CN111486973A - Full-flexible pyroelectric infrared detector - Google Patents

Full-flexible pyroelectric infrared detector Download PDF

Info

Publication number
CN111486973A
CN111486973A CN202010238211.4A CN202010238211A CN111486973A CN 111486973 A CN111486973 A CN 111486973A CN 202010238211 A CN202010238211 A CN 202010238211A CN 111486973 A CN111486973 A CN 111486973A
Authority
CN
China
Prior art keywords
flexible
pyroelectric
infrared
cantilever beam
electrode layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010238211.4A
Other languages
Chinese (zh)
Inventor
黎威志
张靖新
袁志华
张希仁
游延军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chengdu Zhongxin Technology Co ltd
Original Assignee
Chengdu Zhongxin Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chengdu Zhongxin Technology Co ltd filed Critical Chengdu Zhongxin Technology Co ltd
Priority to CN202010238211.4A priority Critical patent/CN111486973A/en
Publication of CN111486973A publication Critical patent/CN111486973A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/34Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00134Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems comprising flexible or deformable structures
    • B81C1/0015Cantilevers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00349Creating layers of material on a substrate
    • B81C1/0038Processes for creating layers of materials not provided for in groups B81C1/00357 - B81C1/00373
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/34Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using capacitors, e.g. pyroelectric capacitors
    • G01J2005/345Arrays

Abstract

The invention discloses a fully flexible pyroelectric infrared detector, which relates to the field of structural design of pyroelectric sensors and comprises a flexible infrared radiation modulation mechanism and a flexible infrared sensitive unit; the flexible infrared radiation modulation mechanism is a single-end or double-end supported metal film cantilever beam, and by applying a voltage signal with a certain frequency between the cantilever beam and the electrode layer on the flexible infrared sensitive unit, the cantilever beam can move up and down in a certain range according to the corresponding frequency, so that the cantilever beam is periodically separated from and contacted with the upper surface of the flexible infrared sensitive unit, and the infrared radiation modulation is realized; the invention solves the problem that the existing pyroelectric infrared detector adopts a mechanical chopper and is difficult to realize integration and flexibility, so that the pyroelectric infrared detector can be applied to wearable electronic equipment such as a flexible temperature sensor and a flexible thermal infrared imager.

Description

Full-flexible pyroelectric infrared detector
Technical Field
The invention relates to the field of structural design of pyroelectric detectors, in particular to a fully flexible pyroelectric infrared detector.
Background
The pyroelectric infrared detector is a thermal infrared detector made by utilizing the effect that the spontaneous polarization intensity of a pyroelectric material changes along with the temperature, the traditional pyroelectric infrared detector adopts rigid ferroelectric ceramics or ferroelectric crystals, the existing flexible pyroelectric infrared detector based on ferroelectric polymers has the advantages of light weight, flexibility, impact resistance, corrosion resistance, easiness in processing and the like, and has good application prospect in the field with higher requirements on the portability of devices.
However, the working principle of the pyroelectric infrared detector determines that the pyroelectric infrared detector can only respond to a changing temperature signal, so that in order to detect a static target, a mechanical chopper must be added in front of the detector, and the chopper rotates at a certain frequency so as to modulate static infrared radiation into dynamic infrared radiation which is periodically switched on and off. Due to the chopper, the infrared detector based on the pyroelectric effect is difficult to integrate, miniaturize and even inflexible, and the application prospect of the pyroelectric infrared detector in the aspects of flexible electronics, portable equipment and the like is greatly reduced, so that the development of a full-flexible pyroelectric infrared detector without a mechanical chopper is very necessary.
Disclosure of Invention
The invention aims to provide a fully flexible pyroelectric infrared detector, thereby laying a foundation for the application of the pyroelectric infrared detector in wearable portable equipment, such as flexible temperature sensors, flexible thermal infrared imagers and the like.
In order to achieve the purpose, the technical scheme adopted by the invention is as follows:
a fully flexible pyroelectric infrared detector comprises a flexible infrared radiation modulation mechanism and a flexible infrared pyroelectric sensitive unit, wherein the flexible infrared pyroelectric sensitive unit comprises an insulating layer, an upper electrode layer, a pyroelectric sensitive film and a lower electrode layer which are sequentially arranged from top to bottom; the flexible infrared radiation modulation mechanism is arranged on the insulating layer and comprises 1 or 2 supporting columns and a metal film, and the metal film is arranged on the supporting columns to form a single-ended or double-ended cantilever beam; the metal film of the cantilever beam and the upper electrode of the flexible infrared pyroelectric sensitive unit are connected with a voltage source through a circuit switch, and the circuit switch can be controlled through a switch control circuit; a voltage signal with certain frequency and amplitude is applied between the metal film of the cantilever beam and the upper electrode of the flexible infrared pyroelectric sensitive unit, and the metal film of the cantilever beam can move up and down in a certain range according to corresponding frequency so as to be periodically separated from and contacted with the top insulating layer of the flexible infrared pyroelectric sensitive unit, so that heat flow generated by incident infrared radiation is periodically transmitted to the pyroelectric sensitive film to cause the temperature of the pyroelectric sensitive film to be periodically changed.
Further, the support pillar can be made of silicon oxide, silicon nitride, polysilicon inorganic material, or polyimide, Polydimethylsiloxane (PDMS) organic material, or common metal materials of aluminum, nickel, chromium, copper, gold, and titanium.
Furthermore, the single-ended cantilever beam also comprises a limiting structure arranged on the insulating layer and used for limiting an upper intercept point of the upward movement of the metal film of the cantilever beam.
Further, the metal film of the cantilever beam can be prepared from common easily-processed metal materials such as aluminum, nickel, chromium, copper, gold and titanium.
Further, the insulating layer may be made of silicon oxide, silicon nitride, polysilicon inorganic material, or polyimide, Polydimethylsiloxane (PDMS) organic material.
Furthermore, the pyroelectric sensitive film can be prepared by flexible pyroelectric polymers of polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene, polyvinylidene fluoride-trifluoroethylene, odd nylon, polyvinyl chloride or polypropylene, or a doping system taking the flexible pyroelectric polymers as a main body and doped with barium strontium titanate and lead zirconate titanate inorganic ferroelectric ceramics.
Further, the circuit switch and the switch control circuit can be realized by a separate circuit module or by an integrated circuit.
Further, the fully flexible pyroelectric infrared detector can be partially or completely realized by adopting a flexible film process and a micromachining process from bottom to top according to requirements.
The invention also provides a method for preparing the fully flexible infrared pyroelectric detector without an external chopper, which comprises the following steps:
step 1: completely dissolving the flexible pyroelectric polymer into a solution, uniformly coating the solution on a flat substrate, then putting the flat substrate into a thermostat, baking the flat substrate until the solution is completely volatilized, forming a sensitive film by the flexible pyroelectric polymer, and then stripping the sensitive film to obtain a pyroelectric sensitive film;
step 2: preparing metal electrode layers with the same thickness on the upper surface and the lower surface of the pyroelectric sensitive film in a vapor deposition and sputtering mode to form an upper electrode layer and a lower electrode layer;
and step 3: preparing a silicon oxide or silicon nitride inorganic insulating layer above the upper electrode layer by adopting a chemical vapor deposition method; or preparing the polyimide or PDMS organic insulating layer by adopting a spin coating and tape casting method;
and 4, step 4: preparing a silicon oxide or silicon nitride inorganic insulating support column on the upper electrode layer or the insulating layer by adopting a chemical vapor deposition method, or preparing a polyimide or PDMS organic insulating support column on the upper electrode layer or the insulating layer by adopting a spin coating or tape casting method; or preparing a metal support pillar on the insulating layer by adopting an evaporation and sputtering method;
and 5: preparing a sacrificial layer with the same height as the support column on the insulating layer, preparing a metal film of the cantilever beam with low surface reflectivity by adopting evaporation and sputtering methods, and then sacrificing the sacrificial layer to obtain the metal cantilever beam;
step 6: the metal film and the upper electrode layer of the cantilever beam are connected with two stages of a driving circuit, the upper electrode layer is grounded, signals of the flexible infrared pyroelectric sensitive unit can be led out from the lower electrode, and the influence of a cantilever beam driving voltage source on the signals is eliminated.
The invention has the following beneficial effects:
(1) the periodic modulation of incident infrared radiation is realized through the up-and-down motion of the flexible metal film cantilever beam, specifically, when the cantilever beam is suspended and separated from the upper surface of the flexible infrared pyroelectric sensitive unit, the infrared radiation cannot be transmitted to the flexible infrared pyroelectric sensitive unit due to the existence of an air gap, so that the temperature of the flexible infrared pyroelectric sensitive unit is kept unchanged; when the cantilever beam is contacted with the upper surface of the flexible infrared pyroelectric sensing unit, because the metal film of the cantilever beam is very thin and the thermal resistance is extremely low, the temperature rise of the cantilever beam caused by infrared radiation can be rapidly transmitted to the flexible infrared pyroelectric sensing unit without loss, so that the temperature rise of the flexible infrared pyroelectric sensing unit is caused; when the cantilever beam is separated again, the temperature of the flexible infrared pyroelectric sensitive unit is reduced and recovered to the initial temperature.
(2) The flexible infrared radiation modulation mechanism is combined with the flexible pyroelectric infrared sensitive unit, so that full flexibility and integration of the pyroelectric infrared detector are realized, and miniaturization and array of the pyroelectric infrared detector can be realized by further combining a micro-processing technology.
(3) The invention lays a foundation for the application of the pyroelectric infrared detector in wearable portable equipment, such as flexible temperature sensors, flexible thermal infrared imagers and the like.
Drawings
Fig. 1 is a schematic diagram of the operation of the fully flexible pyroelectric infrared detector with a single-ended cantilever beam according to the present invention (the circuit switch is in an open state).
Fig. 2 is a schematic diagram of the operation of the fully flexible pyroelectric infrared detector with a single-ended cantilever beam according to the present invention (the circuit switch is in a connected state).
Fig. 3 is a schematic diagram of the operation of the fully flexible pyroelectric infrared detector with the cantilever beams at two ends of the detector (the circuit switch is in an off state).
Fig. 4 is a schematic diagram of the operation of the fully flexible pyroelectric infrared detector with the cantilever beams at the two ends of the detector (the circuit switch is in a connected state).
FIG. 5 is a schematic view of the processing procedure of example 2 of the present invention.
FIG. 6 is a schematic view of the processing procedure of example 3 of the present invention.
FIG. 7 is a schematic view of the processing procedure of example 4 of the present invention.
The labels in the figure are: 11. a pyroelectric sensitive film; 12. an upper electrode layer; 13. a lower electrode layer; 20. an insulating layer; 31. a support pillar; 32. a metal thin film; 33. a limiting structure; 41. a voltage source; 42. a circuit switch; 43. a switch control circuit; 51. a base; 52. a sacrificial layer; 53. a cantilever sacrificial layer.
Wherein the large arrows in fig. 1 to 4 represent incident infrared radiation and the small arrows represent heat flow from the metal film to the flexible pyroelectric sensitive film by thermal conduction.
Detailed Description
Example 1
As shown in fig. 1 to 4, the fully flexible pyroelectric infrared detector provided in this embodiment includes a flexible infrared radiation modulation mechanism and a flexible infrared pyroelectric sensing unit, where the flexible infrared pyroelectric sensing unit includes an insulating layer 20, an upper electrode layer 12, a pyroelectric sensing film 11, and a lower electrode layer 13, which are sequentially disposed from top to bottom; the flexible infrared radiation modulation mechanism is installed on the insulating layer 20, the flexible infrared radiation modulation mechanism comprises 1 or 2 supporting columns 31 and a metal film 32, and the metal film 32 is installed on the supporting columns 31 to form a single-ended or double-ended cantilever beam; the metal film 32 of the cantilever beam and the upper electrode of the flexible infrared pyroelectric sensitive unit are connected with a voltage source 41 through a circuit switch 42, and the circuit switch 42 can be controlled through a switch control circuit 43; a voltage signal with a certain frequency and amplitude is applied between the metal film 32 of the cantilever and the upper electrode layer 12 of the flexible infrared pyroelectric sensing unit, and the metal film 32 of the cantilever can move up and down in a certain range according to the corresponding frequency, so as to be periodically separated from and contacted with the top insulating layer 20 of the flexible infrared pyroelectric sensing unit, so that heat flow generated by incident infrared radiation is periodically transmitted to the pyroelectric sensing film 11 to cause the temperature thereof to periodically change.
The supporting column 31 can be made of silicon oxide, silicon nitride, polysilicon inorganic material, or polyimide, Polydimethylsiloxane (PDMS) organic material, or common metal materials such as aluminum, nickel, chromium, copper, gold, and titanium.
The metal film 32 of the cantilever can be made of common metal materials which are easy to process, such as aluminum, nickel, chromium, copper, gold and titanium.
The insulating layer 20 may be made of silicon oxide, silicon nitride, polysilicon inorganic material, or polyimide, Polydimethylsiloxane (PDMS) organic material.
The pyroelectric sensitive film 11 can be prepared by flexible pyroelectric polymers of polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene, polyvinylidene fluoride-trifluoroethylene, odd nylon, polyvinyl chloride or polypropylene, or a doping system taking the flexible pyroelectric polymers as a main body and a doping system doped with barium strontium titanate and lead zirconate titanate inorganic ferroelectric ceramics.
The circuit switch 42 and the switch control circuit 43 may be implemented by separate circuit modules, or may be implemented by an integrated circuit.
The fully flexible pyroelectric infrared detector can be partially or completely realized by adopting a flexible film process and a micromachining process from bottom to top according to requirements.
Example 2
As shown in fig. 5, the method for manufacturing a fully flexible pyroelectric infrared detector provided by this embodiment includes the following steps:
step 1: a 1 μm thick nichrome film was sputtered on the susceptor 51 made of a silicon wafer as a sacrificial layer 52.
Step 2: the flexible pyroelectric polymer is completely dissolved into a solution, the solution is uniformly coated on the sacrificial layer 52 of the base 51, and then the solution is placed into a thermostat and baked until the solvent is completely volatilized, so that the flexible pyroelectric polymer forms the pyroelectric sensitive film 11.
And step 3: the upper surface of the pyroelectric sensitive film 11 is prepared with 100nm metal aluminum as the upper electrode layer 12 of the flexible infrared pyroelectric sensitive unit by adopting a sputtering method.
And 4, step 4: a200 nm silicon nitride dielectric film is prepared on the surface of the upper electrode layer 12 by a chemical vapor deposition method to serve as an insulating layer 20.
And 5: a1-micron metal titanium film with proper tensile stress is deposited on the surface of the 200nm silicon nitride insulating layer 20, and the supporting column 31 of the cantilever beam is prepared by combining photoetching and etching processes.
Step 6: a 1 μm thick metal cantilever sacrificial layer 53 is prepared on the insulating layer 20 using photosensitive polyimide.
And 7: and depositing a metal titanium film with the thickness of 200-300 nm on the metal cantilever sacrificial layer 53 by adopting a sputtering method to serve as the metal film 32 of the cantilever.
And 8: and etching the sacrificial layer 52 on the base 11 by using a TFN nickel-chromium etching solution to strip the flexible infrared pyroelectric sensitive unit from the base 51.
And step 9: and preparing 100nm metal aluminum serving as a lower electrode layer 13 of the flexible infrared pyroelectric sensitive unit on the lower surface of the flexible pyroelectric sensitive film 11 in a sputtering mode.
Step 10: and releasing photosensitive polyimide by using oxygen plasma to prepare the metal cantilever sacrificial layer 53, so as to obtain the final fully-flexible infrared detector.
Example 3
As shown in fig. 4, the embodiment provides a method for manufacturing a fully flexible pyroelectric infrared detector, which includes the following steps:
step 1: a 1 μm thick nichrome film was sputtered on the susceptor 51 made of a silicon wafer as a sacrificial layer 52.
Step 2: the flexible pyroelectric polymer is completely dissolved into a solution, the solution is uniformly coated on the sacrificial layer 52 of the base 51, and then the solution is placed into a thermostat and baked until the solvent is completely volatilized, so that the flexible pyroelectric polymer forms the pyroelectric sensitive film 11.
And step 3: the upper surface of the pyroelectric sensitive film 11 is prepared with 100nm metal aluminum as the upper electrode layer 12 of the flexible infrared pyroelectric sensitive unit by adopting a sputtering method.
And 4, step 4: a200 nm silicon nitride dielectric film is prepared on the surface of the upper electrode layer 12 by a chemical vapor deposition method to serve as an insulating layer 20.
And 5: the supporting column 31 of the cantilever beam and the lower part of the limiting structure 33 of the cantilever beam are prepared on the surface of the 200nm silicon nitride insulating layer 20 by adopting a chemical vapor deposition method 1 mu m silicon oxide and combining photoetching and etching processes.
Step 6: preparing a 1-micron-thickness metal cantilever sacrificial layer 52 on the insulating layer 20 by using photosensitive polyimide; and depositing a metal titanium film with proper tensile stress of 200-300 nm by adopting a sputtering method to serve as the metal film 32 of the cantilever.
And 7: and preparing the middle part of the cantilever beam limiting structure 33 on the lower part of the cantilever beam limiting structure 33 by adopting silicon oxide with the diameter of 1 mu m by adopting a chemical vapor deposition method and combining photoetching and etching processes.
And 8: a second sacrificial layer with the thickness of 1 mu m is prepared on a metal film 32 of the cantilever beam by adopting photosensitive polyimide, silicon oxide with the thickness of 1 mu m is prepared in the middle of a limiting structure 33 of the cantilever beam by adopting a chemical vapor deposition method, and the top of the limiting structure 33 of the cantilever beam is prepared by combining photoetching and etching processes.
And step 9: etching the nickel-chromium sacrificial layer 52 above the base 51 by using a TFN nickel-chromium etching solution, and stripping the flexible infrared pyroelectric sensitive unit from the base 51; meanwhile, 100nm of metal aluminum is prepared on the lower surface of the pyroelectric sensitive film 11 by adopting a sputtering method and used as a lower electrode layer 13 of the flexible infrared pyroelectric sensitive unit.
Step 10: and releasing photosensitive polyimide by using oxygen plasma to prepare the metal cantilever sacrificial layer 53, so as to obtain the final fully-flexible infrared detector.
Example 4
As shown in fig. 5, the embodiment provides a method for manufacturing a fully flexible pyroelectric infrared detector, which includes the following steps:
step 1: a 1 μm thick nichrome film was sputtered on the susceptor 51 made of a silicon wafer as a sacrificial layer 52.
Step 2: the flexible pyroelectric polymer is completely dissolved into a solution, the solution is uniformly coated on the sacrificial layer 52 of the base 51, and then the solution is placed into a thermostat and baked until the solvent is completely volatilized, so that the flexible pyroelectric polymer forms the pyroelectric sensitive film 11.
And step 3: the upper surface of the pyroelectric sensitive film 11 is prepared with 100nm metal aluminum as the upper electrode layer 12 of the flexible infrared pyroelectric sensitive unit by adopting a sputtering method.
And 4, step 4: a200 nm silicon nitride dielectric film is prepared on the surface of the upper electrode layer 12 by a chemical vapor deposition method to serve as an insulating layer 20.
And 5: a1-micron metal titanium film with proper tensile stress is deposited on the surface of the 200nm silicon nitride insulating layer 20, and the cantilever beam supporting column 31 is prepared by combining photoetching and etching processes.
Step 6: the photosensitive polyimide is used to prepare a 1 μm thick metal cantilever sacrificial layer 53.
And 7: and depositing a metal titanium film with the thickness of 200-300 nm by adopting a sputtering method to serve as the metal film 32 of the cantilever.
And 8: and etching the nickel-chromium sacrificial layer 52 above the base 51 by using a TFN nickel-chromium etching solution, and stripping the flexible infrared pyroelectric sensitive unit from the base 51.
And step 9: and preparing 100nm metal aluminum on the lower surface of the pyroelectric sensitive film 11 by adopting a sputtering method to serve as a lower electrode layer 13 of the flexible infrared pyroelectric sensitive unit.
Step 10: and releasing the photosensitive polyimide by adopting oxygen plasma to prepare the metal cantilever sacrificial layer 52 to obtain the final fully-flexible infrared detector.
In the three fully-flexible infrared detector structures prepared in the embodiments 2-4, the single-end supporting structure in the embodiment 2 is simple in process and suitable for occasions with small device deformation; when the deformation is large, the cantilever beam may be far away from the upper surface of the detector and cannot be normally driven, and therefore, the cantilever beam limiting structure 33 is added in embodiment 3, so that the number of process steps is large, and the detector can work in a large deformation occasion; example 4 a double-ended support structure was used and the process steps were exactly the same as in example 2, but due to the double-ended support, the detector was also able to work in large deformation situations.
The above description is only a preferred embodiment of the present invention, but the scope of the present invention is not limited thereto, and any modification and replacement based on the technical solution and inventive concept provided by the present invention should be covered within the scope of the present invention.

Claims (9)

1. A full flexible pyroelectric infrared detector is characterized in that: the infrared pyroelectric infrared sensor comprises a flexible infrared radiation modulation mechanism and a flexible infrared pyroelectric sensitive unit, wherein the flexible infrared pyroelectric sensitive unit comprises an insulating layer, an upper electrode layer, a pyroelectric sensitive film and a lower electrode layer which are sequentially arranged from top to bottom; the flexible infrared radiation modulation mechanism is arranged on the insulating layer and comprises 1 or 2 supporting columns and a metal film, and the metal film is arranged on the supporting columns to form a single-ended or double-ended cantilever beam; the metal film of the cantilever beam and the upper electrode layer of the flexible infrared pyroelectric sensitive unit are connected with a voltage source through a circuit switch, and the circuit switch can be controlled through a switch control circuit; a voltage signal with certain frequency and amplitude is applied between the metal film of the cantilever beam and the upper electrode layer of the flexible infrared pyroelectric sensitive unit, and the metal film of the cantilever beam can move up and down in a certain range according to corresponding frequency so as to be periodically separated from and contacted with the insulating layer of the flexible infrared pyroelectric sensitive unit, so that heat flow generated by incident infrared radiation is periodically transmitted to the pyroelectric sensitive film to cause the temperature of the pyroelectric sensitive film to be periodically changed.
2. The fully flexible pyroelectric infrared detector as claimed in claim 1, wherein: the support column can be made of silicon oxide, silicon nitride and polysilicon inorganic materials, or polyimide and Polydimethylsiloxane (PDMS) organic materials, or common metal materials such as aluminum, nickel, chromium, copper, gold and titanium.
3. The fully flexible pyroelectric infrared detector as claimed in claim 1 or 2, wherein: the single-ended cantilever beam further comprises a limiting structure arranged on the insulating layer and used for limiting an upper intercept point of the upward movement of the metal film of the cantilever beam.
4. The fully flexible pyroelectric infrared detector as claimed in claim 1, wherein: the metal film of the cantilever beam can be prepared from common easily-processed metal materials such as aluminum, nickel, chromium, copper, gold and titanium.
5. The fully flexible pyroelectric infrared detector as claimed in claim 1, wherein: the insulating layer can be made of silicon oxide, silicon nitride, polysilicon inorganic material, or polyimide, Polydimethylsiloxane (PDMS) organic material.
6. The fully flexible pyroelectric infrared detector as claimed in claim 1, wherein: the pyroelectric sensitive film can be prepared by flexible pyroelectric polymers of polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene, polyvinylidene fluoride-trifluoroethylene, odd nylon, polyvinyl chloride or polypropylene, or a doping system taking the flexible pyroelectric polymers as a main body and a doping system doped with barium strontium titanate and lead zirconate titanate inorganic ferroelectric ceramics.
7. The fully flexible pyroelectric infrared detector as claimed in claim 1, wherein: the circuit switch and the switch control circuit can be realized by a separated circuit module or an integrated circuit.
8. The fully flexible pyroelectric infrared detector as claimed in claim 1, wherein: the fully flexible pyroelectric infrared detector can be partially or completely realized by adopting a flexible film process and a micromachining process from bottom to top according to requirements.
9. A method for preparing the fully flexible infrared pyroelectric detector without an external chopper as claimed in claim 1, which is characterized by comprising the following steps:
step 1: completely dissolving the flexible pyroelectric polymer into a solution, uniformly coating the solution on a flat substrate, then putting the flat substrate into a thermostat, baking the flat substrate until the solution is completely volatilized, forming a sensitive film by the flexible pyroelectric polymer, and then stripping the sensitive film to obtain a pyroelectric sensitive film;
step 2: preparing metal electrode layers with the same thickness on the upper surface and the lower surface of the pyroelectric sensitive film in a vapor deposition and sputtering mode to form an upper electrode layer and a lower electrode layer;
and step 3: preparing a silicon oxide or silicon nitride inorganic insulating layer above the upper electrode layer by adopting a chemical vapor deposition method; or preparing the polyimide or PDMS organic insulating layer by adopting a spin coating and tape casting method;
and 4, step 4: preparing a silicon oxide or silicon nitride inorganic insulating support column on the upper electrode layer or the insulating layer by adopting a chemical vapor deposition method, or preparing a polyimide or PDMS organic insulating support column on the upper electrode layer or the insulating layer by adopting a spin coating or tape casting method; or preparing a metal support pillar on the insulating layer by adopting an evaporation and sputtering method;
and 5: preparing a sacrificial layer with the same height as the support column on the insulating layer, preparing a metal film of the cantilever beam with low surface reflectivity by adopting evaporation and sputtering methods, and removing the sacrificial layer to obtain the metal cantilever beam;
step 6: the metal film and the upper electrode layer of the cantilever beam are connected with two stages of a driving circuit, the upper electrode layer is grounded, signals of the flexible infrared pyroelectric sensitive unit can be led out from the lower electrode, and the influence of a cantilever beam driving voltage source on the signals is eliminated.
CN202010238211.4A 2020-03-30 2020-03-30 Full-flexible pyroelectric infrared detector Pending CN111486973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010238211.4A CN111486973A (en) 2020-03-30 2020-03-30 Full-flexible pyroelectric infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010238211.4A CN111486973A (en) 2020-03-30 2020-03-30 Full-flexible pyroelectric infrared detector

Publications (1)

Publication Number Publication Date
CN111486973A true CN111486973A (en) 2020-08-04

Family

ID=71791421

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010238211.4A Pending CN111486973A (en) 2020-03-30 2020-03-30 Full-flexible pyroelectric infrared detector

Country Status (1)

Country Link
CN (1) CN111486973A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116609391A (en) * 2023-06-19 2023-08-18 哈尔滨学院 Polymer material electrical property testing device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1333569A (en) * 2001-08-03 2002-01-30 中国科学院上海冶金研究所 Micromechanical thermoelectric pile infrared detector array with inclined drawn suspension beam support membrane structure
US20020148964A1 (en) * 2001-04-13 2002-10-17 Mcnc Electromagnetic radiation detectors having a micromachined electrostatic chopper device
CN1517296A (en) * 2002-09-26 2004-08-04 ���ǵ�����ʽ���� Flexible micro-electromechanical system changer and its manufacturing method and radio loud-speaker
CN101872797A (en) * 2010-04-13 2010-10-27 中国计量学院 Structure of novel infrared detector based on micro-bridge resonator and manufacturing method thereof
CN102480285A (en) * 2010-11-29 2012-05-30 中国科学院微电子研究所 Infrared sensor switching device and manufacturing method thereof
CN102874735A (en) * 2012-09-29 2013-01-16 姜利军 Two-material micro-cantilever, electromagnetic radiation detector and detection method
CN103708406A (en) * 2013-12-12 2014-04-09 中国计量学院 Resonant type infrared detector structure capable of isolating packaging stress and manufacturing method thereof
CN110823386A (en) * 2019-11-06 2020-02-21 汝州市裕丰电子有限公司 MEMS structure and processing method thereof, pyroelectric sensor and infrared detector
CN212363451U (en) * 2020-03-30 2021-01-15 成都众芯科技有限公司 Full-flexible pyroelectric infrared detector

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020148964A1 (en) * 2001-04-13 2002-10-17 Mcnc Electromagnetic radiation detectors having a micromachined electrostatic chopper device
CN1333569A (en) * 2001-08-03 2002-01-30 中国科学院上海冶金研究所 Micromechanical thermoelectric pile infrared detector array with inclined drawn suspension beam support membrane structure
CN1517296A (en) * 2002-09-26 2004-08-04 ���ǵ�����ʽ���� Flexible micro-electromechanical system changer and its manufacturing method and radio loud-speaker
CN101872797A (en) * 2010-04-13 2010-10-27 中国计量学院 Structure of novel infrared detector based on micro-bridge resonator and manufacturing method thereof
CN102480285A (en) * 2010-11-29 2012-05-30 中国科学院微电子研究所 Infrared sensor switching device and manufacturing method thereof
CN102874735A (en) * 2012-09-29 2013-01-16 姜利军 Two-material micro-cantilever, electromagnetic radiation detector and detection method
CN103708406A (en) * 2013-12-12 2014-04-09 中国计量学院 Resonant type infrared detector structure capable of isolating packaging stress and manufacturing method thereof
CN110823386A (en) * 2019-11-06 2020-02-21 汝州市裕丰电子有限公司 MEMS structure and processing method thereof, pyroelectric sensor and infrared detector
CN212363451U (en) * 2020-03-30 2021-01-15 成都众芯科技有限公司 Full-flexible pyroelectric infrared detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116609391A (en) * 2023-06-19 2023-08-18 哈尔滨学院 Polymer material electrical property testing device
CN116609391B (en) * 2023-06-19 2023-11-24 哈尔滨学院 Polymer material electrical property testing device

Similar Documents

Publication Publication Date Title
US7763947B2 (en) Piezo-diode cantilever MEMS
US6586738B2 (en) Electromagnetic radiation detectors having a micromachined electrostatic chopper device
EP1998153B1 (en) Current pyroelectric infrared sensor
JPH06503423A (en) Micro-element for detecting or applying force and its manufacturing method
WO2002043148A9 (en) Micromachined infrared sensitive pixel and infrared imager
CN105655480A (en) Piezoelectric film sensor, piezoelectric film sensor circuit and manufacturing method
CN212363451U (en) Full-flexible pyroelectric infrared detector
CN111486973A (en) Full-flexible pyroelectric infrared detector
US10115885B2 (en) Fluidic assembly process using piezoelectric plates
US5293094A (en) Miniature actuator
JP7270920B2 (en) Chemical/Physical Phenomenon Detector
Li et al. Micro-patterning of PZT thick film by lift-off using ZnO as a sacrificial layer
US5589687A (en) Infrared detection device comprising a pyroelectric thin film and method for fabricating the same
CN106966356A (en) A kind of beam type diaphragm pressure electrification structure
TW202042040A (en) Pseudo-piezoelectric d33 vibration device and display integrating the same
JP2824317B2 (en) PVDF oriented polarization film and method of manufacturing pyroelectric infrared sensor using the same
KR20030013130A (en) High sensitive cantilever sensor and method for fabrication thereof
Montero et al. All printed flexible piezoelectric pressure sensor with interdigitated electrodes
CN109894168B (en) Microfluidic substrate and micro total analysis system
Wallace et al. Integrated electronics for control of large-area piezoelectric arrays for adjustable optics
CN110775938A (en) Manufacturing process flow of capacitance-cantilever beam type electric field measurement sensor
Pevtsov et al. Integrated uncooled array IR sensors
WO2018039085A1 (en) Fluidic assembly process using piezoelectric plates
JP2013064756A (en) Pyroelectric infrared sensor
KR100388916B1 (en) Cantilever for a scanning probe microscope and a method of manufacturing the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination