CN111514949A - 一种微流控芯片及其制备方法 - Google Patents

一种微流控芯片及其制备方法 Download PDF

Info

Publication number
CN111514949A
CN111514949A CN202010345010.4A CN202010345010A CN111514949A CN 111514949 A CN111514949 A CN 111514949A CN 202010345010 A CN202010345010 A CN 202010345010A CN 111514949 A CN111514949 A CN 111514949A
Authority
CN
China
Prior art keywords
phospholipid
substrate
chip
nucleotide
chip substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010345010.4A
Other languages
English (en)
Other versions
CN111514949B (zh
Inventor
王云兵
李高参
马博轩
杨立
邹耀中
苏云鹏
江鹏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Jinshi Technology Co ltd
Sichuan University
Original Assignee
Chengdu Jinshi Technology Co ltd
Sichuan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Jinshi Technology Co ltd, Sichuan University filed Critical Chengdu Jinshi Technology Co ltd
Priority to CN202010345010.4A priority Critical patent/CN111514949B/zh
Publication of CN111514949A publication Critical patent/CN111514949A/zh
Application granted granted Critical
Publication of CN111514949B publication Critical patent/CN111514949B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502707Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/12Specific details about materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2300/00Additional constructional details
    • B01L2300/16Surface properties and coatings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本发明公开了一种微流控芯片及其制备方法。芯片包括经过疏水改性的芯片基底,芯片基底上覆有磷脂膜,磷脂膜上镶嵌有经过核苷酸修饰物修饰后的跨膜蛋白。经疏水改性的芯片基底在电解质溶液浸润后,可以实现与磷脂膜的稳定结合;经稳定化处理的两性磷脂分子具有更高的成膜率,其在芯片基底形成磷脂膜后,具有更好的稳定性,可实现更长时间的测序工作;经核苷酸修饰的跨膜蛋白可嵌入磷脂膜,作为生物纳米孔实现基因测序工作,经过核苷酸化修饰,其在基因测序的效率及准确性上都有较大的提升。采用本发明所述的生物纳米孔微流芯片系统,可大大提升自动化基因测序速度,测序准确性并有效降低测序成本。

Description

一种微流控芯片及其制备方法
技术领域
本发明属于生物科学技术领域,具体涉及一种微流控芯片及其制备方法。
背景技术
近年来,随着“精准医疗”概念的提出以及大数据时代的到来,对人类基因的测序工作在提升国民健康水平的过程中占有越来越重的地位。其中,生物纳米孔基因测序技术因其良好的测序准确性,高效的测序速度以及低廉的测序成本获到广泛重视。
作为生物纳米孔基因测序技术的核心,微流芯片系统在纳米孔测序技术的研发中占有至关重要的地位。然而,该类型芯片的研发还未成熟,在准确性、稳定性以及使用寿命等方面仍需不断改善以满足临床测试要求。因此,如何提升微流芯片系统的稳定性,准确性以及使用寿命,已成为影响其在生物医疗行业中得到进一步应用的重要因素之一。
发明内容
针对上述现有技术,本发明提供一种微流控芯片及其制备方法,以解决现有的微流芯片稳定性、准确性及使用寿命不理想的问题。
为了达到上述目的,本发明所采用的技术方案是:提供一种微流控芯片,包括经过疏水改性的芯片基底,芯片基底上覆有磷脂膜,磷脂膜上镶嵌有经过核苷酸修饰物修饰后的跨膜蛋白。
在上述技术方案的基础上,本发明还可以做如下改进。
进一步,跨膜蛋白为α-HL、Msp A或phi29;核苷酸修饰物为亲水聚合物和核苷酸的复合物,亲水聚合物和核苷酸通过共价键连接。
对跨膜蛋白进行核苷酸修饰,可以提高基因测序的灵敏度和准确率。通过在亲水聚合物的端基修饰生物素等能够和蛋白反应的官能团,从而实现聚合物-核苷酸复合物对跨膜蛋白的共价修饰。
进一步,亲水聚合物为聚赖氨酸、聚谷氨酸或聚乙二醇;核苷酸为腺嘌呤核苷酸、胸腺嘧啶核苷酸、胞嘧啶核苷酸或鸟嘌呤核苷酸。
本发明还要求保护一种微流控芯片的制备方法,本发明中微流控芯片的制备方法包括以下步骤:
S1:对芯片基底进行疏水改性;
S2:在疏水改性后的芯片基底上形成磷脂膜;
S3:采用核苷酸修饰物对跨膜蛋白进行修饰改性;
S4:将改性后的跨膜蛋白嵌装到磷脂膜上,完成微流控芯片的制备。
在上述技术方案的基础上,本发明中的制备方法还可以做如下改进。
进一步,芯片基底疏水改性包括以下步骤:
SS1:用Su-8对基片表面进行预处理;
SS2:在预处理后的基片上进行环氧开环;
SS3:将全氟化物接枝到环氧开环后的基片上,得疏水改性芯片基底;
所用基片的材料为聚苯乙烯或聚碳酸酯。
本发明基片的环氧开环将预处理后的基片在氨基乙醇中浸泡即可实现,环氧开环是基片和氨基乙醇反应,从而在基片表面引入羟基官能团,羟基基团再与全氟化合物上的官能团进行化学反应,将全氟化物接枝到基片上,得到疏水改性的基底。全氟化物修饰芯片基底可以更好的稳定磷脂膜,实现长效、稳定的基因测序。
进一步,全氟化物为全氟癸基乙烯、全氟十一烷酸、十七氟十一酰氯、全氟十二烷氨、全氟癸基三甲氧基硅烷和全氟癸基二甲基氯硅烷中的至少一种。
进一步,S2中磷脂膜的形成包括以下步骤:
SS1:将磷脂分子、疏水单体和光引发剂按1:0.5~3:0.5~3的摩尔比混合,得稳定化的两性磷脂分子;
SS2:将稳定化的两性磷脂分子溶于电解质溶液中,得两性磷脂分子溶液;
SS3:将疏水改性后的芯片基底在两性磷脂分子溶液中浸润,然后紫外辐照10~60min,即得。
进一步,稳定化的两性磷脂分子中磷脂分子、疏水单体和光引发剂的摩尔比为1:1:1。
进一步,磷脂分子为二植烷酰基磷脂酰胆碱或二植烷酰基磷脂酰乙醇胺;疏水单体为甲基丙烯酸正丁酯或二甲基丙烯酸乙二醇酯;光引发剂为2,2-二乙氧基-1-苯己酮或2-羟基-2-甲基-1-苯基丙酮。
进一步,改性后的跨膜蛋白通过自组装的方式嵌装到磷脂膜上。
跨膜蛋白在电解质溶液中可以自发形成组装结构,因此,本发明中的微流控芯片制备方法简便,可以快速得到性能优良的微流芯片。
本发明的有益效果是:本发明创造性的在芯片基底、磷脂分子以及跨膜蛋白方面进行了改进,提升芯片基底对磷脂膜的结合力、磷脂膜的成膜稳定性以及跨膜蛋白纳米孔对基因序列的识别能力,从而实现更加精准、稳定、持久的基因测序工作。
具体实施方式
下面结合实施例对本发明的具体实施方式做详细的说明。
实施例一
一种微流控芯片,包括经过疏水改性的芯片基底,芯片基底中的基片用聚苯乙烯制成;芯片基底上覆有磷脂膜,磷脂膜上镶嵌有经过PEG-腺嘌呤核苷酸复合物修饰后的跨膜蛋白α-HL。本实施例中的微流控芯片经过以下步骤制得:
S1:先用Su-8对聚苯乙烯基片表面进行预处理;然后用氨基乙醇浸泡预处理后的基片,以在基片上进行环氧开环;再用全氟癸基二甲基氯硅烷进行氟化修饰,得到疏水改性的芯片基底;
S2:将二植烷酰基磷脂酰乙醇胺(DPhPE)、甲基丙烯酸正丁酯(BMA)、二甲基丙烯酸乙二醇酯(EGDMA)和2,2-二乙氧基-1-苯己酮(DEAP)按1:1:1:1的摩尔比混合,得稳定化的两性磷脂分子,然后将稳定化的两性磷脂分子溶于PBS溶液中,得两性磷脂分子溶液;
S3:将疏水改性的芯片基底在两性磷脂分子溶液中浸润,然后紫外辐照30min,在芯片基底上形成稳定的磷脂膜;
S4:用PEG-腺嘌呤核苷酸复合物修饰α-HL跨膜蛋白,制备基因测序准确性更高的蛋白纳米孔;
S5:将核苷酸化修饰的α-HL跨膜蛋白嵌入磷脂膜,构建得到微流控芯片。
实施例二
一种微流控芯片,包括经过疏水改性的芯片基底,芯片基底中的基片用聚苯乙烯制成;芯片基底上覆有磷脂膜,磷脂膜上镶嵌有经过PEG-胸腺嘧啶核苷酸复合物修饰后的跨膜蛋白Msp A。本实施例中的微流控芯片经过以下步骤制得:
S1:先用Su-8对聚苯乙烯基片表面进行预处理;然后用氨基乙醇浸泡预处理后的基片,以在基片上进行环氧开环;再用全全氟癸基三甲氧基硅烷进行氟化修饰,得到疏水改性的芯片基底;
S2:将二植烷酰基磷脂酰乙醇胺(DPhPE)、甲基丙烯酸正丁酯(BMA)和2,2-二乙氧基-1-苯己酮(DEAP)按1:1:1的摩尔比混合,得稳定化的两性磷脂分子,然后将稳定化的两性磷脂分子溶于生理盐水中,得两性磷脂分子溶液;
S3:将疏水改性的芯片基底在两性磷脂分子溶液中浸润,然后紫外辐照30min,在芯片基底上形成稳定的磷脂膜;
S4:用PEG-胸腺嘧啶核苷酸复合物修饰Msp A跨膜蛋白,制备基因测序准确性更高的蛋白纳米孔;
S5:将核苷酸化修饰的Msp A跨膜蛋白嵌入磷脂膜,构建得到微流控芯片。
实施例三
一种微流控芯片,包括经过疏水改性的芯片基底,芯片基底中的基片用聚苯乙烯制成;芯片基底上覆有磷脂膜,磷脂膜上镶嵌有经过聚赖氨酸-腺嘌呤核苷酸复合物修饰后的跨膜蛋白α-HL。本实施例中的微流控芯片经过以下步骤制得:
S1:先用Su-8对聚苯乙烯基片表面进行预处理;然后用氨基乙醇浸泡预处理后的基片,以在基片上进行环氧开环;再用全氟癸基二甲基氯硅烷进行氟化修饰,得到疏水改性的芯片基底;
S2:将二植烷酰基磷脂酰乙醇胺(DPhPE)、甲基丙烯酸正丁酯(BMA)、二甲基丙烯酸乙二醇酯(EGDMA)和2,2-二乙氧基-1-苯己酮(DEAP)按1:1:1:1的摩尔比混合,得稳定化的两性磷脂分子,然后将稳定化的两性磷脂分子溶于PBS溶液中,得两性磷脂分子溶液;
S3:将疏水改性的芯片基底在两性磷脂分子溶液中浸润;
S4:用聚赖氨酸-腺嘌呤核苷酸复合物修饰α-HL跨膜蛋白,制备基因测序准确性更高的蛋白纳米孔,然后将核苷酸化修饰的α-HL跨膜蛋白接枝到芯片基底表面的两性磷脂分子上;
S5:紫外辐照30min,得到微流控芯片。
实施例四
一种微流控芯片,包括经过疏水改性的芯片基底,芯片基底中的基片用聚苯乙烯制成;芯片基底上覆有磷脂膜,磷脂膜上镶嵌有经过PEG-腺嘌呤核苷酸复合物修饰后的跨膜蛋白phi29。本实施例中的微流控芯片经过以下步骤制得:
S1:先用Su-8对聚苯乙烯基片表面进行预处理;然后用氨基乙醇浸泡预处理后的基片,以在基片上进行环氧开环;再用十七氟十一酰氯进行氟化修饰,得到疏水改性的芯片基底;
S2:将二植烷酰基磷脂酰乙醇胺(DPhPE)、甲基丙烯酸正丁酯(BMA)、二甲基丙烯酸乙二醇酯(EGDMA)和2,2-二乙氧基-1-苯己酮(DEAP)按1:1:1:1的摩尔比混合,得稳定化的两性磷脂分子,然后将稳定化的两性磷脂分子溶于PBS溶液中,得两性磷脂分子溶液;
S3:将疏水改性的芯片基底在两性磷脂分子溶液中浸润,然后紫外辐照40min,在芯片基底上形成稳定的磷脂膜;
S4:用PEG-腺嘌呤核苷酸复合物修饰phi29跨膜蛋白,制备基因测序准确性更高的蛋白纳米孔;
S5:将核苷酸化修饰的phi29跨膜蛋白嵌入磷脂膜,构建得到微流控芯片。
实施例五
一种微流控芯片,包括经过疏水改性的芯片基底,芯片基底中的基片用聚苯乙烯制成;芯片基底上覆有磷脂膜,磷脂膜上镶嵌有经过聚谷氨酸-腺嘌呤核苷酸复合物修饰后的跨膜蛋白α-HL。本实施例中的微流控芯片经过以下步骤制得:
S1:先用Su-8对聚苯乙烯基片表面进行预处理;然后用氨基乙醇浸泡预处理后的基片,以在基片上进行环氧开环;再用全氟癸基二甲基氯硅烷进行氟化修饰,得到疏水改性的芯片基底;
S2:将二植烷酰基磷脂酰乙醇胺(DPhPE)、甲基丙烯酸正丁酯(BMA)、二甲基丙烯酸乙二醇酯(EGDMA)和2,2-二乙氧基-1-苯己酮(DEAP)按1:2:2:2的摩尔比混合,得稳定化的两性磷脂分子,然后将稳定化的两性磷脂分子溶于生理盐水中,得两性磷脂分子溶液;
S3:将疏水改性的芯片基底在两性磷脂分子溶液中浸润;
S4:用聚谷氨酸-腺嘌呤核苷酸复合物修饰α-HL跨膜蛋白,制备基因测序准确性更高的蛋白纳米孔,然后将核苷酸化修饰的α-HL跨膜蛋白接枝到芯片基底表面的两性磷脂分子上;
S5:紫外辐照30min,得到微流控芯片。
实施例六
一种微流控芯片,包括经过疏水改性的芯片基底,芯片基底中的基片用聚苯乙烯制成;芯片基底上覆有磷脂膜,磷脂膜上镶嵌有经过聚赖氨酸-鸟嘌呤核苷酸复合物修饰后的跨膜蛋白Msp A。本实施例中的微流控芯片经过以下步骤制得:
S1:先用Su-8对聚苯乙烯基片表面进行预处理;然后用氨基乙醇浸泡预处理后的基片,以在基片上进行环氧开环;再用全氟癸基三甲氧基硅氧烷进行氟化修饰,得到疏水改性的芯片基底;
S2:将二植烷酰基磷脂酰乙醇胺(DPhPE)、甲基丙烯酸正丁酯(BMA)、二甲基丙烯酸乙二醇酯(EGDMA)和2,2-二乙氧基-1-苯己酮(DEAP)按1:0.5:0.5:0.5的摩尔比混合,得稳定化的两性磷脂分子,然后将稳定化的两性磷脂分子溶于PBS溶液中,得两性磷脂分子溶液;
S3:将疏水改性的芯片基底在两性磷脂分子溶液中浸润;
S4:用聚赖氨酸-鸟嘌呤核苷酸复合物修饰Msp A跨膜蛋白,制备基因测序准确性更高的蛋白纳米孔,然后将核苷酸化修饰的Msp A跨膜蛋白接枝到芯片基底表面的两性磷脂分子上;
S5:紫外辐照30min,得到微流控芯片。
虽然结合实施例对本发明的具体实施方式进行了详细地描述,但不应理解为对本专利的保护范围的限定。在权利要求书所描述的范围内,本领域技术人员不经创造性劳动即可作出的各种修改和变形仍属本专利的保护范围。

Claims (10)

1.一种微流控芯片,其特征在于:包括经过疏水改性的芯片基底,所述芯片基底上覆有磷脂膜,所述磷脂膜上镶嵌有经过核苷酸修饰物修饰后的跨膜蛋白。
2.根据权利要求1所述的微流控芯片,其特征在于:所述跨膜蛋白为α-HL、Msp A或phi29;所述核苷酸修饰物为亲水聚合物和核苷酸的复合物,所述复合物中亲水聚合物和核苷酸通过共价键连接。
3.根据权利要求2所述的微流控芯片,其特征在于:所述亲水聚合物为聚赖氨酸、聚谷氨酸或聚乙二醇;所述核苷酸为腺嘌呤核苷酸、胸腺嘧啶核苷酸、胞嘧啶核苷酸或鸟嘌呤核苷酸。
4.如权利要求1~3任一项所述的微流控芯片的制备方法,其特征在于,包括以下步骤:
S1:对芯片基底进行疏水改性;
S2:在疏水改性后的芯片基底上形成磷脂膜;
S3:采用核苷酸修饰物对跨膜蛋白进行修饰改性;
S4:将改性后的跨膜蛋白嵌装到磷脂膜上,完成微流控芯片的制备。
5.根据权利要求4所述的制备方法,其特征在于,芯片基底疏水改性包括以下步骤:
SS1:用Su-8对基片表面进行预处理;
SS2:在预处理后的基片上进行环氧开环;
SS3:将全氟化物接枝到环氧开环后的基片上,得疏水改性芯片基底;
所述基片材料为聚苯乙烯或聚碳酸酯。
6.根据权利要求5所述的制备方法,其特征在于:所述全氟化物为全氟癸基乙烯、全氟十一烷酸、十七氟十一酰氯、全氟十二烷氨、全氟癸基三甲氧基硅烷和全氟癸基二甲基氯硅烷中的至少一种。
7.根据权利要求4所述的制备方法,其特征在于,S2中磷脂膜的形成包括以下步骤:
SS1:将磷脂分子、疏水单体和光引发剂按1:0.5~3:0.5~3的摩尔比混合,得稳定化的两性磷脂分子;
SS2:将稳定化的两性磷脂分子溶于电解质溶液中,得两性磷脂分子溶液;
SS3:将疏水改性后的芯片基底在两性磷脂分子溶液中浸润,然后紫外辐照10~60min,即得。
8.根据权利要求7所述的制备方法,其特征在于:所述稳定化的两性磷脂分子中磷脂分子、疏水单体和光引发剂的摩尔比为1:1:1。
9.采用权利要求7或8所述的制备方法,其特征在于:所述磷脂分子为二植烷酰基磷脂酰胆碱和/或二植烷酰基磷脂酰乙醇胺;所述疏水单体为甲基丙烯酸正丁酯和/或二甲基丙烯酸乙二醇酯;所述光引发剂为2,2-二乙氧基-1-苯己酮和/或2-羟基-2-甲基-1-苯基丙酮。
10.根据权利要求4所述的制备方法,其特征在于:改性后的跨膜蛋白通过自组装的方式嵌装到磷脂膜上。
CN202010345010.4A 2020-04-27 2020-04-27 一种微流控芯片及其制备方法 Active CN111514949B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010345010.4A CN111514949B (zh) 2020-04-27 2020-04-27 一种微流控芯片及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010345010.4A CN111514949B (zh) 2020-04-27 2020-04-27 一种微流控芯片及其制备方法

Publications (2)

Publication Number Publication Date
CN111514949A true CN111514949A (zh) 2020-08-11
CN111514949B CN111514949B (zh) 2020-12-01

Family

ID=71902835

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010345010.4A Active CN111514949B (zh) 2020-04-27 2020-04-27 一种微流控芯片及其制备方法

Country Status (1)

Country Link
CN (1) CN111514949B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113402768A (zh) * 2021-07-06 2021-09-17 四川大学 一种用于纳米孔测序的磷脂双层膜及其制备方法
CN113416344A (zh) * 2021-07-06 2021-09-21 四川大学 一种纳米孔基因测序用光交联磷脂双层膜及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101038290A (zh) * 2006-03-17 2007-09-19 中国科学院力学研究所 一种双脂膜表面改性的蛋白质芯片及其制备方法和用途
CN102258947A (zh) * 2011-05-23 2011-11-30 苏州市新能膜材料科技有限公司 卵磷脂自组装交联仿生改性聚合物膜材料及其制备方法
CN103443624A (zh) * 2007-03-26 2013-12-11 纳米系统公司 形成受控单分子层的方法和装置
CN104080462A (zh) * 2011-12-16 2014-10-01 塔尔盖特基因生物技术有限公司 用于修饰预定的靶核酸序列的组合物和方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101038290A (zh) * 2006-03-17 2007-09-19 中国科学院力学研究所 一种双脂膜表面改性的蛋白质芯片及其制备方法和用途
CN103443624A (zh) * 2007-03-26 2013-12-11 纳米系统公司 形成受控单分子层的方法和装置
CN102258947A (zh) * 2011-05-23 2011-11-30 苏州市新能膜材料科技有限公司 卵磷脂自组装交联仿生改性聚合物膜材料及其制备方法
CN104080462A (zh) * 2011-12-16 2014-10-01 塔尔盖特基因生物技术有限公司 用于修饰预定的靶核酸序列的组合物和方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MAGDALENA A. CZEKALSKA等: "Passive and parallel microfluidic formation of droplet interface bilayers (DIBs) for measurement of leakage of small molecules through artificial phospholipid membranes", 《SENSORS AND ACTUATORS B: CHEMICAL》 *
SHIMUL C. SAHA等: "Screening ion-channel ligand interactions with passive pumping in a microfluidic bilayer lipid membrane chip", 《BIOMICROFLUIDICS》 *
TIINA SIKANEN等: "Dynamic coating of SU-8 microfluidic chips with phospholipid disks", 《ELECTROPHORESIS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113402768A (zh) * 2021-07-06 2021-09-17 四川大学 一种用于纳米孔测序的磷脂双层膜及其制备方法
CN113416344A (zh) * 2021-07-06 2021-09-21 四川大学 一种纳米孔基因测序用光交联磷脂双层膜及其制备方法

Also Published As

Publication number Publication date
CN111514949B (zh) 2020-12-01

Similar Documents

Publication Publication Date Title
CN111514949B (zh) 一种微流控芯片及其制备方法
CN103881126B (zh) 一种用于提高材料血液相容性的方法
JP4195726B2 (ja) 非凝血塊形成性ポリマーおよび抗凝血塊形成性ポリマー
CN1754893A (zh) 用于基于酶电化学的传感器的离子性亲水性的高分子量氧化还原聚合物
CN113317785B (zh) 一种选择性渗透的生物相容性膜及其制备方法与应用
US10323132B2 (en) Polymer and crosslinked body thereof
CN101429287B (zh) 一种高抗凝血纤维素膜材料及其制备方法
CN106832382B (zh) 一种双仿生多巴胺磷酰胆碱物质的涂覆方法
JP2010057745A (ja) 医療用材料
CN104744635A (zh) 一种双仿生聚合物的制备方法
CN106474568A (zh) 表面改性金属及金属表面的改性方法
CN108129687B (zh) 一种表面为磷酰胆碱的仿细胞外层膜结构涂层的制备方法
Ishihara et al. Improvement of blood compatibility on cellulose hemodialysis membrane: IV. Phospholipid polymer bonded to the membrane surface
CN106466562B (zh) 抗凝血血液透析膜的制备方法
CN100534596C (zh) 含反应性基团磷脂改性腈纶超细纤维膜的制备方法和应用
CN111617311B (zh) 一种基于碱基自组装的强韧性自修复组织黏附水凝胶材料的制备方法及应用
WO2020181857A1 (zh) 一种医用管材及其制备方法
CN107312176B (zh) 多羧基八苯基笼型倍半硅氧烷杂化纳米硅橡胶及其制备方法和应用
CN106905554B (zh) 一种含有氨基的磷酰胆碱聚合物与戊二醛仿生涂层增密的方法
CN113372608B (zh) 一种PNIPAAm(AM)/DA复合印迹凝胶及其制备方法与应用
CN110721602B (zh) 维生素b6/超支化聚合物改性聚合物膜及其制备方法和应用
CN106496587B (zh) 一种线型聚乙二醇-树枝型聚(硫醚-胺)嵌段共聚物的制备方法
CN111635496B (zh) 一种温敏性细胞培养板及其制备方法
CN111892689A (zh) 一种核酸水凝胶及其制备方法
CN111410768A (zh) 一种三组分智能聚合物修饰的多孔膜材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant