CN111501012A - 一种双层WS2/MoS2横向异质结材料、制备方法及应用 - Google Patents

一种双层WS2/MoS2横向异质结材料、制备方法及应用 Download PDF

Info

Publication number
CN111501012A
CN111501012A CN202010214666.2A CN202010214666A CN111501012A CN 111501012 A CN111501012 A CN 111501012A CN 202010214666 A CN202010214666 A CN 202010214666A CN 111501012 A CN111501012 A CN 111501012A
Authority
CN
China
Prior art keywords
mos
layer
heterojunction
substrate
double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010214666.2A
Other languages
English (en)
Other versions
CN111501012B (zh
Inventor
赵武
孙筱彬
许曼章
余邵佳
郭昱希
张志勇
闫军锋
李强
翟春雪
王雪文
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern University
Original Assignee
Northwestern University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern University filed Critical Northwestern University
Priority to CN202010214666.2A priority Critical patent/CN111501012B/zh
Publication of CN111501012A publication Critical patent/CN111501012A/zh
Application granted granted Critical
Publication of CN111501012B publication Critical patent/CN111501012B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0321Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了一种双层WS2/MoS2横向异质结材料、制备方法及应用,将WO3粉、MoO3粉和NaCl固体颗粒混合研磨得到氧化物前驱体混合物,将氧化物前驱体混合物放置在石英管炉膛内800~810℃的温度区间,将衬底放置在氧化物前驱体混合物的正上方,衬底的氧化面朝下,将硫粉放置在石英管炉膛内140~160℃的温度区间,在保护气氛、压强为‑0.1~‑0.05Mpa下反应8~10min,在衬底上沉积双层WS2/MoS2横向异质结材料。本发明采用一步法合成WS2/MoS2横向异质结,无需使用模板,工艺简单且成本低廉。WS2/MoS2横向异质结为双层薄膜结构,且形貌清晰、异质结界面分界明显,薄膜材料的态密度更大,在场效应应用中产生多个导通通道,能够产生相当大的驱动电流,在气敏传感器、太阳能电池、光电探测器等方面具有广阔的应用前景。

Description

一种双层WS2/MoS2横向异质结材料、制备方法及应用
技术领域
本发明属于二维材料制备技术领域,具体涉及一种双层WS2/MoS2横向异质结材料、制备方法及应用。
背景技术
过渡金属硫族化合物(TMDs)在工业生产、科学研究等方面有着重要作用。MoS2和WS2是两种二维层状半导体过渡金属硫化物材料,层与层之间通过范德华力结合在一起,其带隙可根据层数的减小由间接带隙转变为直接带隙,且具有良好的柔性特点。横向生长的WS2/MoS2异质结与单一的材料相比,在晶体管的光响应特性、开关响应速度以及气敏特性上都具有显著提高,因此通过对WS2/MoS2横向异质结的生长进行调控,在以上应用上均具有重大意义。
目前,广大科研工作者利用水热法、各种改进CVD法进行WS2/MoS2横向异质结的制备。但这些方法普遍存在制备条件苛刻,制备的异质结薄膜面积小;同时难以对层数进行控制,对其研究主要集中在单层材料上。已有研究证明,与单层TMDs异质结薄膜相比,少数层WS2/MoS2横向异质结薄膜材料的态密度更大,在场效应的应用中产生多个导通通道,能够产生相当大的驱动电流。
为此,发明人经过潜心研究,提出一种制备双层WS2/MoS2横向异质结材料的方法,获得了双层WS2/MoS2横向异质结材料。
发明内容
针对现有技术存在的不足和缺陷,本发明提供了一种双层WS2/MoS2横向异质结材料、制备方法及应用,解决现有的制备方法所需条件较为苛刻且对WS2/MoS2横向异质结生长层数的难以调控的问题。
为了实现上述目的,本发明采用如下技术方案予以实现:
一种双层WS2/MoS2横向异质结材料的制备方法,包括:将WO3粉、MoO3粉和NaCl固体颗粒混合研磨得到氧化物前驱体混合物,将氧化物前驱体混合物放置在石英管炉膛内800~810℃的温度区间,将衬底放置在氧化物前驱体混合物的正上方,衬底的氧化面朝下,将硫粉放置在石英管炉膛内140~160℃的温度区间,在保护气氛、压强为-0.1~-0.05Mpa下反应8~10min,在衬底上沉积双层WS2/MoS2横向异质结材料;
硫粉、WO3粉、MoO3粉和NaCl的质量比为8000:100:100:1。
优选的,以10~15℃/min的升温速度升温至800~810℃。
优选的,所述的保护气氛为氩气,氩气的气体流速为80~100sccm。
优选的,使用双氧水与浓硫酸按体积比1:3配置而成的混合液对衬底进行清洗,然后用惰性气体对清洗好的衬底烘干。
本发明还公开了上述制备方法制备得到的双层WS2/MoS2横向异质结材料。
具体的,该异质结材料为双层WS2/MoS2薄膜,每层WS2/MoS2薄膜以三角形MoS2为核心,WS2沿三角形MoS2的三个边缘外延生长形成整体形状六边形的横向异质结。
本发明还公开了上述双层WS2/MoS2横向异质结材料用于制备光探测器的应用。
与现有技术相比,本发明的有益效果是:
(1)本发明采用NaCl作为辅助剂,NaCl的加入大大降低了金属氧化物前驱体的熔点温度,还可以与MoO3和WO3反应,生成氧氯化物,而这些氧氯化物具有非常强的反应活性,使得反应速率大大提升。
(2)本发明采用真空低压的反应环境,使金属前驱体的质量流即成核密显著提高,有效降低反应难度。
(3)本发明将MoO3和WO3这两种金属氧化物前驱体与颗粒状辅助剂NaCl充分研磨,使其混合均匀,在制备过程中不需要因为蒸发温度的不同对金属氧化物分开放置,因混合均匀距离减小,使得衬底所在区域的反应物浓度大大提高,令反应进行得更加容易和充分。
(4)本发明采用一步法合成WS2/MoS2横向异质结,合成方法简单,无需使用任何模板,工艺简单且成本低廉。
(5)本发明合成的WS2/MoS2横向异质结为双层薄膜结构,且形貌清晰、异质结界面分界明显,这种异质结薄膜材料的态密度更大,在场效应的应用中产生多个导通通道,能够产生相当大的驱动电流,在气敏传感器、太阳能电池、光电探测器等方面具有广阔的应用前景。
附图说明
图1是实施例1合成的WS2/MoS2横向异质结的光学图片,图中1、2、3分别表示测试点。
图2是实施例1合成的WS2/MoS2横向异质结的拉曼图谱
图3是实施例1合成的WS2/MoS2横向异质结整体的拉曼Mapping
图4是实施例1合成的WS2/MoS2横向异质结外围WS2的E1 2g的拉曼Mapping。
图5是实施例1合成的WS2/MoS2横向异质结核心MoS2的E1 2g的拉曼Mapping。
图6是实施例2合成的WS2/MoS2横向异质结的光学图片,图中1、2、3分别表示测试点。
图7是实施例2合成的WS2/MoS2横向异质结的拉曼图谱。
图8是实施例2合成的WS2/MoS2横向异质结整体的拉曼Mapping。
图9是实施例2合成的WS2/MoS2横向异质结外围WS2的E1 2g的拉曼Mapping。
图10是实施例2合成的WS2/MoS2横向异质结核心MoS2的E1 2g的拉曼Mapping。
图11是本发明合成的双层WS2/MoS2横向异质结的AFM图谱。
图12是对比例1合成的MoS2的光学图片。
图13是对比例1合成的MoS2的拉曼图谱。
图14是对比例3合成的WS2的光学图片。
图15是对比例3合成的WS2的拉曼图谱。
图16是对比例4合成的MoS2的光学图片。
图17是对比例4合成的MoS2的拉曼图谱。
以下结合说明书附图和具体实施方式对本发明做具体说明。
具体实施方式
本发明公开的一种双层WS2/MoS2横向异质结材料的制备方法,具体包括以下步骤:
步骤1,使用双氧水与浓硫酸按体积比1:3配置而成的混合液对衬底进行超声清洗,再使用去离子水和无水乙醇对衬底进行超声清洗,然后用惰性气体对清洗好的衬底烘干;
步骤2,将WO3粉、MoO3粉和NaCl固体颗粒按照质量比为100:100:1混合研磨得到氧化物前驱体混合物,将硫粉、氧化物前驱体混合物和衬底放置在石英管内各自温度区间,其中,硫粉、WO3粉、MoO3粉和NaCl的质量比为8000:100:100:1。氧化物前驱体混合物所处温度为800~810℃,硫粉所处温度为140~160℃,氧化物前驱体混合物平铺在衬底的氧化面的正下方;在保护气氛、压强为-0.1~-0.05Mpa下反应8~10min,最后在衬底上沉积双层WS2/MoS2横向异质结材料。
其中,石英管内以10~15℃/min的升温速度升温至800~810℃。保护气体优选氩气,氩气的气体流速为80~100sccm。
通过上述制备方法可得到双层WS2/MoS2横向异质结材料,结合实施例1中的图3可以看出,该异质结材料为双层WS2/MoS2薄膜;综合图1至图5可以说明,每层WS2/MoS2薄膜以三角形MoS2为核心,WS2沿三角形MoS2的三个边缘外延生长形成整体形状六边形的横向异质结。
以下给出本发明的具体实施例,需要说明的是本发明并不局限于以下具体实施例中,凡在本申请技术方案基础上做的等同变换均落入本发明的保护范围。
实施例1
步骤1,将30%双氧水按照体积比1:3的比例缓慢地倒入浓硫酸中,在加入的过程中使用玻璃棒不断搅拌散热,将冷却至室温后的该混合液对衬底进行超声清洗10min,本实施例中衬底为SiO2/Si,衬底总厚度为500μm,氧化层SiO2厚度为300nm。再使用去离子水和无水乙醇对衬底分别超声清洗10min,然后在氩气气氛下烘干清洗好的衬底。
步骤2,分别称取0.1g纯度为99.5%W03粉末和0.1g纯度为99.5%的MoO3,将WO3和MoO3粉末在研钵内进行研磨使其充分混合,再称取0.003g混合物待用。称取15μg纯度为99.8%的NaCl颗粒,与0.003g混合物继续进行研磨,将三者的混合物一起放置在石英舟上,将步骤1的衬底氧化层面朝下覆盖在平铺均匀的混合物正上方,将该石英舟放置在石英管炉膛的加热中心,此温区的温度设置为800℃;
称取0.12g纯度为99.98%的硫粉放置在石英舟上,将该石英舟放置在石英管炉膛的低温区,此温区的温度设置为140~160℃;S粉:WO3粉:MoO3粉:NaCl=8000:100:100:1。
使用氩气将石英管内环境清洗五分钟,用真空泵将石英管内环境抽至-0.1Mp的低压,将升温速率设置为10℃/min,气体流速设置为100sccm,生长时间设置为8min,生长结束后冷却降温至室温,最后在衬底上沉积双层WS2/MoS2横向异质结材料。
本实施例所得的双层WS2/MoS2横向异质结材料光学照片如图1所示,拉曼图谱如图2所示,整体的拉曼Mapping如图3所示,WS2的E1 2gMapping如图4所示,MoS2的E1 2gMapping如图5所示。结合图1、图3、图4以及图5可以说明所得产物是以MoS2三角形为核心,WS2沿其边缘继续外延生长而成的六边形横向异质结。图2说明了横向异质结各个位置的拉曼峰位,WS2和MoS2的交界部位体现了异质结的拉曼峰。图3的拉曼峰位差及图11的AFM均可证明,所合成的WS2/MoS2横向异质结为双层。
本实施例得到的双层异质结薄膜材料可用于制备光探测器,由于该双层异质结薄膜材料的态密度大,在场效应的应用中产生多个导通通道,促进光电探测器中电子的流通,能够产生相当大的驱动电流。该双层异质结薄膜材料还可应用于制备气敏传感器、太阳能电池等方面。
实施例2
本实施例与实施例1的区别在于:所述的步骤2中称取称取20μg纯度为99.8%的NaCl颗粒,与0.004g混合物继续进行研磨,将三者的混合物一起放置在石英舟上,将步骤1的衬底氧化层面朝下覆盖在平铺均匀的混合物正上方,将该石英舟放置在石英管炉膛的加热中心,此温区的温度设置为810℃。
本实施例所得WS2/MoS2横向异质结的光学照片如图6所示,拉曼图谱如图7所示,整体的拉曼Mapping如图8所示,WS2的E1 2gMapping如图9所示,MoS2的E1 2gMapping如图10所示。结合图6、图8、图9以及图10可以说明所得产物是以MoS2三角形为核心,WS2沿其边缘继续外延生长而成的六边形横向异质结。图7说明了横向异质结各个位置的拉曼峰位,WS2和MoS2的交界部位体现了异质结的拉曼峰。图8的拉曼峰位差及图11的AFM均可证明,所合成的WS2/MoS2横向异质结为双层。
对比例1
本对比例与实施例1的区别在于:石英管内压强为0Mp。
本对比例所得产物形貌如图12所示,是大面积单独的MoS2,其拉曼图谱如图13所示,样品中未发现WS2/MoS2横向异质结的存在。
对比例2
本对比例与实施例1的区别在于:步骤2中,将衬底氧化面朝上放置,WO3粉、MoO3粉和NaCl颗粒三者的混合物平铺在衬底氧化面上。
本对比例所得产物未发现WS2/MoS2横向异质结的存在。
对比例3
本对比例与实施例1的区别在于:所述的氧化物前驱体混合物所处的石英管炉膛加热中心的温度为850℃。
本对比例所得的产物形貌如图14所示,是多层WS2叠层生长的形式,只是单独WS2三角形和六边形的随意堆叠。其拉曼图谱如图15所示,样品中并未发现WS2/MoS2横向异质结的存在。
对比例4
本对比例与实施例1的区别在于:所述的氧化物前驱体混合物所处的石英管炉膛加热中心的温度为750℃。
本对比例所得产物形貌如图16所示,是块状MoS2叠层生长的形式,其拉曼图谱如图17所示,样品中并未发现WS2/MoS2横向异质结的存在。

Claims (7)

1.一种双层WS2/MoS2横向异质结材料的制备方法,其特征在于,包括:将WO3粉、MoO3粉和NaCl固体颗粒混合研磨得到氧化物前驱体混合物,将氧化物前驱体混合物放置在石英管炉膛内800~810℃的温度区间,将衬底放置在氧化物前驱体混合物的正上方,衬底的氧化面朝下,将硫粉放置在石英管炉膛内140~160℃的温度区间,在保护气氛、压强为-0.1~-0.05Mpa下反应8~10min,在衬底上沉积双层WS2/MoS2横向异质结材料;
所述的硫粉、WO3粉、MoO3粉和NaCl的质量比为8000:100:100:1。
2.如权利要求1所述的双层WS2/MoS2横向异质结材料的制备方法,其特征在于,以10~15℃/min的升温速度升温至800~810℃。
3.如权利要求1所述的双层WS2/MoS2横向异质结材料的制备方法,其特征在于,所述的保护气氛为氩气,氩气的气体流速为80~100sccm。
4.如权利要求1所述的双层WS2/MoS2横向异质结材料的制备方法,其特征在于,使用双氧水与浓硫酸按体积比1:3配置而成的混合液对衬底进行清洗,然后用惰性气体对清洗好的衬底烘干。
5.权利要求1至4任一项所述的制备方法制备得到的双层WS2/MoS2横向异质结材料。
6.如权利要求5所述的双层WS2/MoS2横向异质结材料,其特征在于,该异质结材料为双层WS2/MoS2薄膜,每层WS2/MoS2薄膜以三角形MoS2为核心,WS2沿三角形MoS2的三个边缘外延生长形成整体形状六边形的横向异质结。
7.权利要求5或6所述的双层WS2/MoS2横向异质结材料用于制备光探测器的应用。
CN202010214666.2A 2020-03-24 2020-03-24 一种双层WS2/MoS2横向异质结材料、制备方法及应用 Active CN111501012B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010214666.2A CN111501012B (zh) 2020-03-24 2020-03-24 一种双层WS2/MoS2横向异质结材料、制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010214666.2A CN111501012B (zh) 2020-03-24 2020-03-24 一种双层WS2/MoS2横向异质结材料、制备方法及应用

Publications (2)

Publication Number Publication Date
CN111501012A true CN111501012A (zh) 2020-08-07
CN111501012B CN111501012B (zh) 2021-06-01

Family

ID=71872477

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010214666.2A Active CN111501012B (zh) 2020-03-24 2020-03-24 一种双层WS2/MoS2横向异质结材料、制备方法及应用

Country Status (1)

Country Link
CN (1) CN111501012B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112225244A (zh) * 2020-10-13 2021-01-15 江曙 一种太阳能电池用单分散纳米铜锌锡硫的制备方法
CN112226743A (zh) * 2020-08-31 2021-01-15 西北大学 一种Bi2S3-HfS2范德瓦尔斯异质结薄膜的制备装置及方法
CN113299779A (zh) * 2021-05-26 2021-08-24 哈尔滨工业大学 一种二硫化钼/二硫化钨红外双色探测器及其制备方法
CN113930743A (zh) * 2021-09-18 2022-01-14 西北工业大学 一种常压下生长两层二硫化钨薄层的方法
CN115161615A (zh) * 2022-08-19 2022-10-11 山东云海国创云计算装备产业创新中心有限公司 一种二维硫化钼钨合金薄膜的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9806164B1 (en) * 2013-03-26 2017-10-31 The Penn State Research Foundation Controlled synthesis and transfer of large area heterostructures made of bilayer and multilayer transition metal dichalocogenides
CN108286042A (zh) * 2018-03-19 2018-07-17 西北大学 一种层数均匀且高质量二硫化钼薄膜的制备方法
US20190250101A1 (en) * 2016-09-02 2019-08-15 Northwestern University Core-shell heterostructures composed of metal nanoparticle core and transition metal dichalcogenide shell
CN110808281A (zh) * 2019-11-07 2020-02-18 北京工业大学 一种单层MoS2-WS2横向异质结的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9806164B1 (en) * 2013-03-26 2017-10-31 The Penn State Research Foundation Controlled synthesis and transfer of large area heterostructures made of bilayer and multilayer transition metal dichalocogenides
US20190250101A1 (en) * 2016-09-02 2019-08-15 Northwestern University Core-shell heterostructures composed of metal nanoparticle core and transition metal dichalcogenide shell
CN108286042A (zh) * 2018-03-19 2018-07-17 西北大学 一种层数均匀且高质量二硫化钼薄膜的制备方法
CN110808281A (zh) * 2019-11-07 2020-02-18 北京工业大学 一种单层MoS2-WS2横向异质结的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHAN WANG: "NaCl-assisted one-step growth of MoS2–WS2 in-plane heterostructures", 《NANOTECHNOLOGY》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112226743A (zh) * 2020-08-31 2021-01-15 西北大学 一种Bi2S3-HfS2范德瓦尔斯异质结薄膜的制备装置及方法
CN112225244A (zh) * 2020-10-13 2021-01-15 江曙 一种太阳能电池用单分散纳米铜锌锡硫的制备方法
CN113299779A (zh) * 2021-05-26 2021-08-24 哈尔滨工业大学 一种二硫化钼/二硫化钨红外双色探测器及其制备方法
CN113930743A (zh) * 2021-09-18 2022-01-14 西北工业大学 一种常压下生长两层二硫化钨薄层的方法
CN115161615A (zh) * 2022-08-19 2022-10-11 山东云海国创云计算装备产业创新中心有限公司 一种二维硫化钼钨合金薄膜的制备方法

Also Published As

Publication number Publication date
CN111501012B (zh) 2021-06-01

Similar Documents

Publication Publication Date Title
CN111501012B (zh) 一种双层WS2/MoS2横向异质结材料、制备方法及应用
Li et al. High‐yield fabrication and electrochemical characterization of tetrapodal CdSe, CdTe, and CdSexTe1–x nanocrystals
Zhang et al. Growth and formation mechanism of c-oriented ZnO nanorod arrays deposited on glass
Wooten et al. Solution− liquid− solid growth of ternary Cu− In− Se semiconductor nanowires from multiple-and single-source precursors
Chen et al. Wet-chemical synthesis and applications of semiconductor nanomaterial-based epitaxial heterostructures
Montenegro et al. Morphology transitions in ZnO nanorods grown by MOCVD
JP2016517453A (ja) ホスフィンを用いて作られた量子ドット
Shwetharani et al. Review on recent advances of core-shell structured lead halide perovskites quantum dots
CN113278948B (zh) 一种硫化锡/二硫化锡异质结材料及其制备方法
Yuan et al. Progress on the controllable synthesis of all-inorganic halide perovskite nanocrystals and their optoelectronic applications
CN110980659A (zh) 一种采用新原料生长二碲化钨及制备方法
CN111304747A (zh) 一种非层状二维PbSe晶体材料及其制备方法
CN107119319B (zh) 一种碘化亚铜二维材料、制备及其应用
Su et al. Telluride semiconductor nanocrystals: progress on their liquid-phase synthesis and applications
Xiang et al. Progress on growth of metal halide perovskites by vapor-phase synthesis and their applications
KR20050047105A (ko) 규화철 분말 및 그 제조방법
Jiang et al. Shape and stoichiometry control of bismuth selenide nanocrystals in colloidal synthesis
CN113718227A (zh) 一类二维层状三元化合物及其制备方法
CN111470485B (zh) 一种磷化金纳米片及其可控制备方法与应用
CN114086237B (zh) 一种大尺寸二维层状金属硫代磷酸盐晶体的制备方法
Validžić et al. Growth of Sb 2 S 3 nanowires synthesized by colloidal process and self-assembly of amorphous spherical Sb 2 S 3 nanoparticles in wires formation
Zhang et al. Carbon-assisted morphological manipulation of CdS nanostructures and their cathodoluminescence properties
Su et al. Synthesis and photoluminescence properties of aligned Zn2GeO4 coated ZnO nanorods and Ge doped ZnO nanocombs
Li et al. Regular arrays of GaN nanorods
Fan et al. Synthesis and optical properties of hierarchical pure ZnO nanostructures

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant