锌和硼氢化钠的摩尔比为1:1-1:3。
4.根据权利要求1所述的一种ZnTe-Mo/Mg-MOF光阴极材料的制备方法,其特征在于,步骤3所述乙酸钼和乙酸镁的摩尔比为1:1-1:5。
5.根据权利要求1所述的一种ZnTe-Mo/Mg-MOF光阴极材料的制备方法,其特征在于,步骤3所述有机配体为2,5-二羟基对苯二甲酸。
6.根据权利要求1所述的一种ZnTe-Mo/Mg-MOF光阴极材料的制备方法,其特征在于,步骤3所述水热温度为180-200℃,水热时间为15-20h。
7.根据权利要求1所述的一种ZnTe-Mo/Mg-MOF光阴极材料的制备方法,其特征在于,步骤3所述N2气氛下煅烧温度为250℃,煅烧时间为9-15h。
CN202010382690.7A 2020-05-08 2020-05-08 一种ZnTe-Mo/Mg-MOF光阴极材料的制备方法 Active CN111530502B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010382690.7A CN111530502B (zh) 2020-05-08 2020-05-08 一种ZnTe-Mo/Mg-MOF光阴极材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010382690.7A CN111530502B (zh) 2020-05-08 2020-05-08 一种ZnTe-Mo/Mg-MOF光阴极材料的制备方法

Publications (2)

Publication Number Publication Date
CN111530502A CN111530502A (zh) 2020-08-14
CN111530502B true CN111530502B (zh) 2022-09-30

Family

ID=71979094

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010382690.7A Active CN111530502B (zh) 2020-05-08 2020-05-08 一种ZnTe-Mo/Mg-MOF光阴极材料的制备方法

Country Status (1)

Country Link
CN (1) CN111530502B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112076766B (zh) * 2020-09-09 2021-09-03 同济大学 一种金属有机框架衍生ZnTe/ZnO@C纳米片电催化材料及其制备和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2942827B1 (ja) * 1998-05-08 1999-08-30 佐賀大学長 n型ZnTe半導体の製造方法
CN101311338A (zh) * 2008-02-27 2008-11-26 中国科学院理化技术研究所 无模板电化学沉积制备Te一维纳米结构的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2549636T3 (es) * 2012-04-05 2015-10-30 Commissariat à l'énergie atomique et aux énergies alternatives Método para preparar un catalizador que media en el desprendimiento de H2, dicho catalizador y usos del mismo

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2942827B1 (ja) * 1998-05-08 1999-08-30 佐賀大学長 n型ZnTe半導体の製造方法
CN101311338A (zh) * 2008-02-27 2008-11-26 中国科学院理化技术研究所 无模板电化学沉积制备Te一维纳米结构的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Aqueous-solution route to zinc telluride films for application to CO2 reduction";Ji-Wook Jang et al.;《Angewandte Chemie-International Edition》;20140416;第53卷(第23期);全文 *
"Selective CO production by Au coupled ZnTe/ZnO in the photoelectrochemical CO2 reduction system";Youn Jeong Jang et al.;《Energy & Environmental Science》;20150918;第8卷(第12期);全文 *
"ZnTe-based photocathode for hydrogen evolution from water under sunlight";Tsutomu Minegishi et al.;《APL Materials》;20200401;第8卷(第4期);全文 *

Also Published As

Publication number Publication date
CN111530502A (zh) 2020-08-14

Similar Documents

Publication Publication Date Title
CN107012474B (zh) 一种规模化太阳能光催化-光电催化分解水制氢的方法
Chao et al. Oxygen-incorporation in Co2P as a non-noble metal cocatalyst to enhance photocatalysis for reducing water to H2 under visible light
CN109402656B (zh) 一种磷化钴修饰钼掺杂钒酸铋光电极的制备方法
CN111569896A (zh) BiVO4-Ni/Co3O4异质结的合成方法及其应用于光电解水
CN108193219B (zh) 磷化铜修饰二氧化钛光电极及其制备方法和在光电催化分解水中的应用
CN112680741B (zh) 一种钌掺杂磷化钴电催化剂的制备方法与应用
CN111364080B (zh) 一种用于光阳极的CxNy/BiVO4材料及其制备方法和应用
CN110560117A (zh) 一种双金属钴钌-氮磷掺杂多孔碳电催化剂及其制备方法与应用
CN113019459A (zh) 一种二氧化钛卟啉基共价有机框架复合材料及其制备方法和应用
CN112958116A (zh) 一种Bi2O2.33-CdS复合光催化剂及其制备工艺
CN112928288A (zh) 一种mof衍生的钴镍多孔碳复合材料电催化电极的制备方法
CN111530502B (zh) 一种ZnTe-Mo/Mg-MOF光阴极材料的制备方法
CN108855193B (zh) TaN/BiVO4异质结复合材料及其制备方法和应用
CN113699549A (zh) 一种钌&锡双金属氧化物电催化材料及其制备方法和应用
CN109402661B (zh) MIL-100(Fe)/TiO2复合光电极的制备方法及其应用
CN109402652B (zh) 碳锌钴担载酞氰化锌异质结催化剂双光照还原co2的方法
CN111509243A (zh) 一种CNTs修饰的BiOCl/ZnO异质结纳米阵列光阳极在光催化燃料电池中的应用
CN111525142A (zh) 一种用于光催化燃料电池的CNTs修饰的BiOCl/ZnO异质结纳米阵列光阳极
CN116173987A (zh) CdIn2S4/CeO2异质结光催化剂及其制备方法和应用
CN114196985B (zh) 一种BiVO4/NiF2光阳极在光催化水裂解方面的应用
CN115233255A (zh) MOF衍生的NiO/BiVO4复合光电极制备方法及其光电应用
CN113145156A (zh) 一种基于NiO的Z型异质结光电催化材料的制备
CN112657518A (zh) 一种二氧化碳还原复合光催化材料及其制备方法
CN110975922A (zh) 一种用于碱性溶液析氢的Co@FePx-NCs材料及其制备方法与应用
CN115920945B (zh) 一种羟基化石墨相氮化碳光催化剂及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant