CN111509404B - 用于卫星广播数据接收与风廓线测量的多功能相控阵天线 - Google Patents

用于卫星广播数据接收与风廓线测量的多功能相控阵天线 Download PDF

Info

Publication number
CN111509404B
CN111509404B CN202010264003.1A CN202010264003A CN111509404B CN 111509404 B CN111509404 B CN 111509404B CN 202010264003 A CN202010264003 A CN 202010264003A CN 111509404 B CN111509404 B CN 111509404B
Authority
CN
China
Prior art keywords
antenna
channel
receiving
wind profile
waveband
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010264003.1A
Other languages
English (en)
Other versions
CN111509404A (zh
Inventor
王选钢
黄轶
高细桥
张加坤
程志伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Jinjiang Electronic System Engineering Co Ltd
Original Assignee
Chengdu Jinjiang Electronic System Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Jinjiang Electronic System Engineering Co Ltd filed Critical Chengdu Jinjiang Electronic System Engineering Co Ltd
Priority to CN202010264003.1A priority Critical patent/CN111509404B/zh
Publication of CN111509404A publication Critical patent/CN111509404A/zh
Application granted granted Critical
Publication of CN111509404B publication Critical patent/CN111509404B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/95Radar or analogous systems specially adapted for specific applications for meteorological use
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/342Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes
    • H01Q5/357Individual or coupled radiating elements, each element being fed in an unspecified way for different propagation modes using a single feed point
    • H01Q5/364Creating multiple current paths
    • H01Q5/371Branching current paths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S2013/0236Special technical features
    • G01S2013/0245Radar with phased array antenna

Abstract

本发明涉及一种用于卫星广播数据接收与风廓线测量的多功能相控阵天线,包括天线罩、天线阵列、TR组件、安装框架、馈电网络、波控电源板、组合导航等部分,用于卫星广播数据接收与风廓线测量的多功能相控阵天线,通过一部共口径相控阵天线完成卫星气象广播数据接收和风廓线雷达信号收发,二者可同时进行,互不干扰。采多功能相控阵天线以接收我国自主气象卫星为主,接收国外气象卫星为辅;用于风廓线测量的信号发射功率不低于2kW,满足边界层风廓线探测需求。

Description

用于卫星广播数据接收与风廓线测量的多功能相控阵天线
技术领域
本发明涉及天线领域,具体涉及一种用于卫星广播数据接收与风廓线测量的多功能相控阵天线。
背景技术
高机动伴随式气象保障是抢险救灾、专机护航、信息化作战等的有力保证,此类设备多采用车辆、舰船为平台,集成多种气象观测系统,可综合地基、空基、天基观测的气象水文信息。随着气象保障对探测要素需求的增加,车辆、舰船等平台安装的设备越来越多,安装位置非常拥挤,电磁环境更加复杂。
发明内容
本发明的目的在于克服现有技术的不足,提供一种用于卫星广播数据接收与风廓线测量的多功能相控阵天线,通过一部共口径相控阵天线完成卫星气象广播数据接收和风廓线雷达信号收发,二者可同时进行,互不干扰。采多功能相控阵天线以接收我国自主气象卫星为主,接收国外气象卫星为辅;用于风廓线测量的信号发射功率不低于2kW,满足边界层风廓线探测需求。
本发明的目的是通过以下技术方案来实现的:
一种用于卫星广播数据接收与风廓线测量的多功能相控阵天线,包括:
由天线单元按照矩阵排列组成的天线阵列,每个天线单元包括L1和L2两个频段,其中L1频段用于接收卫星信号,L2频段用于风廓线测量信号收发;
由L1波段双极化接收通道和L2波段水平极化收发通道组成的TR组件,L2波段水平极化收发通道由一个接收通道和一个发射通道组成,该接收通道和发射通道通过环形器相连,环形器通过L1与L2波段的双工器与天线阵列连接;L1波段垂直极化接收通道与天线阵列连接,L1波段水平极化接收通道通过L1与L2波段的双工器与天线阵列连接;
馈电网络,包括发射馈电网络和接收馈电网络,是组件收发信号合成通道,用于将TR组件中的L1波段E极化、H极化分别合成后,通过极化跟踪模块实现线极化跟踪,同时将L2波段接收合成后形成接收通道,将L2波段发射合成后形成发射通道;
以及用于将外部输入的AC电压转变为DC电压的电源单元,卫星信号接收与风廓线测量信号收发独立工作、互补干扰,两个天线波束可以同时存在;
L1波段水平极化接收通道增加有抗干扰模组,L2波段水平极化发射通道也增加有抗干扰模组。
进一步的,所述天线单元采用双频段设计,天线形式为微带天线,采用双层贴片拓宽工作带宽;
一个天线阵列中包含116个天线单元,对于L2频段,天线通过馈电网络对不同天线单元的辐射功率进行泰勒加权,实现发射的低副瓣。
进一步的,所述L1波段双极化接收通道由两个L1波段接收通道组成,每个接收通道由依次连接的滤波器、限幅低噪声放大器、低噪声放大器、数控衰减器、数控移相器以及相应连接器、控制电路组成。
进一步的,所述L2波段水平极化收发通道中:
发射通道由依次连接的驱动放大器、数控移相器、数控衰减器、驱动放大器、功率放大器、耦合器以及相应的连接器、控制电路组成;
接收通道由依次连接的限幅低噪声放大器、低噪声放大器、数控衰减器、数控移相器以及相应连接器、控制电路组成。
进一步的,所述L1波段的水平极化接收通道增加有抗干扰模组,该抗干扰模组包括相应的滤波器和相应的低噪声放大器,增加抗干扰模组后的水平极化接收通道包括依次连接的限幅低噪声放大器、低噪声放大器、第一级滤波器、低噪声放大器、数控衰减器、数控移相器、SAW滤波器、低噪声放大器、SAW滤波器;其中第一级滤波器有80dB的带外抑制,两级SAW滤波器有90dB抑制,同时,在天线的卫通输出口串联带通滤波器,带外抑制60dB,总的抑制度为230dB。
进一步的,所述L2波段水平极化发射通道增加有发射信号抗干扰模组,该发射信号抗干扰模组包括相应的滤波器,增加抗干扰模组后的L2波段水平极化发射通道包括依次连接的滤波器、驱动放大器、数控衰减器、数控移相器、滤波器、驱动放大器、功率放大器、耦合器。
本发明的有益效果是:
(1)卫星数据接收采用相控阵技术,具有低轮廓、对星时间短、跟踪速度等优点,能在平台方向改变、颠簸、大范围移动等情况下稳定接收卫星气象数据,显著提高卫星气象广播数据接收的动中通能力。
(2)风廓线测量信号通过二维相控阵天线收发,波束指向灵活,实时校正波束指向补偿平台姿态,具备运动状态下风廓线测量能力。
(3)天线集成卫星接收和风廓线雷达收发功能,比目前的分立装备减少一个天线安装位置,更适用于集成度要求高的机动型气象保障装备。
附图说明
图1为相控阵天线工作原理框图;
图2为相控阵天线阵列布局示意图;
图3为馈电网络原理图;
图4为TR组件原理框图;
图5为发射对接收的干扰示意图;
图6为抗干扰设计原理框图;
图7为姿态补偿算法坐标系转换图。
具体实施方式
下面结合具体实施例进一步详细描述本发明的技术方案,但本发明的保护范围不局限于以下所述。
如图1所示,一种用于卫星广播数据接收与风廓线测量的多功能相控阵天线,包括天线罩、天线阵列、TR组件、安装框架、馈电网络、波控电源板、组合导航等部分。多功能相控阵天线主要接收气象卫星L波段(1670-1710MHz,以下称为L1波段)广播的气象信号,并下变频,为卫星中频接收机提供输入信号;发射L波段(1280-1300MHz,以下称为L2波段)的大功率脉冲信号,接收湍流反射的L2波段回波信号并下变频,为风廓线雷达数字中频接收机提供输入信号。卫星信号接收与风廓线测量信号在两个频段并行进行接收和发射,互不干扰,2个天线波束可以同时存在。主要完成L波段卫星接收、L波段雷达信号收发、卫星跟踪等功能,可应用于船载等运动平台,在运动状态下实时接收来自卫星的气象数据,多种功能天线相互之间独立工作,互不干扰,2个天线波束可以同时存在。天线阵列由天线单元按照矩阵排列组成,其结构可参考图2所示。一个天线阵列中包含116个天线单元,对于L2频段,天线通过馈电网络对不同天线单元的辐射功率进行泰勒加权,实现发射的低副瓣。每个天线单元包括L1和L2两个频段,其中L1频段用于接收卫星信号,L2频段用于风廓线测量信号收发。换言之,每个天线单元包含L1、L2两个频段,并支持多种极化。TR组件包括L1频段接收通道,完成卫星信号的接收放大和下变频,并输出信号供跟踪板卡进行卫星信标跟踪算法处理;L2频段发射和接收通道,完成风廓线雷达信号的收发,采用模拟的馈电网络把多个TR组件的功率分配和信号合成整合在一起,形成一个中频模拟通道输出给雷达数字中频接收机。
馈电网络,馈电网络的主要功能是实现组件与系统接口间的接收信号合成、发射信号分配。馈电网络包含发射馈电网络和接收馈电网络,是组件收发信号合成通道,其原理参考图3所示。用于将TR组件中的L1波段E极化、H极化分别合成后,通过极化跟踪模块实现线极化跟踪,同时将116个天线单元的L2波段接收合成后形成接收通道,将116个天线单元的L2波段发射合成后形成发射通道。
TR组件由L1波段双极化接收通道和L2波段水平极化收发通道组成;L2波段水平极化收发通道由一个接收通道和一个发射通道组成,该接收通道和发射通道通过环形器相连,环形器通过L1与L2波段的双工器与天线阵列连接;L1波段垂直极化接收通道与天线阵列连接,L1波段水平极化接收通道通过L1与L2波段的双工器与天线阵列连接,其系统示意图可参考图4所示。
L1波段双极化接收通道由两个L1波段接收通道组成,每个接收通道由限幅低噪声放大器、低噪声放大器、数控衰减器、数控移相器以及相应连接器、控制电路等组成,限幅低噪声放大器和低噪声放大器完成接收信号放大功能,其中限幅低噪声放大器对通道起限幅保护作用,滤波器完成对接收信号以外信号频率过滤功能,防止低噪声放大器饱和;数控衰减器完成对该路接收信号幅度控制功能;数控移相器完成对该路接收信号相位控制功能。
L2波段水平极化收发通道由一个接收通道和一个发射通道组成。发射通道由依次连接的驱动放大器、数控移相器、数控衰减器、驱动放大器、功率放大器、耦合器以及相应的连接器、控制电路组成。功率放大器和驱动声放大器完成发射信号的放大功能;数控衰减器完成对该路接收信号幅度控制功能;数控移相器完成对该路接收信号相位控制功能;耦合器完成对功率放大器输出的发射信号耦合部分能量输出反馈功能。接收通道由限幅低噪声放大器、低噪声放大器、数控衰减器、数控移相器以及相应连接器、控制电路等组成,限幅低噪声放大器和低噪声放大器完成接收信号放大功能,其中限幅低噪声放大器对通道起限幅保护作用,滤波器完成对接收信号以外信号频率过滤功能,防止低噪声放大器饱和;数控衰减器完成对该路接收信号幅度控制功能;数控移相器完成对该路接收信号相位控制功能。
以及用于将外部输入的AC电压转变为DC电压的电源单元。电源单元主要功能为电源转换功能,将外部输入的AC电压转变为DC电压,并进行二次变换,具有输出过压及过流保护功能,同时具备温度保护功能,高温自动关机。AC-DC电源模块实现外部输入交流电转换成设备内部所需直流28V电源;DC-DC电源转换板实现28V直流电源转换为波控和组件所需的5V电压和电压。为了满足脉冲峰值功率供电,通道供电前段设计储能电路。
作为本实施例的进一步改进,由于载体机动性强,运动轨迹受通行条件的影响具有很强的不确定性,导致天线在方位和俯仰方向产生偏差,偏差的主要来源:一是载体的角运动偏差,二是载体的线运动偏差。卫星跟踪的主要目的是在载体移动过程中,使天线能够实时对准卫星。卫星跟踪通常情况有五种方式:极值跟踪方式、单脉冲跟踪方式、圆锥扫描跟踪方式、卫星导航加惯性导航使用程序引导跟踪方式、复合跟踪方式。
表 1跟踪方式比较表
Figure 522595DEST_PATH_IMAGE001
综合极大值、圆锥扫描等多种跟踪方式,结合相控阵天线体制,采用改进型复合跟踪方法:该方法采用组合导航系统,由惯性测量单元、GNSS(Global Navigation SatelliteSystem)接收板卡、双北斗天线、信标机等组成,惯性测量单元采用MEMS传感器,通过多传感器融合及导航解算算法实现。该系统能够利用GNSS接收机接收到的卫星定位信息进行组合导航,输出载体的俯仰、横滚、航向、位置、速度、时间等信息。失去信号后输出惯性解算的位置速度姿态,短时间内具备一定的导航精度保持功能。
组合导航系统以卫星导航信息作为基准,进行组合导航,对惯导的导航误差进行修正,作为提高惯导姿态测量精度的辅助手段,部分弥补低成本惯导精度差的缺陷。此组合导航技术有以下三方面优势:
(1)通常惯性器件的输出频率可以达到50Hz或者更高,一旦北斗定姿系统初始化成功,通过传递方式对惯性器件进行初始化之后,就可以利用惯性器件的输出作为插值,从而提高整个系统的数据更新率。即使存在北斗定姿系统敏感轴和惯性器件敏感轴存在失准角的情况下,也不会造成大的误差,因为通过安装时的标定手段,可以将失准角限制在小角度的范围之内,这时失准角对短时间内的姿态解算不会造成大的误差;
(2)因为即使在惯性器件没有初始化的前提下,仍然能够以较高的精度测量前后两个位置之间的相对姿态变化量,通过该信息,结合北斗定姿系统前后两次姿态测量的结果,可以验证北斗定姿结果的正确性,从而帮助北斗定姿系统在初始化阶段提高成功率;
(3)由于北斗定姿的成功率取决于北斗信号的质量,在干扰过大的环境,容易造成定姿结果波动较大,数据的短期稳定性不好,更进一步,可能造成定姿失败。通过惯性器件提供的高频姿态信息,可以平滑短时间内北斗定姿结果的波动,提高系统短期稳定性;此外通过姿态角信息可以在北斗定姿失败时辅助模糊度求解,提高系统的再次初始化速度。
如图6所示,作为一种优选实施例,所述L1波段的水平极化接收通道增加有抗干扰模组,该抗干扰模组包括相应的滤波器和相应的低噪声放大器,增加抗干扰模组后的水平极化接收通道包括依次连接的限幅低噪声放大器、低噪声放大器、第一级滤波器、低噪声放大器、数控衰减器、数控移相器、SAW滤波器、低噪声放大器、SAW滤波器;其中第一级滤波器有80dB的带外抑制,两级SAW滤波器有90dB抑制,同时,在天线的卫通输出口串联带通滤波器,带外抑制60dB,总的抑制度为230dB。所述L2波段水平极化发射通道增加有发射信号抗干扰模组,该抗干扰模组包括相应的滤波器,增加抗干扰模组后的L2波段水平极化发射通道包括依次连接的滤波器、驱动放大器、数控衰减器、数控移相器、滤波器、驱动放大器、功率放大器、耦合器。
天线在L1、L2两个频段上并行进行接收和发射,其中风廓线雷达发射信号为水平极化,与卫星接收水平极化通道存在相互干扰。同时工作时(特别是风廓线雷达发射脉冲期间),模拟器件在对方的高频辐射下都有可能产生杂波、串扰、互调等反应,影响彼此的通道信号效果,必须充分隔离多个频段的电磁影响,做好屏蔽、隔断、接地等防范措施。对于全双工天线,主要针对发射信号对接收的影响、发射噪声对接收的影响两个方面进行分析。发射对接收的影响如图5所示。由于风廓线雷达发射频率与卫星接收频率不同,TR组件设计时针对风廓线发射通道和卫星接收水平极化通道的抗干扰设计如所示。接收端通过低损耗、高带外抑制能力的滤波器来有效的抑制发射信号;在发射功放之后增加收阻滤波器,抑制各接收频段的噪声、杂散,确保发射端的带外噪声耦合到接收天线口面的电平不引起信噪比恶化,从而避免发射系统对接收性能的影响。
发阻设计分析:风廓线雷达的发射信号对于卫星通信而言,属于带外干扰,可以通过滤波器进行滤波。在卫通接收链路,第一级的腔体滤波器有80dB的带外抑制,位于LNA之后的两级SAW滤波器可以有90dB抑制,在天线的卫通输出口串联带通滤波器,带外抑制60dB,总的抑制度为230dB。抑制后雷达的信号功率为47dBm-230dB=-183dBm,在卫通输出口的干扰功率已经低于低噪(-174dBm),因此不会对卫通造成干扰。
收阻设计分析:风廓线雷达发射通道的噪声(带外干扰),对于卫通接收通道而言属于带内噪声,可通过发射通道自身进行抑制。在发射通道增加收阻滤波器,首先在前级通过加入两级介质滤波器,有80dB抑制;功放末端的腔体滤波器有80dB的带外抑制,则针对接收信号的总抑制度为160dB。雷达发射通道的增益为40dB,则收阻抑制度为120dB。发射通道的噪声输入功率为-60dBm,则带外噪声功率为-180dBm,低于卫通接收信号的低噪(-174dBm),不会对卫通造成带内干扰。
作为一种优选实施例,本发明还提供一个基于相控阵天线的平台姿态补偿方法,平台姿态补偿技术即在船体的实际运动中,由于各种因素的影响,会造成平台的运动姿态在实时无序的改变,所以就需要在卫星跟踪过程中,通过天线波束的切换实时消除这种无序姿态变化对天线波束对准卫星的影响。相控阵天线具有波束切换迅速、不受外界环境因素影响等特点,尤其适合于采用程序计算方式补偿船体姿态变化对卫星跟踪的影响。
已知参数:卫星在地心地固坐标系下的位置:经度、纬度、高度;移动载体地心地固坐标系下的位置:经度、纬度、高度;移动载体的姿态角:偏航角、俯仰角、横滚角;动中通天线波束指向所在坐标系:极坐标系;动中通天线在移动载体上的安装方式。
在已知上述参数的条件下计算出动中通天线对准卫星的波束指向。利用坐标旋转、坐标平移、直角坐标与球坐标的相互转化得到目标点在天线坐标系下的对应角度。计算流程如图7所示,其补充流程步骤为:
(1)已知卫星在经纬高坐标系下的位置:经度LQ、维度BQ和高度HQ;天线在经纬高坐标系下的位置:经度LP、维度BP和高度HP。通过球坐变换,计算得卫星在地固直角坐标系下的位置,地固坐标系的原点为地心QE,XE轴为本初子午线,YE轴为90°经线圈,ZE轴指向北极。同理,通过球坐变换计算得天线在地固直角坐标系下的位置。
(2)根据天线在地固直角坐标系下的位置建立本地坐标系,原点为载体中心QL,XL轴指向天顶,YL轴指向正东,ZL轴指向正北。根据卫星在地固坐标系的位置,计算得卫星在本地坐标系的位置。
(3)建立载体坐标系,原点为载体中心QC,XC轴指向上,YC轴指向右,ZC轴指向前方。通过组合导航获取载体的姿态角:偏航角
Figure 767631DEST_PATH_IMAGE003
、俯仰角
Figure 281789DEST_PATH_IMAGE005
和横滚角
Figure 208157DEST_PATH_IMAGE007
,根据卫星在地固坐标系的位置,通过坐标变换计算得卫星在载体坐标系的位置。
(4)建立天线坐标系,原点为天线中心QA,XA轴为天线阵面X向,YA轴为天线阵面Y向,ZA轴为天线阵面法向。通过天线在载体上的安装方式获取天线的姿态角:偏航角
Figure 553688DEST_PATH_IMAGE009
、俯仰角
Figure 907308DEST_PATH_IMAGE011
和横滚角
Figure 705500DEST_PATH_IMAGE013
,根据卫星在载体坐标系的位置,通过坐标变换计算得卫星在天线坐标系的位置。
(5)根据卫星在天线坐标系的位置,通过直角坐标系转化为球坐标系,计算卫星的方位角
Figure 438488DEST_PATH_IMAGE015
、俯仰角
Figure 638526DEST_PATH_IMAGE017
(6)根据
Figure 428627DEST_PATH_IMAGE015
Figure 714115DEST_PATH_IMAGE017
,天线调整波束指向,使之对准卫星。
以上所述仅是本发明的优选实施方式,应当理解本发明并非局限于本文所披露的形式,不应看作是对其他实施例的排除,而可用于各种其他组合、修改和环境,并能够在本文所述构想范围内,通过上述教导或相关领域的技术或知识进行改动。而本领域人员所进行的改动和变化不脱离本发明的精神和范围,则都应在本发明所附权利要求的保护范围内。

Claims (6)

1.一种用于卫星广播数据接收与风廓线测量的多功能相控阵天线,其特征在于,包括:
由天线单元按照矩阵排列组成的天线阵列,每个天线单元包括L1和L2两个频段,其中L1频段用于接收卫星信号,L2频段用于风廓线测量信号收发;
由L1波段双极化接收通道和L2波段水平极化收发通道组成的TR组件;L2波段水平极化收发通道由一个接收通道和一个发射通道组成,该接收通道和发射通道通过环形器相连,环形器通过L1与L2波段的双工器与天线阵列连接;L1波段垂直极化接收通道与天线阵列连接,L1波段水平极化接收通道通过L1与L2波段的双工器与天线阵列连接;
馈电网络,包括发射馈电网络和接收馈电网络,是组件收发信号合成通道,用于将TR组件中的L1波段E极化、H极化分别合成后,通过极化跟踪模块实现线极化跟踪,同时将L2波段接收合成后形成接收通道,将L2波段发射合成后形成发射通道;
以及用于将外部输入的AC电压转变为DC电压的电源单元,卫星信号接收与风廓线测量信号收发独立工作、互补干扰,两个天线波束可以同时存在;
L1波段水平极化接收通道增加有抗干扰模组,L2波段水平极化发射通道也增加有抗干扰模组。
2.根据权利要求1所述的用于卫星广播数据接收与风廓线测量的多功能相控阵天线,其特征在于,所述天线单元采用双频段设计,天线形式为微带天线,采用双层贴片拓宽工作带宽;
一个天线阵列中包含116个天线单元,对于L2频段,天线通过馈电网络对不同天线单元的辐射功率进行泰勒加权,实现发射的低副瓣。
3.根据权利要求2所述的用于卫星广播数据接收与风廓线测量的多功能相控阵天线,其特征在于,所述L1波段双极化接收通道由两个L1波段接收通道组成,每个接收通道由依次连接的滤波器、限幅低噪声放大器、低噪声放大器、数控衰减器、数控移相器以及相应连接器、控制电路组成。
4.根据权利要求3所述的用于卫星广播数据接收与风廓线测量的多功能相控阵天线,其特征在于,所述L2波段水平极化收发通道中:
发射通道由依次连接的驱动放大器、数控移相器、数控衰减器、驱动放大器、功率放大器、耦合器以及相应的连接器、控制电路组成;
接收通道由依次连接的限幅低噪声放大器、低噪声放大器、数控衰减器、数控移相器以及相应连接器、控制电路组成。
5.根据权利要求1-4中任一项所述的用于卫星广播数据接收与风廓线测量的多功能相控阵天线,其特征在于,所述L1波段的水平极化接收通道增加有抗干扰模组,该抗干扰模组包括相应的滤波器和相应的低噪声放大器,增加抗干扰模组后的水平极化接收通道包括依次连接的限幅低噪声放大器、低噪声放大器、第一级滤波器、低噪声放大器、数控衰减器、数控移相器、SAW滤波器、低噪声放大器、SAW滤波器;其中第一级滤波器有80dB的带外抑制,两级SAW滤波器有90dB抑制,同时,在天线的卫通输出口串联带通滤波器,带外抑制60dB,总的抑制度为230dB。
6.根据权利要求5所述的用于卫星广播数据接收与风廓线测量的多功能相控阵天线,其特征在于,所述L2波段水平极化发射通道增加有发射信号抗干扰模组,该发射信号抗干扰模组包括数控衰减器和相应的滤波器,增加抗干扰模组后的L2波段水平极化发射通道包括依次连接的滤波器、驱动放大器、数控衰减器、数控移相器、滤波器、驱动放大器、功率放大器、耦合器。
CN202010264003.1A 2020-04-07 2020-04-07 用于卫星广播数据接收与风廓线测量的多功能相控阵天线 Active CN111509404B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010264003.1A CN111509404B (zh) 2020-04-07 2020-04-07 用于卫星广播数据接收与风廓线测量的多功能相控阵天线

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010264003.1A CN111509404B (zh) 2020-04-07 2020-04-07 用于卫星广播数据接收与风廓线测量的多功能相控阵天线

Publications (2)

Publication Number Publication Date
CN111509404A CN111509404A (zh) 2020-08-07
CN111509404B true CN111509404B (zh) 2021-08-17

Family

ID=71864085

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010264003.1A Active CN111509404B (zh) 2020-04-07 2020-04-07 用于卫星广播数据接收与风廓线测量的多功能相控阵天线

Country Status (1)

Country Link
CN (1) CN111509404B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112311427B (zh) * 2020-11-18 2021-06-18 成都迅翼卫通科技有限公司 一种卫星通信收发极化切换控制装置
CN112798017B (zh) * 2020-12-29 2022-04-01 中国电子科技集团公司第五十四研究所 一种基于惯导的散射天线对准装置
EP4300841A4 (en) * 2021-03-26 2024-03-20 Huawei Tech Co Ltd PHASE CONTROLLED GROUP DEVICE AND COMMUNICATION DEVICE
CN113659352A (zh) * 2021-07-28 2021-11-16 中国电子科技集团公司第十四研究所 一种星载全极化宽带相控阵天线
CN113933844A (zh) * 2021-10-13 2022-01-14 黄兵 一种相控阵多波段一体化收发雷达及雷达探测方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6432185A (en) * 1987-07-29 1989-02-02 Furuno Electric Co Transmitter and receiver for earth station for satellite navigation and satellite communication
CN1306622A (zh) * 1998-04-22 2001-08-01 西南研究会 用电子顺磁共振响应数据测量含原油地下构造的孔隙率与渗透率
CN1714580A (zh) * 2002-10-25 2005-12-28 哈里公司 通信系统中使用并行调度操作建立通信链路的方法和设备
CN101795459A (zh) * 2010-01-26 2010-08-04 北京邮电大学 无线通信室内覆盖设备及其干扰避让/协调方法
EP2487800A1 (en) * 2011-02-11 2012-08-15 Alcatel Lucent Active antenna arrays
CN104253314A (zh) * 2013-06-28 2014-12-31 耀登科技股份有限公司 移动通信天线系统及其天线模块
CN105242273A (zh) * 2015-05-26 2016-01-13 芜湖航飞科技股份有限公司 一种x波段双线偏振多普勒天气雷达系统
CN105356051A (zh) * 2015-11-16 2016-02-24 中国电子科技集团公司第十研究所 大功率导引头瓦式有源相控阵天线
CN106019233A (zh) * 2015-03-27 2016-10-12 波音公司 多功能共享孔径阵列
CN106125072A (zh) * 2015-05-08 2016-11-16 宏达国际电子股份有限公司 雷达装置与安全监控系统
CN205944438U (zh) * 2016-08-12 2017-02-08 南京肯微弗通信技术有限公司 开口波导、天线子阵、平板天线阵列及平板天线
CN106501802A (zh) * 2016-04-18 2017-03-15 北京理工大学 高分辨率多维协同昆虫迁飞雷达测量仪
CN107994311A (zh) * 2017-10-19 2018-05-04 成都锦江电子系统工程有限公司 一种用于折叠天线的伺服系统
CN108886402A (zh) * 2015-12-31 2018-11-23 维尔塞特公司 使用光学馈电链路的宽带卫星通信系统
CN110720191A (zh) * 2017-05-31 2020-01-21 高通股份有限公司 用于新无线电的基于序列的上行链路控制信息设计
CN110726738A (zh) * 2019-11-26 2020-01-24 上海航天测控通信研究所 一种机载微波主被动土壤湿度探测仪

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101207235B (zh) * 2007-12-18 2011-10-05 中国电子科技集团公司第五十四研究所 移动卫星通信相控阵天线
EP2360491B1 (en) * 2010-02-02 2014-08-27 Enterprise Electronics Corporation Radar system with optical communications link within antenna pedestal
JP5586292B2 (ja) * 2010-03-25 2014-09-10 株式会社東芝 気象レーダ装置及び気象観測方法
US20120127034A1 (en) * 2010-11-19 2012-05-24 Raysat Antenna Systems, L.L.C. Phased Array Antenna with Reduced Component Count
US8467363B2 (en) * 2011-08-17 2013-06-18 CBF Networks, Inc. Intelligent backhaul radio and antenna system
CN203101289U (zh) * 2012-09-26 2013-07-31 云南电网公司玉溪供电局 一种基于微波辐射双通道测量技术的绝缘子污秽检测装置
US10305180B2 (en) * 2013-01-16 2019-05-28 Maxlinear, Inc. Satellite reception assembly with phased horn array
CN104090269B (zh) * 2014-07-05 2017-01-11 中国船舶重工集团公司第七二四研究所 双极化多功能超宽带t/r组件
CN104391278A (zh) * 2014-09-02 2015-03-04 武汉滨湖电子有限责任公司 一种利用极化对消的雷达抗干扰方法
IL244204B (en) * 2016-02-21 2020-03-31 Israel Aerospace Ind Ltd A polarimetric display array radar system and a method for operating it
CN205861893U (zh) * 2016-06-30 2017-01-04 南京大桥机器有限公司 一种气象探测雷达的收发系统检测设备

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6432185A (en) * 1987-07-29 1989-02-02 Furuno Electric Co Transmitter and receiver for earth station for satellite navigation and satellite communication
CN1306622A (zh) * 1998-04-22 2001-08-01 西南研究会 用电子顺磁共振响应数据测量含原油地下构造的孔隙率与渗透率
CN1714580A (zh) * 2002-10-25 2005-12-28 哈里公司 通信系统中使用并行调度操作建立通信链路的方法和设备
CN101795459A (zh) * 2010-01-26 2010-08-04 北京邮电大学 无线通信室内覆盖设备及其干扰避让/协调方法
EP2487800A1 (en) * 2011-02-11 2012-08-15 Alcatel Lucent Active antenna arrays
CN104253314A (zh) * 2013-06-28 2014-12-31 耀登科技股份有限公司 移动通信天线系统及其天线模块
CN106019233A (zh) * 2015-03-27 2016-10-12 波音公司 多功能共享孔径阵列
CN106125072A (zh) * 2015-05-08 2016-11-16 宏达国际电子股份有限公司 雷达装置与安全监控系统
CN105242273A (zh) * 2015-05-26 2016-01-13 芜湖航飞科技股份有限公司 一种x波段双线偏振多普勒天气雷达系统
CN105356051A (zh) * 2015-11-16 2016-02-24 中国电子科技集团公司第十研究所 大功率导引头瓦式有源相控阵天线
CN108886402A (zh) * 2015-12-31 2018-11-23 维尔塞特公司 使用光学馈电链路的宽带卫星通信系统
CN106501802A (zh) * 2016-04-18 2017-03-15 北京理工大学 高分辨率多维协同昆虫迁飞雷达测量仪
CN205944438U (zh) * 2016-08-12 2017-02-08 南京肯微弗通信技术有限公司 开口波导、天线子阵、平板天线阵列及平板天线
CN110720191A (zh) * 2017-05-31 2020-01-21 高通股份有限公司 用于新无线电的基于序列的上行链路控制信息设计
CN107994311A (zh) * 2017-10-19 2018-05-04 成都锦江电子系统工程有限公司 一种用于折叠天线的伺服系统
CN110726738A (zh) * 2019-11-26 2020-01-24 上海航天测控通信研究所 一种机载微波主被动土壤湿度探测仪

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
空基测控中继设备的相控阵天线设计;王英玲;《电讯技术》;20180630;全文 *

Also Published As

Publication number Publication date
CN111509404A (zh) 2020-08-07

Similar Documents

Publication Publication Date Title
CN111509404B (zh) 用于卫星广播数据接收与风廓线测量的多功能相控阵天线
US10205511B2 (en) Multi-beam phased array for first and second polarized satellite signals
US7250905B2 (en) Virtual antenna technology (VAT) and applications
US11190250B2 (en) System and method for enhancing an aerospace coverage capability of a mobile communication base station
US11316261B1 (en) System and method for an aircraft communicating with multiple satellite constellations
CN110412620B (zh) 抗干扰天线信号处理装置
CN111866620B (zh) 多目标测控地面站系统
CN112558075A (zh) 多波段多波束船载卫星气象信息接收和风场探测系统
CN113938181A (zh) 一种c波段相控阵接收卫星设备及卫星探测方法
US11211695B1 (en) Dual beam transmit system for analog beamforming airborne satellite communications
CN113131994A (zh) 一体化智能船载卫星通讯系统
Geise et al. Smart antenna terminals for broadband mobile satellite communications at Ka-band
CN112584308A (zh) 一种基于北斗系统的无人机集群超视距组网装置及方法
CN111294106B (zh) 控制动中通卫星通信天线偏轴等效辐射功率的方法及装置
Suzuki et al. Development status of PALSAR-2 onboard ALOS-2
CN113933789A (zh) 一种l波段相控阵一体化雷达及雷达探测方法
CN115986422A (zh) 一种相控阵天线的线极化跟踪实现方法
CN113933844A (zh) 一种相控阵多波段一体化收发雷达及雷达探测方法
CN212277407U (zh) 一种多目标自跟踪天线
CN114755701A (zh) 一种智能分布合成的区域协同导航欺骗系统及方法
CN113782987A (zh) 一种双频段全空域卫星通信相控阵天线
CN215340325U (zh) 多波段多波束船载卫星气象信息接收和风场探测系统
CN219577068U (zh) 一种小型化机动式遥测天线设备
CN212031714U (zh) 一种Ku波段多路雷达接收机
Esbri-Rodriguez et al. Antenna-based multipath and interference mitigation for aeronautical applications: present and future

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant